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Time Allocation and Task Juggling†

By Decio Coviello, Andrea Ichino, and Nicola Persico*

A single worker allocates her time among different projects which are 
progressively assigned. When the worker works on too many projects at 
the same time, the output rate decreases and completion time increases 
according to a law which we derive. We call this phenomenon “task 
juggling” and argue that it is pervasive in the workplace. We show that 
task juggling is a strategic substitute of worker effort. We then present 
a model where task juggling is the result of lobbying by clients, or 
coworkers, each seeking to get the worker to apply effort to his project 
ahead of the others’. (JEL J22, M12, M54)

This paper studies the way in which a worker allocates time across different proj-
ects, or equivalently, effort across different projects through time. We study, in par-
ticular, the phenomenon of task juggling (frequently called multitasking), whereby 
a worker switches from one project to another too frequently.

Task juggling is a first-order feature in many workplaces. Using time diaries and 
observational techniques, the managerial literature on time-use documents that knowl-
edge workers (engineers, consultants, etc.) frequently carry out a project in short 
incremental steps, each of which is interleaved with bits of work on other projects. For 
example, in a seminal study of software engineers Perlow (1999, p. 64) reports that

[...] a large proportion of the time spent uninterrupted on individual activi-
ties was spent in very short blocks of time, sandwiched between interactive 
activities. Seventy-five percent of the blocks of time spent uninterrupted on 
individual activities were one hour or less in length, and, of those blocks 
of time, 60 percent were a half an hour or less in length.

Similarly, in their study of information consultants, González and Mark (2005, 
p. 151) report that

[...] the information workers that we studied engaged in an average of 
about 12 working spheres per day. […] The continuous engagement with 
each working sphere before switching was very short, as the average 
working sphere segment lasted about 10.5 minutes.
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The fact that much work is carried out in short, interrupted segments is, in itself, 
a descriptively important feature of the workplace. But what causes these interrup-
tions? The time-use literature points to the “interdependent workplace,” meaning an 
environment in which other workers can (and do) ask/demand immediate attention 
to joint projects which may distract the worker from her more urgent tasks. One of 
the workers interviewed by González and Mark (2005, p. 152) puts it this way:

[...] Sometimes you just get going into something and they [call] you and 
you have to drop everything and go and do something else for a while […] 
it’s almost like you are weaving through, it is like, you know, a river, and 
you are just kind of like: “Oh these things just keep getting in your way,” 
and you are just like: “get out of my way” and then you finally get through 
some of the other tasks and then you kind of get back, get back along the 
stream, your tasks […].

The literature on human scheduling, instead, attributes task juggling to the cogni-
tive limitations of individual human schedulers. Crawford and Wiers (2001, p. 34), 
for example, write:

[...] One way in which human schedulers try to reduce the complexity of 
the scheduling problem is by simplification […]. However, a simplified 
scheduling model leads to the oversimplification of the real system to be 
scheduled, and this in turn creates unfeasible or suboptimal schedules.

The physiological constraints on scheduling ability are explored in the medical lit-
erature.1 The popular press, however, has already rendered its verdict: scheduling is 
a challenge for many workers for reasons both internal and external to the worker. 
Popular literature books such as Covey (1989) and Allen (2001) exhort (and attempt to 
help) the reader to prioritize better. In The Myth of Multitasking: How “Doing It All” 
Gets Nothing Done (Crenshaw 2008, p. 89), we find a list of suggestions designed to 
help people reduce multitasking on the job. The first two are (i) “resists making active 
[e.g., self-initiated] switches; “(ii) minimize all passive [e.g., other-initiated] switches.”

Effects of Task Juggling on Productivity.—We are interested in task juggling inso-
far as it affects productivity. The next example illustrates a source of productivity 
loss which is inherent to task juggling.

EXAMPLE 1: Consider a worker who is assigned two independent projects, A and 
B, each requiring ten days of undivided attention to complete. If she juggles both 
projects, for example working on A on odd days and on B on even days, the average 
duration of the two projects is equal to 19.5 days. If instead she focuses on each 
project in turn, she completes A on the tenth day and then takes the next ten days 
to complete B. In the second case, the average duration of both projects from the 
time of assignment is 15 days. Note that under the second work schedule project B 
does not take longer to complete, while A is completed much faster; in other words, 
avoiding task juggling results in a Pareto-improvement across projects durations.

1 See, e.g., Morris et al. (1993) and Baker et al. (1996).
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The example shows that a worker who juggles too many projects takes longer to 
complete each of them, than if she handled projects sequentially. The latter proce-
dure corresponds to the “greedy algorithm,” which is widely studied in the opera-
tions research literature.2

Outline of the Paper.—As a first step toward more complex models, in this paper 
we focus on a single worker who faces time allocation issues. In Section II we 
model a production process which may feature task juggling. Formally, the model is 
summarized in a system of four functional equations (1) through (4). Finding a solu-
tion to this system represents an original mathematical contribution which is offered 
in Theorem 1. Based on this solution, we demonstrate that effort and task juggling 
are strategic substitutes. This means that anything that makes workers juggle more 
tasks will also, indirectly, reduce the worker’s incentives to exert effort.

Section III addresses the incentives that might generate task juggling. We model a 
lobbying game in which the worker allocates effort under pressure by her coworkers, 
superiors, or clients. This model is inspired by the idea of “interdependent work-
place” discussed in the introduction. We fully characterize the equilibrium of the 
lobbying game and show that, no matter how low the cost of lobbying, in equilib-
rium there will be lobbying, which will induce task juggling. This model provides a 
microfoundation of task juggling.

I.  Related Literature

What we call task juggling is viewed as an aberration in the queuing literature. The 
queuing literature prescribes algorithms (“greedy”-type algorithms, usually) that pre-
vent task juggling. As we discussed in the introduction, we believe that this particular 
aberration is worth studying because it arises empirically, arguably as a predictable 
result of incentives. From a technical viewpoint, our model also departs from the queu-
ing literature because that literature usually focuses on giving algorithms that keep 
queuing systems stable, that is, sufficient conditions under which queues can’t ever get 
unacceptably or infinitely long.3 Our model is by nature unstable because the arrival rate 
exceeds the worker’s capacity (in our notation, α > η/X). We believe that there is merit 
in going beyond stable queuing systems because stability requires the serving facility to 
be idle at least a fraction of their time, which is counterfactual in many environments.4 
Finally, our paper is distinct from most of the queuing literature in that the study of the 
incentives, such as the ones we examine, is largely absent from that literature.

In the economics literature, Radner and Rothschild (1975) discuss task prioritiza-
tion by a single worker. They give conditions under which no element of a multidi-
mensional controlled Brownian motion ever falls below zero. The control represents a 
worker’s (limited) effort being allocated among several tasks, and the dimensions of the 
Brownian motion represent the satisfaction levels with which each task is performed. 

2 The name “greedy” refers to prioritizing those projects which are closest to completion (which project A is 
after day 1).

3 An exception to the focus on stability is Dai and Weiss (1996) who do study the evolution of an unstable queu-
ing network.

4 In Coviello, Ichino, and Persico (2013), for example, we study the work organization of judges. Judges are 
never idle: in our data, they always have a backlog of cases that they should be working on.
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Although broadly similar in its subject matter, that paper is actually quite different from 
the present one. Among other differences, it features no discussion of incentives.

Task juggling is studied in the sociological/management literature on time use 
(see Perlow 1999 for a good example and a review of the literature). This literature 
uses time logs and observations to document the patterns of uninterrupted work 
time, and the causes of the interruptions. This literature identifies “interdependent 
work” as the source of interruptions. The “lobbying by clients” model presented in 
Section III captures this effect. At a more popular level, there is a large time manage-
ment culture which focuses on the dynamics of distraction and on “getting things 
done” (see e.g., Covey 1989; Allen 2001).5

The managerial “firefighting” literature (see Bohn 2000; Repenning 2001) docu-
ments the phenomenon whereby an organization focuses resources on unanticipated 
flaws in almost-completed projects (firefighting), and in so doing starves projects at 
earlier development stages of necessary resources, which in turn ensures that these 
projects will later require more firefighting, etc. This phenomenon is specular to the 
one we study because in our model the inefficiency is caused by too few, not too 
many, resources devoted to late-stage projects.

Dewatripont, Jewitt, and Tirole (1999) provide a model in which expanding the 
number of projects a worker works on will indirectly reduce the worker’s incentives 
to exert effort. We get the same effect in Proposition 1. In their setup, the effect 
results from the worker’s incentives to exert effort in order to signal his ability. This 
effect is different than the one analyzed in this paper.

II.  The Production Process

In this section we introduce a dynamic production process which incorporates the 
possibility of multitasking in a very simple way. Imagine a worker who is assigned a 
stream of projects over time at rate α. Assuming the worker cannot deal with all the 
projects instantaneously, then the worker has to choose how to deal with the excess. 
We assume that, as cases are progressively assigned to the worker, she puts them in 
a queue of inactive cases. The worker draws from this queue at rate ν. A case drawn 
from the queue is “put in production”: in our language, the case becomes active. All 
active cases receive an equal share of the worker’s attention, a production process 
that generalizes the task juggling production process described in Example 1.

This modeling approach allows us to span the range between much task juggling 
(ν large, approaching α) and no task juggling, close to “greedy” (ν low). We will 
derive an exact formula for the production function which, given an effort rate, a 
degree of complexity of projects, and a level of task juggling, yields an output rate. 
Having an exact formula for the production function will allow us later to study 
strategic behavior pertaining to task juggling.

5 For a review of the academic literature on this subject see Bellotti et al. (2004).
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A. The Model

The model lives in continuous time, starting from t = 0. At time 0 the worker 
has no active projects. There is a continuum of projects. Projects are assigned at an 
exogenous rate α.

Each project takes X steps to complete. A project is characterized, at any point in time, 
by its degree of completion x ∈ [0, X ], which measures how far away the project is from 
being completed. We call a project completed when x = 0. Note that, because x is a 
continuous variable, we are assuming that there is a continuum of steps for each project. 
X can be interpreted as measuring the complexity of the project, or the worker’s ability.

As soon as the worker starts working on a project, we say that the project becomes 
active. All projects remain active until they are completed. At any time t, the worker 
has ​A​t​ active projects, in various degrees of completion. The distribution ​φ​t​ ​( x )​ 
denotes the mass of active projects which are exactly x steps away from being done. 
By definition, the number of active projects at time t is

(1) 	​  A​t​  = ​ ∫​ 
0
​ 
X

​ ​φ​t​ ​( x )​ dx.

We assume that all active projects are moved toward completion at a rate ​η​t​/​A​t​ , 
where ​η​t​ is the rate at which effort is exerted. Informally, this means that in the time 
interval between t and t + Δ, the worker shaves off approximately ​( ​η​t​/​A​t​ )​ Δ steps 
from each active project.6 This formulation captures the idea that the worker divides 
a fixed amount of working hours equally among all projects active at time t. This 
procedure means that the worker is working “in parallel” on all active projects. If all 
active projects proceed at the same speed, then after Δ has elapsed, the distribution ​
φ​t​​( x )​ is translated horizontally to the left (refer to Figure 1), and so for Δ “small 
enough” we can write intuitively

 	​  φ​t+Δ​ ​( x  − ​ 
​η​t​ _ 
​A​t​

 ​ Δ )​  = ​ φ​t​ ​( x )​.

To express this condition rigorously, bring ​φ​t​​( x )​ to the right-hand side, divide by Δ 
and let Δ → 0 to get

(2) 	​  
∂ ​φ​t​ ​( x )​

 _ 
∂ t

 ​   − ​ 
∂ ​φ​t​ ​( x )​

 _ 
∂ x

 ​ ​ 
​η​t​ _ 
​A​t​

 ​  =  0.

This partial differential equation embodies the assumption of perfectly parallel work 
on the active projects.

The projects that fall below 0 (grey mass in Figure 1) are the ones that get com-
pleted within the interval Δ. These are the projects whose x at t is smaller than ​ 

​η​t​ _ ​A​t​
 ​ Δ. 

Therefore, the mass of output between t and t + Δ is approximately

 	​  ∫​ 
0
​ 
​ 
​η​t​ _ 
​A​t​

 ​ Δ
​ ​φ​t​ ​( x )​ dx.

6 Note that this formulation requires ​A​t​ > 0.
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To get the output rate ​ω​t​ , divide this expression by Δ and let Δ → 0 to get

(3) 	​  ω​t​  = ​  lim   
Δ→0

​ ​ 1 _ 
Δ

 ​ ​∫​ 
0
​ 
​ 
​η​t​ _ 
​A​t​

 ​ Δ
​ ​φ​t​ ​( x )​ dx  = ​ 

​η​t​ _ 
​A​t​

 ​ ​φ​t​ ​( 0 )​.

The worker is not required to open projects as soon as they are assigned. Rather, we 
allow the worker to open new projects at a rate ​ν​t​ . A larger ​ν​t​ will mean more task 
juggling—more projects being worked on simultaneously. This ​ν​t​ is seen either as a 
control variable: depending on the specific environment, either a choice on the part 
of the worker, or determined by lobbying, or else imposed by some regulation. For 
Δ small, the change in the mass of projects active at t is approximately

 	​  A​t+Δ​  − ​ A​t​  = ​ ν​t​ · Δ  − ​ ω​t​ · Δ.

Divide both sides by Δ and let Δ → 0 to get the formally correct expression

(4) 	​  
∂ ​A​t​ _ 
∂ t

 ​   = ​ ν​t​  − ​ ω​t​ .

Graphically, the mass of newly opened projects is squeezed in at the back of the 
queue in Figure 1, just to the left of X, in whatever space is vacated on the horizontal 
axis by the progress made in Δ on the preexisting open projects.

The description of the production process is now complete. In the production pro-
cess, two variables are interpreted (for now) as given: ​η​t​ and ​ν​t​ . The first describes 
how much the worker works, the second how she works—how many projects she 
keeps open at the same time. These two variables will determine, through the pro-
cess described mathematically by equations (1) through (4), the output rate ​ω​t​ which 
is the key variable of interest. This variable, in turn, will determine how long a 
project takes to complete. Our first major task is to uncover the law through which ​
η​t​ and ​ν​t​ determine ​ω​t​ . We turn to this next.

Figure 1. The ​φ​t​ Function

Note: The figure depicts the relationship between input and output rates on a growth path.
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B. Derivation and Characterization of the Production Function

To build some intuition about how ​η​t​ and ​ν​t​ determine ​ω​t​ , let us start with the 
“greedy” input rate. Fix a constant effort level ​η​t​ = η. The “greedy” input rate is ​
ν​t​ = η/X. At this input rate, in every short time interval Δ the worker starts work 
on Δ · (η/X ) new projects. At the beginning of time, between t = 0 and Δ, there 
are no preexisting projects and so the only active projects are the newly started 
ones. Formally, ​A​0​ = Δ · (η/X ). According to our specification of the production 
process, in this first time interval the worker’s effort shaves off approximately ​
( η/​A​0​ )​ Δ = X from each active project. This means that by time t = Δ all active 
projects have been completed. Therefore, the throughput rate during this first 
interval equals the input rate, and all projects are completed almost instanta-
neously (to be exact, within Δ of being started). Let us now turn to the second 
time interval ​( Δ, 2Δ )​. This second time interval is exactly identical to the first 
one, and so the same conclusions apply: the throughput rate is equal to the input 
rate and projects are completed instantaneously. The same logic applies to all 
successive time periods.

What goes wrong when the input rate exceeds the greedy level? In this case the 
worker is not able to complete within the first time period all the projects which 
were started. These projects will need additional work during the second time 
period, which will divert effort from projects started in the second period. Thus, 
projects started in the second period will receive less attention during period 2, than 
first-period projects received in period 1. Therefore period 2-projects will be even 
less complete when they reach period 3. This effect snowballs down to all future 
projects. Soon, a period is reached where the worker is simultaneously working 
on many vintages of projects, some of which will only be completed far in the 
future. This means that a fraction of the current period’s worker effort will not pay 
off today, but only in the future. This observation suggests that today’s throughput 
should be smaller, relative to the greedy case. However this is not obvious, because 
it is also true that some of yesterday’s effort pays off today. Nevertheless, in this 
section we prove that when the input rate exceeds the greedy level, throughput is 
smaller than its greedy level.

DEFINITION 1: Fix X. We say that input and effort rates ​ν​t​ , ​η​t​ generate output rate ​
ω​t​ if the quintuple of positive real functions ​​[ ​ν​t​ , ​η​t​ , ​φ​t​ ​( x )​, ​A​t​ , ​ω​t​ ]​​​

t∈​( 0,∞ )​    
x∈[0, X ]

 ​​ satisfies (1), 
(2), (3), (4), and ​A​0​ = 0.

The next theorem identifies the law through which ​ν​t​ and ​η​t​ generates ​
ω​t​ . Implicitly, then the theorem identifies the production function. The theorem 
restricts attention to the case in which ​ν​t​ and ​η​t​ are constant and equal to ν and  
η respectively.

THEOREM 1 ( Production Function): The pair of constant functions ​[ ​ν​t​ = ν, ​η​t​ = η ]​ 
generate ​ω​t​ ≡ ω if the triple ν, η, ω solves

(5) 	  ω ​ X _ η ​  −  log ​( ω )​  =  ν ​ X _ η ​  −  log ​( ν )​.
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PROOF: 
We start by guessing a functional form for ​φ​t​ ​( x )​ and ​A​t​ . Fix η and pick any two 

real numbers ν and ω > ν. Let

 	​  φ​ t​ ∗​ ​( x )​  = ​ 
​( ν − ω )​
 _ η ​  ω t ​e​​ ν−ω _ η  ​ x​ ,

and

 	​  A​ t​ ∗​  = ​ ( ν  −  ω )​ t.

One can verify directly that for any K, λ, the pair ​φ​t​ ​( x )​ = Kt​e​ ​ λ _ η ​ x​ , ​A​t​ = λt solves (2) 
above. Moreover, for any λ the triple ​φ​t​ ​( x )​ = Kt​e​ ​ λ _ η ​ x​, ​A​t​ = λt, ​ω​t​ satisfies (3) if and 
only if K = ​ λ _ η ​ ​ω​t​ , which implies ​ω​t​ = ω. Finally, the triple ​ν​t​ , ​A​t​ , ω satisfies (4) if and 
only if λ = ​ν​t​ − ω, which implies ​ν​t​ = ν. This shows that, for any ν, ω, the quadruple ​
[ ν, ​φ​ t​ ∗​ ​( x )​, ​A​ t​ ∗​, ω ]​ satisfies all the required equalities except (1). We now show that the 
pair ​φ​ t​ ∗​​( x )​ = Kt​e​ ​ λ _ η ​ x ​, ​A​ t​ ∗​ = λt solves (1) if and only if equation (5) holds. This equation 
implicitly identifies which values of ν, η, and ω are compatible with each other.

Condition (1) reads

 	​  A​ t​ ∗​  = ​ ∫​ 
0
​ 
X

​ ​φ​ t​ ∗​ ​( x )​ dx.

Substituting for ​φ​ t​ ∗​​( x )​ and ​A​ t​ ∗​ yields

 	  λt  = ​ ∫​ 
0
​ 
X

​ Kt​e​ ​ λ _ η ​ x​ dx

	 = ​ 
η
 _ 

λ
 ​ Kt ​[ ​e​ ​ λ _ η ​ X​  −  1 ]​.

Now substitute for K = ​ λ _ η ​ ω and λ = ν − ω and rearrange to get

 	​   ν _ ω ​  = ​ e​ ​ 
​( ν−ω )​
 _ η  ​ X​ .

Taking logs yields equation (5).
Finally, the last condition in Definition 1 is satisfied because ​A​ 0​ ∗​ = 0. Therefore, 

Theorem 1 is proved.

Equation (5) implicitly yields the production function we are seeking. The equa-
tion is most easily interpreted as follows: given an effort rate η and degree of task 
juggling ν, the implicitly identified ω represents the generated output rate. A conve-
nient result also proved by Theorem 1 is that given constant effort and input rates, 
a constant output rate is generated. This is actually a subtle result, as we discuss on 
page 1 in the online Appendix.

We will now study the properties of the implicit production function. Before we 
start, however, an observation. The functions ​φ​ t​ ∗​​( x )​, ​A​ t​ ∗​ identified in Theorem 1 are 
only well defined if the input rate ν exceeds the output rate ω. Expressed in terms of 
primitives, this condition is equivalent to ν > η/X. (This equivalence is proved in 
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the online Appendix). The limiting case η/X represents the “greedy” input rate, the 
smallest input rate at which the worker is never idle.7 So our analysis is restricted to 
input rates such that the worker is never idle. From now on, we implicitly maintain 
this “non-idleness” assumption.

PROPOSITION 1 (Comparative Statics on the Production Function): For each pair ​
( ν, η/X )​ denote by Ω ​( ν; η/X )​ the unique ω < ν that is generated by ν, η through 
(5). Then we have:

	 (i)	 Ω ​( ν; η/X )​ is decreasing in ν.

	 (ii)	 Ω ​( ν; η/X )​ is increasing in η/X.

	 (iii)	​  ∂ Ω ​( ν; η/X )​
 _ ∂ ν ∂ η  ​ < 0, which means that ν and η are strategic substitutes in the  

production of ω.

	 (iv)	 The function Ω ​( · ; · )​ is homogeneous of degree 1.

	 (v)	 Ω ​( η/X; η/X )​ = η/X.

PROOF: 
See the online Appendix. Part (v) is proved in Proposition 5 in the online Appendix.

Part (i) captures the effect of task juggling: increasing the input rate ν reduces 
output. Therefore setting ν as small as possible, provided that the worker is not idle, 
produces the maximum feasible output rate. Maximal output is therefore achieved 
when ν = η/X. In that case, part (v) shows that the output rate equals η/X. This 
policy corresponds to the “greedy algorithm,” and gives rise to a steady state which 
is analyzed in Proposition 5 in the online Appendix.

Part (ii) simply says that if a worker works more then the output rate is larger.
Part (iii) deals with the complementarity of inputs in the production of the output 

rate. It says that the returns to effort decrease when ν increases. Intuitively, this is 
because ​A​t​ is larger and so an increase in effort needs to be spread over a greater 
number of projects.

Part (iv) is a constant-returns-to-scale result: if we scale both inputs by the same 
parameter r, output increases by the same amount. The parameter r can be inter-
preted as governing the pace at which the system operates. Setting r > 1 means that 
the entire system is working at a faster pace: per unit of time, we have more input, 
more effort, and more output, all in the same proportion.

Part (iii) has implications for the scenario in which effort is chosen endogenously, 
rather than being exogenously given. Suppose effort ​η​∗​​( ​  ν ​ )​ is determined as the solu-
tion to the problem

(6) 	​  max   η  ​ Ω ​( ​̂  ν ​; ​ 
η
 _ 

X
 ​ )​  −  c ​( η )​, 

7 The case ν ≤ η/X is treated in Proposition 5 in the online Appendix.
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where the input rate ​̂  ν ​ is exogenously given and the function c​( · )​ represents the 
cost of effort. Problem (6) represents the problem of a worker choosing how much 
to work, given the constraint that she needs to put projects into production at rate ​̂  ν ​. 
Such constraints might be determined by the hierarchical organization of the work-
place (how many coworkers can, or choose to, pressure the worker for their work to 
be done, as in the “interdependent workplace” modeled in the next section), or they 
can be mandated by regulation (Italian judges are required to start work on a case 
within 60 days of the case being assigned to them). Suppose that ​c′​ ​( 0 )​ = 0, which 
guarantees that the optimally chosen effort is positive. Then the following implica-
tion holds true.

COROLLARY 1: Suppose effort ​η​∗​​( ​  ν ​ )​ solves (6). If the input rate grows to ​̂  ν ​′ ≥ ​  ν ​ 
then optimal effort ​η​∗​​( ​  ν ​′ )​ decreases relative to ​η​∗​​( ​  ν ​ )​.

PROOF: 
A direct consequence of Proposition 1 (iii).

This proposition highlights another dimension of inefficiency associated with 
task juggling. Not only does task juggling slow down projects, but it also induces 
output-motivated workers to slack off.

We now define two measures of durations: they are the measures employers or 
policy makers often care about.

DEFINITION 2: For a project assigned at t we define the duration ​D​t​ as the time 
which elapses between t and the completion of the project. For a project opened 
at t (and thus assigned at a time before t), we define completion time ​C​t​ as the time 
which elapses between t and the completion of the project.

The next result translates results about output rates into results about durations. 
The main takeaway is that because durations are decreasing in the output rate, task 
juggling increases durations.

PROPOSITION 2:

	 (i)	 Fix ω, ν, η. Then ​C​t​ = ​ ​
( ν − ω )​
 _ ω  ​ t and ​D​t​ = ​ ​

( α − ω )​
 _ ω  ​ t.

	 (ii)	 Fix η, and let ω be generated by ​[ ν, η ]​. Then ​C​t​ and ​D​t​ are increasing in ν.

PROOF: 
See the online Appendix.

III.  Strategic Determination of Degree of Task Juggling and Endogenous Effort

In the previous sections we have assumed that ​ν​t​ , the exogenous input rate, is 
constant through time and, furthermore, that it exceeds the duration-minimizing 
“greedy” rate η/X. We have not discussed how such a ​ν​t​ might come about. In this 
section we microfound such a ​ν​t​ by introducing a game in which the input rate 
is determined endogenously as an equilibrium phenomenon. In the equilibrium of 
this game ​ν​t​ will in fact turn out to be constant through time, and to exceed η/X. 
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Therefore, this section microfounds the time-use behavior which was taken to be 
exogenous in the previous section.

The setup is that each project is owned by a different coworker, supervisor, or 
client who in each instant can lobby the worker to devote a fraction of effort to 
his project, regardless of its order of assignment. For the client, the private benefit 
of lobbying is to avoid his own project waiting inactive. But such lobbying has a 
negative externality on all other projects, because it increases the number of active 
projects which, as shown in the previous section, slows down all projects. This 
externality, which is not internalized by the lobbyists, gives rise to an excessively 
high input rate.

The model is as follows. The worker’s effort η is constant through time and fixed 
exogenously (we will relax the second assumption later). Lobbying is modeled as a 
technology whereby, at any instant t, a client can pay κ · Δ and force activity on his 
project during the interval ​( t, t + Δ )​. Activity on the project means that the project 
moves forward by ​( η/​A​t​ )​ · Δ. The rate κ is interpreted as the per-unit of time cost 
of lobbying. If κ is not paid then the project sits idle at some x until either lobbying 
is restarted or the never-lobbied projects of its vintage (those assigned at the same 
time) catch up to x, at which time the project becomes active again and stays active 
without any need of, or benefit from, further lobbying. In every instant, ​ν _​ never-
lobbied projects are opened, in the order they were assigned. Once a never-lobbied 
project is opened, it forever remains active whether or not it is lobbied. The rate ​ν _​ 
represents the input rate that would prevail in the absence of any lobbying by the 
clients.8 In this section ​A​t​ denotes the mass of all projects active in instant t and it is 
composed of the two type of projects: all those that are lobbied in that instant, and 
some that are not.9

We assume that clients minimize B times the duration of their project, from 
assignment to completion, plus κ times the time spent lobbying. B represents the 
rate of loss experienced by a client whose project is not completed. We assume no 
discounting for simplicity.

In this model, clients are not allowed to use a variable amount of resources to 
lobby; rather, the cost of lobbying per unit of time is assumed to be fixed exog-
enously. We interpret this fixed cost as a sort of cost of supervision, the cost of stop-
ping by and asking “how are we doing on my project?” or of exerting other kinds of 
pressures. We believe this formulation best captures the process that goes on within 
organizations, where monetary transfers of this kind are not allowed. Also, this type 
of lobbying process might take place after several principals have signed separate 
contracts with an agent, for example after several homeowners have contracted for 

8 One could be concerned that in equilibrium there might not be enough never-lobbied projects to open, and that 
therefore it would be more precise to state that in every instant the worker opens the minimum of ​ν _​ never-lobbied 
cases and the balance of the never-lobbied projects. However, we will see that in equilibrium the balance of never-
lobbied projects never falls below ​ν _​.

9 Under these rules, for a case that has been lobbied in the past, two scenarios are possible in instant t. First, the 
case may have been caught up by the never-lobbied cases of its own assignment vintage; in other words, the case 
was lobbied in the past, but then the lobbying lapsed and the case is now at the same stage of advancement (same 
x) as its never-lobbied assignment vintage. Such a case is worked on without the need for further lobbying and 
proceeds at speed η/​A​t​ . The second scenario is that the case has not been caught up at time t. In this scenario the 
case is worked on in the interval Δ and makes ηΔ/​A​t​ progress if κΔ is spent; otherwise, the case does not proceed.
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the services of a single building contractor and now each is pushing and cajoling the 
contractor to finish his home first.

Since our goal is to explain why lobbying makes the input rate ν inefficiently 
large, let’s tie our hands by stipulating that the input rate of never-lobbied projects ​
ν _​ is “low,” that is, it belongs to the interval ​[ 0, ​ η _ X ​ ]​. This choice of baseline ensures 
that any slowdown in the output rate cannot be attributed to an excessively large ​ν _​.

Projects are indexed by the time τ they are assigned and by an index a that runs 
across the set of the α projects assigned at time τ. We now introduce the notion of 
lobbying strategy and lobbying equilibrium.

DEFINITION 3: A lobbying strategy for project ​( a, τ )​ is a measurable indicator 
function ​S​a τ​ ​( t )​ defined on the interval [τ, ∞) which takes value 1 if project a is lob-
bied in instant t, and is zero otherwise. A lobbying equilibrium is a set of strategies 
such that, for each project ​( a, τ )​, the strategy ​S​a τ​ ​( t )​ minimizes κ times the time 
spent lobbying plus B times the project’s duration.

Equilibrium strategies could potentially be quite unwieldy, featuring complex pat-
terns of activity interspersed with periods of no lobbying. Lemma 3 in the online 
Appendix characterizes equilibrium strategies, achieving considerable simplifica-
tion. Based on that result, we conjecture (and show existence below) of simple 
equilibria in which a time-invariant fraction z of the α newly assigned projects is 
never lobbied, and the remaining fraction ​( 1 − z )​ α is lobbied immediately upon 
assignment and then continuously until they are done. We will call these equilib-
ria constant-growth lobbying equilibria. Note that the definition of constant-growth 
lobbying equilibrium does not restrict the strategy space.

If players follow the strategies of a constant-growth lobbying equilibrium, the 
input rate ν​( z )​ is determined by z via the identity

 	  ν ​( z )​  = ​ ν _​  + ​ ( 1  −  z )​ α.

The percentage of lobbyists ​( 1 − ​z​∗​ )​, and hence the input rate ν ​( ​z​∗​ )​, are determined 
in equilibrium.

The equilibrium construction is delicate. In every instant each client has a choice 
to lobby or not, and so in equilibrium each client has to opt to follow the equilibrium 
prescription. Moreover, every newly assigned client must be indifferent between 
lobbying and not. The cost of lobbying is proportional to the time the project is 
expected to require lobbying, which is the time that active projects take to get done. 
The drawback of not lobbying is the additional delay incurred from not “skipping 
the line.”

PROPOSITION 3: Suppose α > ​ 
η
 _ X ​ . Then, for any ​ν _​ and any cost of lobbying κ,

	 (i)	 a constant-growth lobbying equilibrium exists;

	 (ii)	 in any constant-growth lobbying equilibrium ν ​( ​z​∗​ )​ > ​ 
η
 _ X ​ , i.e., the equilibrium 

input rate exceeds the duration-minimizing one;
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	 (iii)	 the constant-growth lobbying equilibrium is unique;

	 (iv)	 the fraction ​( 1 − ​z​∗​ )​ of projects that are lobbied in equilibrium is increasing 
in ​ α _ ​ν _​ ​ and ​ 

η
 _ X ​ , and decreasing in ​ κ _ B ​ ;

	 (v)	 the equilibrium input rate ν ​( ​z​∗​ )​ is decreasing in ​ κ _ B ​ and increasing in ​ α _ ​ν _​ ​ and ​ 
η
 _ X ​ .

PROOF: 
See the online Appendix.

Part (i) can be viewed as providing a microfoundation for the behavioral assump-
tion of constant ​ν​t​ which was maintained through Section II. What was previously 
a behavioral assumption about the worker is now the outcome of lobbying equilib-
rium where, in principle, ​ν​t​ need not be constant.

Part (ii) of the proposition says that, no matter how large the cost of lobby-
ing, input rates will always exceed the “greedy” rate, and so we will have task 
juggling in equilibrium. The intuition is clear: if input rates were efficient, say 
ν ≤ η/X, then completion time would be zero.10 This means that the cost of lob-
bying would be zero and, also, that a project which is lobbied would be completed 
instantaneously. Therefore lobbying is a dominant strategy, which would give rise 
to an input rate ν = α > η/X. Thus an equilibrium input rate ν cannot be smaller  
than η/X.

Part (v) of the proposition says that if a worker is less susceptible to lobbying, 
which we can model as κ being larger, then the worker will have a smaller input rate 
and a larger output rate. Moreover, there is more lobbying when the assignment rate 
is larger, which is intuitive because then a non-lobbying client anticipates waiting 
longer for his project to be opened. Finally, harder-working workers and easier proj-
ects will give rise to more lobbying. Intuitively, this is because then the completion 
time gets shorter relative to the duration of a non-lobbied project.

A few words of comment. Social inefficiency in this model results not only from 
the wasted cost of lobbying, but also from the decrease in the output rate. Thus, the 
inefficiency goes beyond that in a “common pool” model where a number of agents 
expend resources lobbying for a share of a fixed pie.

IV.  Conclusion

Task juggling is prevalent in the workplace. We have developed a theory of a 
worker who chooses how many projects to work on simultaneously. Working on 
too many projects at the same time reduces the worker’s output, for given effort 
and ability. We have derived the production function that describes the slowdown 
in output. We have shown that task juggling and effort are strategic substitutes in 
the production function, suggesting that when effort is not contractible, whatever 
worsens task juggling will also indirectly decrease effort. We have also modeled an 

10 That completion time is zero under the greedy rate was intuitively discussed on page X. Formally, the result 
follows from ​A​0​ = 0 and Proposition 5 in the online Appendix.
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“interdependent workplace” environment which will lead the worker to work on too 
many projects.

Our analysis does not touch on the possible counter-measures that might reduce 
task juggling. A principal, for example, might want to control an agent’s task jug-
gling through productivity-based incentives. If so, then could task juggling always 
be eliminated? We think not. When evaluating productivity is difficult, such as when 
knowledge workers have a monopoly over expertise as do physicians, scientific 
researchers, etc., strong productivity-based incentives may be counterproductive 
(Holmström-Milgrom multitasking).11 In these cases weak incentives can be opti-
mal and agents can easily fall prey to task juggling.

We view the single-worker model presented here as a building block for future 
research of two types. First, empirical work, which might take advantage of increas-
ingly available workplace microdata to quantitatively evaluate the inefficiencies 
caused by task juggling, and to perform counterfactual calculations. In our com-
panion paper (Coviello, Ichino, and Persico 2013) we use a related framework to 
estimate the causal effect of an exogenously-induced increase in parallel working. 
We find that the slowdown in output resulting from task juggling is large.

Second, we foresee the possibility of theoretical work extending this analysis to a 
multi-worker hierarchical workplace.
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