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The portfolio selection problem

e An individual meets with his
financial advisor to tell him
he wishes to invest in a
given industrial sector,
country, etc.

e Since uncertain factors
affect performance, a
« good » portfolio is one
where the risks of losses
are best justified by the
potential gains
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The portfolio selection problem

e An individual meets with his
financial advisor to tell him
he wishes to invest in a
given industrial sector,
country, etc.

e Since uncertain factors
affect performance, a
« good » portfolio is one
where thepr=
are best |
potential

How can we identity
optimal investments?
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The strength of utility theory

* In 1954, G. Debreu established that if the
preference relation is complete, transitive, and
continuous, then there exists a utitity- mapping
such that sk

XY & uX)>ulY)
where X, Y describe two financial positions

e This implies that any such preference relation
can be numerically optimized

. 7
maximize u(Z(x))
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The strength of utility theory

* In 1954, G. Debreu established that if the
preference relation is complete, transitive, and
continuous, then there exists a utitity- mapping
such that sk

X»Y & p(X)<pY)

wh WARNING!
Numerical optimization can only |[on
be done once subjective
preferences have been fully
characterized.

Ccan
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How can we characterize
risk preferences”

* An investor can indicate what type of wealth
evolution he is comfortable with

Yahoo |

+230%

Nesdsa . 1400%

I i/ 3
HEC ripgpsamseac 5, 0013 Jan 2014 Jan 2015 Jan 2016 /



How can one assess risk tolerance”

[Grable & Lytton, Financial Services Review (1999)]

1. You have just finished saving for a « once-in-a-lifetime »
vacation. Three weeks before you plan to leave, you lose your
job. You would:

A. Cancel the vacation
B. Take a much more modest vacation

C. Go as scheduled, reasoning that you need the time to
prepare for a job search

D. Extend your vacation, because this might be your last
chance to go first-class

2. You are on a TV game show and can choose one of the
following. Which would you take?

A. $1,000 in cash

B. A 50% chance at winning $ 5000
C. A 25% chance at winning $ 10,000
D. A 5% chance at winning $100,000
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The limitations of utility theory

e |ssue #1: One cannot make all possible comparisons

e |ssue #2: One can easily provide false information about
Nis preferences (Kahneman & Tversky, 1979)

e Solutions :

 Make simplifying assumptions about the structure
of p(+) in order to allow interpolation and filter errors

« Employ a scheme that handles uncertainty about p(+)
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What is the right structure for a risk measure ?

J. von Neumann O. Morgensern H. Markowitz M. Allais P. H. Dybvig 7J, E. Ingers.
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Preference robust optimization
for
utility-based shortfall risk measures



Axiomatic assumptions

Let (©2,%,P) be a probability space with|Q2] = M
andlet X, Y,and Z(z) : @ - R be random variables

* Monotonicity: X >Y = p(X) < p(Y)

* Risk Aversion: p(0X + (1 -60)Y) <0p(X)+ (1 —-0)p(Y), Vb € [0, 1]
e Law Invariance: X =p Y = p(Y) = p(X)

 Translation Invariance: p(X +t) = p(X) — t, Vt

 Elicitability (Bellini & Bignozzi, 2015): - incentive mechanism for
proper reporting

 M+RA+LI+TIl = Law invariant convex risk measure
(Kusuoka, 2001)

e +Scale Invariance : Law invariant coherent risk measure

« M+RA+LI+TI+Elicit. = Utility-based shortfall (UBSF) risk measure
(Folimer & Schied, 2002)
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What do we know about p 7

e The risk measure is a member of the set:

R:={p:L,—R|p0)=0
Monotonicity:  p(-) non-increasing
Risk aversion: p(-) convex
Translation invariance: P(X +1t) = p(X) —1, VXt
Scale invariance: p(aX) =ap(X), VX,a >0
Confidence intervals: p(w; ) < p(Wy) < p(w;, ), Vk
Law Invariance: (see details in D. & Li, 2018)
Elicitability: 3/ c £, p(X) =inf{t : Ep[l(-X — )] <1(0)}, VX }

where L is the set of convex non-decreasing functions that
are strictly increasina for all y > —e .
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What should we optimize”

* \WWe minimize the preference robust risk measure (D. & Li, 2018):

minimize sup p(Z(x))

e Letting SR/ (X) :=inf{t: Ep[l(—X —t)] <1(0)}, we get:

minimize sup SRy (Z(z))
TEA I:SRFeR
e This reduces to:
minimize t
reX,t

subject to  Ep[l(=Z(z) —t)] <1(0),¥1:SRy € R
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What do we know about [ 7

* In the case of convex UBSF risk measures:
L(R)={l:R—->R|
Non-decreasing:
Convex:
Strictly increasing:

Confidence intervals:

e |n the case of coherent UBSF risk measures:
LR):={l:R—>R|Fre[r, 77], I(x) = max(7z, (1 —7)x)}
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What do we know about [ 7

* |In the case of convex UBSF risk measures:

L(R)={l:R—->R|

Non-decreasing: JA":R—-R:l'(x) >0,VzreR

Convex: l(y) > l(x)+ (y—2)l'(z), Ve,y € R

Strictly increasing:  [(0) =0, I(—1)= -1

Confidence intervals: Ep[l(—W} +w, )] < 1(0)

Ep[l(—Wk +wl)] > 1(0) }
e In the case of coherent UBSF risk measures:
LR):={l:R—>R|Fre[r, 77], I(x) = max(7z, (1 —7)x)}
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Linear programming representation (l)

* |nthe case of coherent UBSF risk measure:
Epll(—Z(x) —1t)] <1(0),VI e L(R)
IS shown equivalent to:
Epmax(7(—Z(x) —1t), 1 —7)(=Z(xz) —t))] <0,VTelr—, 7]

L+ ()
L (y)
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Linear programming representation (l)

* |n the case of coherent UBSF risk measure:
Epll(—Z(z) —1)] < 1(0),VI € L(R)
IS shown equivalent to:
Epmax(tt(—Z(x) —1t), (1 —77)(=Z(x) —t))] <0
 Hence, equivalent to:

v € RM, prvw <0

wel
vy > T (~Zy(x) —t), Vw €
vw > (1 =77 )(=Zy(z) —t), YVw e O
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Linear programming representation (I

* |n the case of convex UBSF risk measure:
Epll(—Z(z) —t)] <1(0),VI € L(R)

IS shown equivalent to

sup Z Pol(—Zy () — 1) <0
IR—R,I:R>R e
subject to
(") > Uy) + @ =yl (y),Vy,y €R
S’ contains the [(0)=0, I(-1)=-1
support sets of all /
_Wk+wk_ ’ l(y)zoavyGR
Wy, +w, > P(—Wi 4wy, =y)l(y) <0, Yk
0, and -1. yes

_ > P(—Wi+wjf =y)l(y) >0, Vk.
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Linear programming representation (I

* |n the case of convex UBSF risk measure:
Epll(—Z(z) —t)] <1(0),VI € L(R)

IS shown equivalent to

sup
v>0,w,1:S'—-R,l/:S'—-R

subject to

S/ contains the
support sets of all
—Wi + (T
—Wy +w;

0, and -1.
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N pulvw(—Zu(x) — ) +w,) <0

Vol + W, <Il(y), Vy €S w e

() >l + @ -y, Yy,y s
(0) =0, I(-1)=-1

'(y) >0,Vyes

> P(~Wi+w, =y)l(y) <0,Vk

yes’

> P(—Wi+wjf =y)l(y) >0, Vk.
yes’
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Linear programming representation (I

* |n the case of convex UBSF risk measure:
Epll(—Z(z) —t)] <1(0),VI € L(R)

IS shown equivalent to

sup
'UZO,'LU,CV,/B

subject to

Legend:
a; = I(y;)

Oéj_ = l(—l)
Bi == l,(yz’)
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Z P [V (—Zw () — 1) + wy,] <0

Volj +w, <oy, Vi=1,...,Nwe(
OéjO:O, Oéj_:—l
B:>0,Yj=1,...,N

Z P(—Wk—lez :yj)()éj SO,\V/]C
j=1,....N
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The case of continuous €

* Consider the preference robust risk minimization problem:
(¥9,2%) ;== min t

reX,t
s.t. sup Epll(c(x,&) —t)] < 1(0)
leL
* One can approximate this problem with:
(W, o) = xrgg{nt !
s.t. sup Epy [l(c(z,€) —1)] < 1(0)
e |n fact, leL

™ discrete approximation of P

Theorem 3:
Under assumptions yet to be described, for

any small enough 0 and large enough N,
P(|9ny — 9| > 6) < Ce PN,
Furthermore, %y, — 2™ with probability one. |24 /31

HEC MONT




Assumptions needed for Theorem 3

e The set X is compact
e The function ¢(x, &) is continuous in ¢ and Holder continuous in
e(z,€) —c(z, §)] < r(§)llz—2'|”, Va,2" € X, € B

e The preference robust risk minimization problem satisfies Slater’s
condition

There exists a A such that the risk of Y5 is lower than the risk of a
certain loss of 1
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Assumptions needed for Theorem 3
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Accounting for elicitation errors

* |ssue #2: One can easily provide false information
about his preferences. (Kahneman & Tversky, 1979)

e One can replace the comparison constraint with:

36 € RE, |61 < T, p(Wi) < p(Yi) + 0p, Vh=1,.... K

« Bertsimas and O’hair (2015) even propose accounting for
some preference reversals with :

« (Wi) < p(¥i) + M
WL 2asT { o(Vi) < p(Wi) 1+ M(1— 22) } v

24 [23



Numerical
experiments



Numerical experiments

 EXperiments are made using empirical
stochastic models based on historical weekly
returns from Yahoo Finance

 We create a synthetic decision maker with some
choice of p which is kept hidden

* |[nformation comes from a number of certainty
equivalents p(Wx) = p(wy) for randomly picked Wy

* Results are averaged over a large number of
stochastic models and sets of Wi
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Performance in terms of
certainty equivalent™
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* Certainty equivalent = —p(Z(x)) [D. & Li, 2017]
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The case of UBSF risk measure

)
S
hﬂ

=

<
~

— =-Expected loss

Wrong expectile

PRO M+RA-+TI+LI
—v—PRO M+RA+TI4SI+LI

PRO M+RA+TI+LI+Elicit.
-~ PRO M+RA+TI4SI+LI+Elicit. |1
m— F'ull knowledge of p

12 5 10 20
Number of questions

=
@8}

=
)

Certainty equaivalent (in p.p.

-

-
L 4_

[D., Guo & Xu, 2018]
28 /31

HEC MONTREAL



The case of UBSF risk measure
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Effect of elicitation strategy

 One can improve convergence rate by designing
effective elicitation strategies
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lake-away messages

 Many optimization problems need to reflect the decision
maker’s risk preferences

 PRO accounts for the limited knowledge about these
preferences :
axioms + confidence intervals

 PRO preserves difficulty of resolution: LP —> LP

e Forrisk averse optimization, no LP representation for
comonotone additivity, I.e. subjective risk measures

* While PRO is currently mostly developed for risk averse
optimization, there is great potential for extensions to
multi-criteria problems
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