Preference Robust Utility-based Shortfall Risk Minimization

Erick Delage HEC Montréal

(joint work with Shaoyan Guo [Dalian U. of Tech.] and Huifu Xu [U. of Southampton])

Workshop on Robust Optimization, Avignon, June 29th, 2018

Canada Research Chairs Chaires de recherche du Canada

Outline

- Why preference robust optimization?
- PRO for utility-based shortfall risk measures
- Numerical experiments
- Conclusion

The portfolio selection problem

- An individual meets with his financial advisor to tell him he wishes to invest in a given industrial sector, country, etc.
- Since uncertain factors affect performance, a « good » portfolio is one where the risks of losses are best justified by the potential gains

The portfolio selection problem

- An individual meets with his financial advisor to tell him he wishes to invest in a given industrial sector, country, etc.
- Since uncertain factors
 affect performance, a
 « good » portfolio is one
 where the risks of leases
 are best juli How car

How can we identify optimal investments?

potential

The strength of utility theory

• In 1954, G. Debreu established that if the preference relation is complete, transitive, and continuous, then there exists a utility mapping such that

$$X \succeq Y \Leftrightarrow u(X) \ge u(Y)$$

where X, Y describe two financial positions

 This implies that any such preference relation can be numerically optimized

$$\underset{x \in \mathcal{X}}{\text{maximize}} \ u(Z(x))$$

The strength of utility theory

 In 1954, G. Debreu established that if the preference relation is complete, transitive, and continuous, then there exists a utility mapping such that

$$X \succeq Y \Leftrightarrow \rho(X) \le \rho(Y)$$

where X, Y describe two financial positions

 This implies that any such preference relation can be numerically optimized

minimize_{$$x \in \mathcal{X}$$} $\rho(Z(x))$

The strength of utility theory

• In 1954, G. Debreu established that if the preference relation is complete, transitive, and continuous, then there exists a utility mapping such that

$$X \succeq Y \Leftrightarrow \rho(X) \le \rho(Y)$$

whe

WARNING!

This can

Numerical optimization can only be done once subjective preferences have been fully characterized.

6 /31

How can we characterize risk preferences?

 An investor can indicate what type of wealth evolution he is comfortable with

How can one assess risk tolerance?

[Grable & Lytton, Financial Services Review (1999)]

- 1. You have just finished saving for a « once-in-a-lifetime » vacation. Three weeks before you plan to leave, you lose your job. You would:
 - A. Cancel the vacation
 - B. Take a much more modest vacation
 - C. Go as scheduled, reasoning that you need the time to prepare for a job search
 - D. Extend your vacation, because this might be your last chance to go first-class

- 2. You are on a TV game show and can choose one of the following. Which would you take?
 - A. \$1,000 in cash
 - B. A 50% chance at winning \$ 5000
 - C. A 25% chance at winning \$ 10,000
 - D. A 5% chance at winning \$100,000

The limitations of utility theory

- Issue #1: One cannot make all possible comparisons
- Issue #2: One can easily provide false information about his preferences (Kahneman & Tversky, 1979)
- Solutions :
 - Make **simplifying assumptions** about the structure of $\rho(\cdot)$ in order to allow **interpolation** and **filter errors**
 - Employ a scheme that **handles uncertainty** about $\rho(\cdot)$

What is the right structure for a risk measure?

Preference robust optimization for utility-based shortfall risk measures

Axiomatic assumptions

Let (Ω, Σ, P) be a probability space with $|\Omega| = M$ and let X, Y, and $Z(x): \Omega \to \mathbb{R}$ be random variables

- Monotonicity: $X \ge Y \Rightarrow \rho(X) \le \rho(Y)$
- Risk Aversion: $\rho(\theta X + (1-\theta)Y) \le \theta \rho(X) + (1-\theta)\rho(Y), \forall \theta \in [0, 1]$
- Law Invariance: $X =_P Y \Rightarrow \rho(Y) = \rho(X)$
- Translation Invariance: $\rho(X+t)=\rho(X)-t\,,\,\forall t$
- Elicitability (Bellini & Bignozzi, 2015): ∃ incentive mechanism for proper reporting
- M+RA+LI+TI = Law invariant convex risk measure (Kusuoka, 2001)
 - +Scale Invariance: Law invariant coherent risk measure
- M+RA+LI+TI+Elicit. = Utility-based shortfall (UBSF) risk measure (Föllmer & Schied, 2002)

What do we know about ρ ?

The risk measure is a member of the set:

$$\mathcal{R} := \{ \rho : \mathcal{L}_p \to \mathbb{R} \mid \rho(0) = 0 \}$$

Monotonicity: $\rho(\cdot)$ non-increasing

Risk aversion: $\rho(\cdot)$ convex

Translation invariance: $\rho(X+t)=\rho(X)-t\,,\;\forall\,X,t$

Scale invariance: $\rho(\alpha X) = \alpha \rho(X), \ \forall X, \alpha \geq 0$

Confidence intervals: $\rho(w_k^+) \leq \rho(W_k) \leq \rho(w_k^-)$, $\forall k$

Law invariance: (see details in D. & Li, 2018)

Elicitability: $\exists l \in \mathcal{L}, \ \rho(X) = \inf\{t : \mathbb{E}_P[l(-X-t)] \leq l(0)\}, \ \forall X\}$

where $\mathcal L$ is the set of convex non-decreasing functions that are strictly increasing for all $y \geq -\epsilon$.

HEC MONTRĒAL

13 /31

What should we optimize?

We minimize the preference robust risk measure (D. & Li, 2018):

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \sup_{\rho \in \mathcal{R}} \rho(Z(x))$$

• Letting $SR_l^P(X) := \inf\{t : \mathbb{E}_P[l(-X-t)] \le l(0)\}$, we get:

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \sup_{l: SR_l^P \in \mathcal{R}} SR_l^P(Z(x))$$

This reduces to:

$$\begin{array}{ll}
\text{minimize} & t \\
x \in \mathcal{X}, t
\end{array}$$

subject to
$$\mathbb{E}_P[l(-Z(x))]$$

$$\mathbb{E}_{P}[l(-Z(x)-t)] \leq l(0), \forall l : SR_{l}^{P} \in \mathcal{R}$$

What should we optimize?

• We minimize the preference robust risk measure (D. & Li, 2018):

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \sup_{\rho \in \mathcal{R}} \rho(Z(x))$$

• Letting $SR_l^P(X) := \inf\{t : \mathbb{E}_P[l(-X-t)] \le l(0)\}$, we get:

$$\underset{x \in \mathcal{X}}{\text{minimize}} \qquad \sup_{l \in \mathcal{L}(\mathcal{R})} \operatorname{SR}_{l}^{P}(Z(x))$$

This reduces to:

$$\begin{array}{ll}
\text{minimize} & t \\
x \in \mathcal{X}, t
\end{array}$$

$$\mathbb{E}_P[l(-Z(x)-t)] \le l(0), \forall l \in \mathcal{L}(\mathcal{R})$$

What do we know about l?

• In the case of **convex** UBSF risk measures:

$$\mathcal{L}(\mathcal{R}) := \{l : \mathbb{R} \to \mathbb{R} \mid$$

Non-decreasing:

Convex:

Strictly increasing:

Confidence intervals:

In the case of coherent UBSF risk measures:

$$\mathcal{L}(\mathcal{R}) := \{l : \mathbb{R} \to \mathbb{R} \mid \exists \tau \in [\tau^-, \tau^+], \ l(x) = \max(\tau x, (1 - \tau)x)\}$$

What do we know about l?

In the case of convex UBSF risk measures:

$$\mathcal{L}(\mathcal{R}) := \{l: \mathbb{R} o \mathbb{R} \mid \\ ext{Non-decreasing:} \qquad \exists l': \mathbb{R} o \mathbb{R}: l'(x) \geq 0 \,, \, \forall x \in \mathbb{R} \\ ext{Convex:} \qquad \qquad l(y) \geq l(x) + (y-x)l'(x) \,, \, \forall x,y \in \mathbb{R} \\ ext{Strictly increasing:} \qquad l(0) = 0, \quad l(-1) = -1 \end{cases}$$

Confidence intervals: $\mathbb{E}_P[l(-W_k+w_k^-)] \leq l(0)$ $\mathbb{E}_P[l(-W_k+w_k^+)] \geq l(0)$ }

• In the case of **coherent** UBSF risk measures:

$$\mathcal{L}(\mathcal{R}) := \{l : \mathbb{R} \to \mathbb{R} \mid \exists \tau \in [\tau^-, \tau^+], \ l(x) = \max(\tau x, (1 - \tau)x)\}$$

Linear programming representation (I)

In the case of coherent UBSF risk measure:

$$\mathbb{E}_{P}[l(-Z(x)-t)] \le l(0), \forall l \in \mathcal{L}(\mathcal{R})$$

is shown equivalent to:

$$\mathbb{E}_P[\max(\tau(-Z(x)-t), (1-\tau)(-Z(x)-t))] \le 0, \forall \tau \in [\tau^-, \tau^+]$$

Linear programming representation (I)

In the case of coherent UBSF risk measure:

$$\mathbb{E}_{P}[l(-Z(x)-t)] \leq l(0), \forall l \in \mathcal{L}(\mathcal{R})$$

is shown equivalent to:

$$\mathbb{E}_P[\max(\tau^+(-Z(x)-t), (1-\tau^+)(-Z(x)-t))] \le 0$$

• Hence, equivalent to:

$$\exists v \in \mathbb{R}^{M}, \sum_{\omega \in \Omega} p_{\omega} v_{\omega} \leq 0$$

$$v_{\omega} \geq \tau^{+}(-Z_{\omega}(x) - t), \ \forall \omega \in \Omega$$

$$v_{\omega} \geq (1 - \tau^{+})(-Z_{\omega}(x) - t), \ \forall \omega \in \Omega$$

Linear programming representation (II)

In the case of convex UBSF risk measure:

$$\mathbb{E}_{P}[l(-Z(x)-t)] \le l(0), \forall l \in \mathcal{L}(\mathcal{R})$$

is shown equivalent to

$$\sup_{l:\mathbb{R}\to\mathbb{R},l':\mathbb{R}\to\mathbb{R}}$$

$$\sum_{\omega \in \Omega} p_{\omega} l(-Z_{\omega}(x) - t) \le 0$$

subject to

$$\mathcal{S}'$$
 contains the support sets of all $-W_k+w_k^-$, $-W_k+w_k^+$, 0, and -1.

$$l(y') \ge l(y) + (y' - y)l'(y), \forall y, y' \in \mathbb{R}$$

 $l(0) = 0, \quad l(-1) = -1$
 $l'(y) \ge 0, \forall y \in \mathbb{R}$
 $\sum_{y \in \mathcal{S}'} P(-W_k + w_k^- = y)l(y) \le 0, \forall k$

Linear programming representation (II)

In the case of convex UBSF risk measure:

$$\mathbb{E}_{P}[l(-Z(x)-t)] \le l(0), \forall l \in \mathcal{L}(\mathcal{R})$$

is shown equivalent to

$$\sup_{v\geq 0, w, l: \mathcal{S}' o \mathbb{R}, l': \mathcal{S}' o \mathbb{R}}$$

$$\sum_{\omega \in \Omega} p_{\omega} [v_{\omega}(-Z_{\omega}(x) - t) + w_{\omega}] \leq 0$$

subject to

$$v_{\omega}y + w_{\omega} \le l(y), \forall y \in \mathcal{S}', \omega \in \Omega$$

$$l(y') \ge l(y) + (y'-y)l'(y), \forall y, y' \in \mathcal{S}'$$

$$l(0) = 0$$
, $l(-1) = -1$

$$l'(y) \ge 0, \forall y \in \mathcal{S}'$$

$$\sum_{y \in \mathcal{S}'} P(-W_k + w_k^- = y) l(y) \le 0, \, \forall \, k$$

$$\sum_{y \in \mathcal{S}'} P(-W_k + w_k^+ = y) l(y) \ge 0, \, \forall \, k.$$

 \mathcal{S}' contains the support sets of all $-W_k + w_k^-$, $-W_k + w_k^+$ 0, and -1.

Linear programming representation (II)

In the case of convex UBSF risk measure:

$$\mathbb{E}_{P}[l(-Z(x)-t)] \le l(0), \forall l \in \mathcal{L}(\mathcal{R})$$

is shown equivalent to

$$\sup_{v\geq 0, w, \alpha, \beta}$$

subject to

$$\sum_{\omega \in \Omega} p_{\omega} [v_{\omega}(-Z_{\omega}(x) - t) + w_{\omega}] \le 0$$

$$v_{\omega}y_j + w_{\omega} \leq \alpha_j, \forall j = 1, \ldots, N, \omega \in \Omega$$

$$\alpha_i \geq \alpha_j + (y_i - y_j)\beta_j$$
, $\forall i, j = 1, \dots, N$

$$\alpha_{j_0} = 0$$
, $\alpha_{j_-} = -1$

$$\beta_i \geq 0, \forall j = 1, \dots, N$$

$$\sum_{j=1,...,N} P(-W_k + w_k^- = y_j) \alpha_j \le 0, \, \forall \, k$$

$$\sum_{j=1,...,N} P(-W_k + w_k^+ = y_j) \alpha_j \ge 0, \, \forall \, k.$$

Legend:

$$\alpha_i := l(y_i)$$

$$\alpha_{j_0} := l(0)$$

$$\alpha_{j_-} := l(-1)$$

$$\beta_i := l'(y_i)$$

HEC MONTREAL

The case of continuous Ω

Consider the preference robust risk minimization problem:

$$(\vartheta, x^*) := \min_{x \in \mathcal{X}, t} t$$
s.t.
$$\sup_{l \in L} \mathbb{E}_P[l(c(x, \xi) - t)] \le l(0)$$

One can approximate this problem with:

$$(\vartheta_N, x_N^*) := \min_{x \in \mathcal{X}, t} \qquad t$$
 s.t.
$$\sup_{l \in L} \mathbb{E}_{P_N}[l(c(x, \xi) - t)] \leq l(0)$$
 discrete approximation of P

• In fact,

Theorem 3:

Under assumptions yet to be described, for any small enough δ and large enough N,

$$\mathbb{P}(|\vartheta_N - \vartheta| \ge \delta) \le Ce^{-\beta N}.$$

Furthermore, $x_N^* \to x^*$ with probability one.

Assumptions needed for Theorem 3

- The set ${\mathcal X}$ is compact
- The function $c(x,\xi)$ is continuous in ξ and Hölder continuous in x $|c(x,\xi)-c(x',\xi)|\leq r(\xi)\|x-x'\|^{\nu}\,,\;\forall x,x'\in\mathcal{X},\xi\in\Xi$
- The preference robust risk minimization problem satisfies Slater's condition
- There exists a $ar{\lambda}$ such that the risk of $Y_{ar{\lambda}}$ is lower than the risk of a certain loss of 1

Assumptions needed for Theorem 3

Accounting for elicitation errors

- Issue #2: One can easily provide **false information** about his preferences. (Kahneman & Tversky, 1979)
- One can replace the comparison constraint with:

$$\exists \delta \in \mathbb{R}^K, \|\delta\|_1 \leq \Gamma, \ \rho(W_k) \leq \rho(Y_k) + \delta_k, \ \forall k = 1, \dots, K$$

 Bertsimas and O'hair (2015) even propose accounting for some preference reversals with:

$$\exists z \in \{0,1\}^K, \ \sum z_k \le \Gamma, \ \left\{ \begin{array}{l} \rho(W_k) \le \rho(Y_k) + M z_k \\ \rho(Y_k) \le \rho(W_k) + M(1 - z_k) \end{array} \right\}, \ \forall \, k$$

Numerical experiments

Numerical experiments

- Experiments are made using empirical stochastic models based on historical weekly returns from Yahoo Finance
- We create a synthetic decision maker with some choice of $\bar{\rho}$ which is kept hidden
- Information comes from a number of certainty equivalents $\rho(W_k) = \rho(w_k)$ for randomly picked W_k
- Results are averaged over a large number of stochastic models and sets of W_k

Performance in terms of certainty equivalent*

* Certainty equivalent $= -\bar{\rho}(Z(x))$

[D. & Li, 2017]

The case of UBSF risk measure

[D., Guo & Xu, 2018]

The case of UBSF risk measure

[D., Guo & Xu, 2018]

Effect of elicitation strategy

One can improve convergence rate by designing effective elicitation strategies

Take-away messages

- Many optimization problems need to reflect the decision maker's risk preferences
- PRO accounts for the limited knowledge about these preferences:

axioms + confidence intervals

- PRO preserves difficulty of resolution: LP —> LP
- For risk averse optimization, no LP representation for comonotone additivity, i.e. subjective risk measures
- While PRO is currently mostly developed for risk averse optimization, there is great potential for extensions to multi-criteria problems

Bibliography

- · Armbruster, Delage, Decision Making under Uncertainty when Preference Information is Incomplete, Management Science, 2015.
- Bertsimas, O'hair. Learning Preferences Under Noise and Loss Aversion: An Optimization Approach, Operations Research, 2013.
- Bokrantz. Distributed approximation of Pareto surfaces in multi criteria radiation therapy treatment planning, Physics in Medicine and Biology, 2013
- Boutilier, Patrascu, Poupart, Schuurmans. Constraint-based optimization and utility elicitation using the minimax decision criterion. Artificial Intelligence 2006.
- Chajewska, Koller, Parr. Making rational decisions using adaptive utility elicitation. AAAI 2000.
- Chan, Mahmoudzadeh, Purdie. A robust-cvar optimization approach with application to breast cancer therapy. EJOR, 2014.
- Delage, Guo, Xu, Shortfall Risk Models When Information of Loss Function Is Incomplete, working draft.
- Delage, Li, Minimizing Risk Exposure when the Choice of a Risk Measure is Ambiguous. Management Science, 2018.
- Evren, Ok. On the multi-utility representation of preference relations, Journal of Mathematical Economics, 2011.
- Haskell, Fu, Dessouky. Ambiguity in risk measures in robust stochastic optimization, European Journal of Operational Research, 2016.
- Haskell, Huang, Xu. Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions, 2018.
- Hu, Mehrotra. Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization, IIE Transactions, 2015.
- Hu, Mehrotra. Robust and Stochastically Weighted Multiobjective Optimization Models and Reformulations, Operations Research, 2012.
- Hu, Stepanyan. Reference-Based Almost Stochastic Dominance Rules with Application in Risk-Averse Optimization, 2018.

Thank you for your attention

