
A Column Generation Scheme for Distributionally
Robust Multi-Item Newsvendor Problems

Shanshan Wang, Erick Delage
GERAD & Department of Decision Sciences, HEC Montréal, Montréal, QC Canada H3T 2A7

shanshan.wang@hec.ca,erick.delage@hec.ca

In this paper, we study a distributionally robust multi-item newsvendor problem, where the demand distri-

bution is unknown but specified with a general event-wise ambiguity set. Using the event-wise affine decision

rules, we can obtain a conservative approximation formulation of the problem, which can typically be further

reformulated as a linear program. In order to efficiently solve the resulting large-scale linear program, we

develop a column generation based decomposition scheme and speed up the computational efficiency by

exploiting a special column selection strategy and stopping early based on a Karush–Kuhn–Tucker condition

test. Focusing on the Wasserstein ambiguity set and the event-wise mean absolute deviation set, a computa-

tional study demonstrates the computational efficiency of the proposed algorithm over a set of 540 randomly

generated instances, significantly outperforming the commercial solver and a Benders decomposition method.
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1. Introduction

The multi-item newsvendor problem consists in deciding the order quantities for products

that should be stocked before observing the uncertain demand so as to maximize the expected

profit. The newsvendor problem is a fundamental operations management problem with

various applications (see, e.g., a recent review by Qin et al. 2011), such as the reservation

of operating room time in hospital (e.g., Rahimian et al. 2019) and production of fashion

goods (e.g., Donohue 2000). In the latter problem, a decision maker faces opportunity costs

of lost sales if the order quantity is lower than its demand, otherwise, the unsold inventory

cost will incur. Thus, it is crucial to find a solution to this problem that optimally trades off

between understocking and overstocking.

In practice, the exact distribution of each item’s demand may not be accessible, and

only historical data is available, which can be used to estimate the distribution. This has

typically been addressed by using the stochastic programming paradigm (Shapiro et al.
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2014). However, the solutions of stochastic programming problems can be sensitive to the

misestimation of the probability distribution thus producing solutions that may result in a

poor out-of-sample performance. In distributionally robust optimization (DRO), one instead

seeks a solution that performs best under the worst-case distribution within an ambiguity

set of distributions (e.g., Delage and Ye 2010, Wiesemann et al. 2014, Mohajerin Esfahani

and Kuhn 2018). With proper design of the ambiguity set, the solution of a DRO can

be robust to estimation error while converging to the true optimum as more distribution

information is obtained. This motivates us to develop a distributionally robust optimization

model over the event-wise ambiguity set proposed by Chen et al. (2020). This framework

integrates stochastic programming and robust optimization, where the uncertainty consists

of discrete random scenarios and continuous random variables. The event-wise ambiguity set

can capture several traditional statistic-based ambiguity sets such as Wasserstein ambiguity

set (e.g., Mohajerin Esfahani and Kuhn 2018, Gao and Kleywegt 2016) and ϕ-divergence

measure-based set (e.g., Ben-Tal et al. 2013, Bayraksan and Love 2015).

To obtain a tractable conservative approximation of hard two-stage DRO problems, a

common way is to use approximate policies using linear decision rules (LDR), which leads

to formulations that can be solved with state-of-art commercial solvers for small/mid-sized

problems. Unfortunately, larger sized problems, which arise in realistic decision-making set-

tings, still constitutes a great numerical challenge. Most of the recent literature has focused

on increasing the quality of LDR approximation by making the decision rules more flexible

(e.g., Kuhn et al. 2011, Postek and den Hertog 2016, Gauvin et al. 2017, Bertsimas et al.

2019). Unfortunately, such improvement necessarily comes at the price of additional com-

putational burden, even when most of this flexibility remains unused at optimum. For this

reason, this paper proposes a column generation (CG) based decomposition method to ac-

celerate the resolution of large-scale LDR-based DRO models when an optimal sparse LDR

solution exists. More specifically, our contributions are summarized as follows:

• We propose for the first time a CG solution scheme for the conservative LDR approxi-

mation of a two-stage DRO model. Specifically, we address a classical distributionally robust

(DR) multi-item newsvendor problem where the ambiguity takes the form of a general event-

wise ambiguity set. In doing so, we identify which are the columns needed in the restricted

master problem (RMP) to ensure its feasibility, and design a special column selection strategy

to accelerate convergence.
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• We propose a novel early stopping criterion based on the Karush–Kuhn–Tucker (KKT)

condition test that can be used in CG when the RMP is highly degenerate. Our numeri-

cal experiments involving a Wasserstein-based DRO model showed that the early stopping

criterion can significantly improve solution time.

• We perform a comprehensive numerical study involving up to 20 items and 8000 sce-

narios, and using two popular ambiguity sets, namely a set based on the Wasserstein metric

and a set based on a mixture of distributions for which the mean and support are known

while the mean absolute deviation is upper bounded. In the latter case, CG decreases the

solution time by an average of about 67% when compared to CPLEX, while this reduction is

of about 32% in the former case. The acceleration strategies are also shown to be responsible

for most of this improvements.

The remainder of this paper is organized as follows. Section 2 reviews the literature on

algorithms for solving DRO problems and DR multi-item newsvendor problems. Section 3

formulates the DR multi-item newsvendor problem with event-wise ambiguity set as a linear

programming model by using the event-wise affine decision rules technique. Subsequently,

we provide reformulations under two specific ambiguity sets. We describe our column gener-

ation decomposition scheme to solve the problem in Section 4, and further propose several

strategies to accelerate the algorithm. In Section 5, we give some computational results on

the newsvendor problems and demonstrate the efficiency of CG scheme developed in this

paper. Section 6 concludes this paper with a summary of the important findings.

Notation: We use boldface lowercase (e.g. x) characters to denote vectors. We use P0(RI)

to represent the set of all probability distributions on RI . Given a function f :Rm 7→R, the

conjugate of f is defined as f ∗(z) := sup
x∈Rm

x⊤z−f(x). The support function of a set Ξ⊆Rm

is denoted by δ∗(z |Ξ) and defined as δ∗(z |Ξ) := sup
ξ∈Ξ

ξ⊤z.

2. Literature Review

The concept of DRO was first introduced by Scarf (1957) for a single-item newsvendor

problem where the uncertainty set includes all probability distributions with a given mean

and standard deviation. Since then, a number of variations of this framework have been

widely investigated in the literature (e.g., Dupacová 2008, Delage and Ye 2010, Goh and Sim

2010, Wiesemann et al. 2014, Mohajerin Esfahani and Kuhn 2018, Bertsimas et al. 2019,

Rahimian and Mehrotra 2019, Delage and Saif 2021). Most of the popular DRO problem
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formulations can be reformulated as finite dimensional convex programs by using duality

theory (see, e.g., Goh and Sim 2010, Ben-Tal et al. 2013, Postek et al. 2018) and are solved

by an off-the-shelf commercial solver (e.g., CPLEX, GUROBI). Alternatively, many other

DRO formulations are known to be intractable, thus requiring the use of more elaborated

schemes if exact solutions are needed. Mehrotra and Papp (2014) considered a DRO problem

whose uncertainty set is defined using bounds on the moments of arbitrary order. They

solved it using a central cutting surface algorithm combined with a randomized column

generation method. A similar approach was used in Luo and Mehrotra (2019), where the

authors studied intractable DRO problems that employ the type-1 Wasserstein ambiguity set.

Intractable DRO problems also arise in finite outcome spaces. For instance, Wang et al. (2021)

investigated a distributionally robust chance-constrained assignment problem and proposed

a decomposition scheme that identifies a new probability distribution at each iteration to add

to the finite relaxation of a mixed-integer semi-infinite reformulation. Namkoong and Duchi

(2016) developed a two-player bandit mirror descent algorithm for a DRO empirical risk

minimization problem with f -divergences. Finally, Chen et al. (2021) employed a progressive

hedging method combined with a primal-dual hybrid gradient method to solve a two-stage

DRO problems with discrete scenario support.

It is well known that two-stage DRO problems are typically intractable because of the

difficulty of evaluating the worst-case expectation, which motivates the development of both

exact and approximate solution method. Bansal et al. (2018) studied a two-stage mixed bi-

nary distributionally robust optimization with finite support. They developed an L-shaped

algorithm which adopts a distribution separation procedure and parametric cuts and iden-

tifies conditions under which the algorithm converges finitely to an exact solution. Saif and

Delage (2021) reformulated a two-stage data-driven DR capacitated facility location problem

as a mixed-integer linear program with an exponential number of variables and constraints,

and employed a column-and-constraint generation algorithm to solve it. Gamboa et al. (2021)

investigated a two-stage Wasserstein-based DRO problem with right-hand-sided uncertainty

and rectangular support. They identified a finite yet intractable reformulation and developed

different decomposition schemes including a single-cut and multicut Benders decomposition

(with and without regularization). Chen et al. (2021) proposed a decomposition algorithm

based on Lagrange decomposition and primal-dual hybrid gradient method for solving a two-

stage DRO problem after discretizing the outcome space. Unlike all the above work that has
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suggested exact solution schemes for solving two-stage DRO problems, it is much more com-

mon in the literature to circumvent the intractability of such models by solving a tractable

conservative approximation based on LDRs (see, e.g., Kuhn et al. 2011, Bertsimas et al.

2019, Chen et al. 2020, Saif and Delage 2021). Under the right conditions, this approach

produces a finite dimensional convex optimization model that can once again be solved us-

ing off-the-shelf software. In this paper, we propose for the first time a column generation

algorithm to accelerate the solution time of conservative approximation of two-stage DRO

problem obtained by exploiting such LDRs.

We now wish to summarize the work that has focused on the distributionally robust multi-

item newsvendor problem. Gallego and Moon (1993) extended Scarf’s work to the multi-

item setting, which can be solved using a simple line search. Ardestani-Jaafari and Delage

(2016) provided a tractable linear reformulation for the distributionally robust multi-item

newsvendor problems when the demand is supported on a budgeted uncertainty set, and with

information about the mean vector and first order partial moments. Ben-Tal et al. (2013)

presented a tractable convex reformulation of the problem where the unknown probabilities

of the different scenarios lie within a ϕ-divergences uncertainty set. Hanasusanto et al. (2015)

considered demand to follow a mixture model where only the mean and covariance matrix are

known for each distribution in the mixture. They conservatively approximated the problem

using quadratic decision rules, which reduces it to a semidefinite program. Bertsimas et al.

(2018) proposed to use hypothesis testing tools for constructing the ambiguity sets based on

data and to approximate the resulting DRO model using conic programming. Kamburowski

(2015) identified closed-form expressions for the worst-case and best-case order quantities in

a single-item model with symmetric or symmetric and unimodal. Again for the single-item

problem, Natarajan et al. (2018) obtained closed-form expression for the worst-case expected

profit when distribution information includes mean, variance, semivariance, and second-order

partitioned statistics to capture asymmetry. Finally, Rahimian et al. (2019) studied the

multi-item model using total variation distance to a reference discrete distribution with a

special attention to the regions of the demand that are critical to the optimal worst-case

cost. Broadly speaking, there is no doubt that the newsvendor problem is the foundation of

many operations management problems, which explains the high interest in the development

of new formulations and solution schemes for this class of problems. In this regard, our work

considers the event-wise ambiguity set proposed by Chen et al. (2020), which encompasses
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most of the ambiguity sets used in the literature. We appear to be the first to study the

efficiency of decomposition schemes for very general model. This suggests that our findings

should benefit a vast part of the DRO literature.

3. Two-Stage DR Multi-Item Newsvendor Problem

In a classical version of multi-item newsvendor problem, there are a set of different items I :=

{1, · · · , I} with positive unit selling price b ∈ RI
+ and ordering cost c ∈ RI

+. For simplicity,

we assume that the salvage value which is the value of unsold units at the end of the sales

period is equal to zero. The decision maker places the orders with a total budget d before the

random demand ũ∼ P, P∈P0(RI) is realized. We let a vector x∈RI
+ denote the ordering

quantities. After the demand is observed, the sold quantity is min{xi, ui} for each item i∈ I.

The DRO model for the multi-item newsvendor problem can be expressed as follows:

maximize inf
P∈F

EP

[∑
i∈I

bimin{xi, ũi}

]
(1a)

subject to c⊤x= d, (1b)

xi ≥ 0, ∀i∈ I, (1c)

where P is the joint probability distribution of ũ, and F is an ambiguity set that consists

of a family of probability distributions. Objective (1a) maximizes the worst-case expected

operating revenue, constraint (1b) denotes that the total ordering cost is equal to the budget,

and (1c) defines the domain of x. Problem (1) can be further rewritten as the following

two-stage minimization problem:

minimize − b⊤x+ sup
P∈F

EP [Q(x,u)] (2a)

subject to (1b), (1c),

where

Q(x,u) :=minimize
∑
i∈I

biyi (3a)

subject to yi ≥ xi −ui, ∀i∈ I, (3b)

yi ≥ 0, ∀i∈ I (3c)

represents the revenue adjustments for unsold items. Problem (3) is always feasible for any

x∈RI and u∈RI .
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3.1. Event-Wise Ambiguity Set

In this section, we use the event-wise ambiguity set to address the incomplete knowledge

of demand distribution, which was proposed by Chen et al. (2020). More specifically, the

event-wise ambiguity set can be expressed in the following form:

F =


P∈P0(RIz ×S) :

(z̃, s̃)∼ P, p∈P

EP[z̃|s̃∈ Ek]∈Qk, ∀k ∈K

P[(z̃ ∈Ws|s̃= s)] = 1, ∀s∈ S

P(s̃= s) = ps, ∀s∈ S


with set K = {1, · · · ,K} and S = {1, · · · , S}, the set Ek ⊆ S for each k ∈ K, is an event

for which we have conditional moment information, and ps is the probability of scenario s

such that p belongs to an ambiguity set P , satisfying P ⊆ {p ∈ RS
∣∣p > 0,

∑
s∈S

ps = 1}. As

in Bertsimas et al. (2019) and Chen et al. (2020), the random variable z̃ := (ũ, ṽ) includes

the primary random variable ũ ∈ RI and the auxiliary random variable ṽ ∈ RIv . Using the

primary and auxiliary random variables has the ability of generating ambiguity sets with

richer structure (Wiesemann et al. 2014). For simplicity of exposition, for each s ∈ S, we

focus on support sets of the form Ws =
{
(u,v)∈RI ×RIv

∣∣u∈ [u, ū], gs(u)≤ v
}
, where gs :

RI 7→RIv , although any bounded polyhedral set for u could be accommodate in what follows.

In this paper, we will focus on LP representable models, hence we make the following

assumption.

Assumption 1. The epigraph of gs for all s ∈ S, the set Qk for all k ∈ K and P are

polyhedral representable sets.

We will also make use in due time of the following technical assumption about each gs.

Assumption 2. For all s∈ S, we have a set Īv ⊆ {1, . . . , Iv} such that gj,s :RI →R+, for

all j ∈ Īv, and
∑

j∈Īv gj,s(u)≥ τ1+ τ2∥u∥1 for some τ1 ∈R and τ2 > 0.

Note that Assumption 2 can be made without loss of generality given that the fact that

u is bounded implies that adding the constraint ∥u∥1 ≤ vIv+1 in Ws with EP[ṽIv+1|s̃ ∈ Ek] =

maxu∈[u,ū] ∥u∥1 in F effectively imposes that EP[∥u∥1|s̃ ∈ Ek] ≤ maxu∈[u,ū] ∥u∥1 which is

always redundant for F . When these constraints are added, we can get that Assumption 2

is satisfied since gIv+1,s(u) = ∥u∥1.
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The above ambiguity set F can capture several existing ambiguity sets such as the Wasser-

stein ambiguity set and the event-wise mean absolute deviation set.

Example 1. (Wasserstein ambiguity set) The type-1 Wasserstein ambiguity set (see, e.g.,

Mohajerin Esfahani and Kuhn (2018)) is defined as

FW :=
{
P∈P0(RI) : dW (P, P̂)≤ θ,P(ũ∈ [u, ū]) = 1

}
,

where the empirical distribution P̂= 1
S

∑
s∈S

δûs , and Wasserstein distance

dW (P, P̂) := inf
Q∈M(P,P̂)

EQ
[
∥ũ− ũ†∥p

]
:
Q is the joint distribution of ũ and ũ†

with marginals P and P̂, respectively

 ,

which computes the minimum transportation cost of transforming the distribution P into

the empirical one P̂. The parameter θ represents the radius of the Wasserstein ball centered

at P̂. The set FW can also be formulated as the following the event-wise ambiguity set:

FW =


P∈P0(RI+1×S) :

((ũ, ṽ), s̃)∼ P,

EP[ṽ|s̃∈ S] = θ,

P[(ũ, ṽ)∈Ws] = 1, ∀s∈ S

P(s̃= s) =
1

S
, ∀s∈ S


where Ws = {(u, v)|u∈ [u, ū], ||u− ûs||p ≤ v}, for s∈ S. In recent years, the Wasserstein am-

biguity set has attracted a lot of attention in the field of optimization and machine learning,

which exhibits a number of attractive properties (Mohajerin Esfahani and Kuhn 2018). For

example, one can adjust the Wasserstein radius to control the robustness. Moreover, as the

number of observed empirical data points increases, the radius can be set to ensure that the

DRO problems under FW converges to the true stochastic programming.

Example 2. (Event-wise mean absolute deviation set) An event-wise mean absolution

deviation set (see, e.g., Hanasusanto et al. (2015)) can be specified by FM as follows:

FM :=
∑
s∈S

psF
s
M

where

F s
M :=

{
P∈P0(RI) :EP[ũ] =µs,EP[|ũ−µs|]≤σs,P(ũ∈ [u, ū]) = 1

}
.
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Hence, any distribution P ∈ FM is a mixture of S distinct distribution P1, · · · ,PS with

probabilities p1, · · · , pS ∈ [0,1],
∑

s∈S ps = 1. Each distribution Ps belongs to the ambiguity

set F s
M that imposes an upper bound on the mean absolute deviation conditioned on knowing

which Ps generates the realization. The set FM can also be rewritten in the format of an

event-wise ambiguity set:

FM =


P∈P0(RI+Iv ×S) :

((ũ, ṽ), s̃)∼ P,

EP[ũ|s̃= s] =µs, ∀s∈ S

EP[ṽ|s̃= s] =σs, ∀s∈ S

P[(ũ, ṽ)∈Ws|s̃= s] = 1, ∀s∈ S

P(s̃= s) = ps, ∀s∈ S


where Ws = {(u,v)|u∈ [u, ū], |ui−µis| ≤ vi,∀i∈ I}. This set contains the multimodal dis-

tributions, which can be observed in many situations. For example, the decision maker has

aggregate demand observations coming from many small customers with independent de-

mands, then the distribution of demand is multimodal (Hanasusanto et al. 2015).

Note that problem (2) is known to be generally intractable due to the difficulty of evalu-

ating the worst-case expectation. A common way of deriving tractable reformulations is to

use approximate policies such as linear decision rules. Hence, in the following section, we

will present a tractable approximation scheme based on the event-wise affine decision rule

for solving problem (2).

3.2. Event-Wise Affine Decision Rules

Under a measurable decision function map, problem (2) can be rewritten as the following

minimization problem:

minimize − b⊤x+ sup
P∈F

EP

[∑
i∈I

biyi(ũ, ṽ, s̃)

]
(4a)

subject to (1b), (1c),

yi(u,v, s)≥ xi −ui, ∀(u,v)∈Ws, s∈ S, i∈ I, (4b)

yi(u,v, s)≥ 0, ∀(u,v)∈Ws, s∈ S, i∈ I. (4c)
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The recourse decision y(ũ, ṽ, s̃) depends on the realized uncertainty (ũ, ṽ) and the scenario.

We now introduce the event-wise affine decision rule proposed by Chen et al. (2020) for the

variable yi(·) as follows:

Li(Ci) :=

yi :RI ×RIv ×S 7→R

∣∣∣∣∣∣∣
yi(u,v, s) = y0i (s)+

∑
k∈I

yuik(s)uk +
∑
j∈Iv

yvij(s)vj

for some (y0i , y
u
ik, y

v
ij)∈A (Ci), k ∈ I, j ∈ Iv

 ,

where Ci is a collection of mutually exclusive and collectively exhaustive events, and

A (Ci) =
{
x : S 7→R| ∀E ∈ Ci,∃xE ∈R such as x(s) = xE} .

In this paper, the recourse decision y(·, ·, ·) is a wait-and-see decision, i.e. Ci =
{
{s}
∣∣s∈ S

}
,

for i∈ I.

Using the event-wise affine decision rule, we can obtain the upper bound for problem (4)

by solving the following problem:

minimize − b⊤x+ sup
P∈F

EP

[∑
i∈I

biyi(ũ, ṽ, s̃)

]
(5a)

subject to (1b), (1c), (4b), (4c),

yi ∈Li(C), ∀i∈ I. (5b)

The following lemma is obtained by applying Theorem 1 in Chen et al. (2020), which shows

that problem (5) can be reformulated as a classical robust optimization problem.

Lemma 1. Assuming the Slater’s condition holds on the worst-case expectation:

sup
P∈F

EP

[∑
i∈I

biyi(ũ, ṽ, s̃)

]
,

then problem (5) is equivalent to the following robust optimization problem:

minimize − b⊤x+ γ (6a)

subject to (1b), (1c), (4b), (4c), (5b),

γ ≥
∑
s∈S

psαs +
∑
k∈K

µu
k
⊤βu

k +
∑
k∈K

µv
k
⊤βv

k, ∀

 µk∑
s∈Ek

ps


k∈K

∈
∏
k∈K

Qk,p∈P,

(6b)
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αs +
∑
k∈Ks

u⊤βu
k +

∑
k∈Ks

v⊤βv
k ≥ b⊤y(u,v, s), ∀(u,v)∈Ws, s∈ S, (6c)

γ ∈R,α∈RS,βu
k ∈RI ,βv

k ∈RIv , ∀k ∈K, (6d)

where µk = (µu
k,µ

v
k) and Ks = {k ∈K | s∈ Ek} for all s∈ S.

We now give an exact LP reformulation of problem (6) as shown in the following theorem:

Theorem 1. If Assumption 1 holds, then the robust optimization problem (6) is equivalent

to the following LP representable problem:

minimize − b⊤x+ γ (7a)

subject to (1b), (1c), (6d),

γ ≥ δ∗

(
α+

∑
k∈K

1Ekνk

∣∣∣P) , (7b)

νk ≥ δ∗(βk|Qk), ∀k ∈K, (7c)

αs −
∑
i∈I

biy
0
i (s)≥

∑
j∈Iv

λjs(gjs)
∗(wjs/λjs)+ ū⊤η1

s −u⊤η2
s , ∀s∈ S, (7d)

λs =
∑
k∈Ks

βv
k −
∑
i∈I

biy
v
i (s), ∀s∈ S, (7e)

∑
j∈Iv

wjs =
∑
i∈I

biy
u
i (s)−

∑
k∈Ks

βu
k −η1

s +η2
s , ∀s∈ S, (7f)

y0i (s)≥ xi +
∑
j∈Iv

λ′
ijs (gjs)

∗ (w′
ijs/λ

′
ijs

)
+ ū⊤η3

is −u⊤η4
is, ∀i∈ I, s∈ S, (7g)

∑
j∈Iv

w′
ijs = ei−yu

i (s)−η3
is +η4

is, ∀i∈ I, s∈ S, (7h)

λ′
ijs = yvij(s), ∀i∈ I, j ∈ Iv, s∈ S,

(7i)

y0i (s)≥
∑
j∈Iv

λ′′
ijs (gjs)

∗ (w′′
ijs/λ

′′
ijs

)
+ ū⊤η5

is −u⊤η6
is, ∀i∈ I, s∈ S, (7j)

∑
j∈Iv

w′′
ijs =−yu

i (s)−η5
is +η6

is, ∀i∈ I, s∈ S, (7k)

λ′′
ijs = yvij(s), ∀i∈ I, j ∈ Iv, s∈ S,

(7l)

η1
s ,η

2
s ,λs,η

3
is,η

4
is, λ

′
ijs,η

5
is,η

6
is, λ

′′
ijs ≥ 0, ∀i∈ I, j ∈ Iv, s∈ S,

(7m)
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where 1Ek ∈RS is a vector with one for all s ∈ Ek and zero elsewhere, and ei is a vector in

RI with a one in the ith component and zero elsewhere.

Proof. For constraint (6b), we have

sup
p∈P,µk/(

∑
s∈Ek

ps)∈Qk,k∈K
α⊤p+

∑
k∈K

β⊤
k µk

= sup
p∈P

α⊤p+
∑
k∈K

(∑
s∈Ek

ps

)
sup

µk/(
∑

s∈Ek
ps)∈Qk

β⊤
k µk/

(∑
s∈Ek

ps

)

= sup
p∈P

α⊤p+
∑
k∈K

(∑
s∈Ek

ps

)
δ∗ (βk|Qk)

= sup
p∈P

α⊤p+
∑
k∈K

(∑
s∈Ek

ps

)
inf

νk:νk≥δ∗(βk|Qk)
νk

= inf
νk:νk≥δ∗(βk|Qk),k∈K

sup
p∈P

α⊤p+
∑
k∈K

(∑
s∈Ek

ps

)
νk (8)

= inf
νk:νk≥δ∗(βk|Qk),k∈K

δ∗

(
α+

∑
k∈K

1Ekνk

∣∣∣P) ,

where we exploited in (8) Sion’s minimax theorem to reverse the order of the supp and infνk ,

which relied on the fact that P is bounded.

We then obtain the equivalent counterpart of constraint (6c). We can rewrite constraint

(6c) as

αs+
∑
k∈Ks

u⊤βu
k +

∑
k∈Ks

v⊤βv
k ≥

∑
i∈I

bi
(
y0i (s)+u⊤yu

i (s)+v⊤yv
i (s)

)
, ∀(u,v)∈Ws, s∈ S,

which is equivalent to:

αs−
∑
i∈I

biy
0
i (s)≥u⊤

(∑
i∈I

biy
u
i (s)−

∑
k∈Ks

βu
k

)
+v⊤

(∑
i∈I

biy
v
i (s)−

∑
k∈Ks

βv
k

)
,∀(u,v)∈Ws, s∈ S. (9)

Note that, for any fixed s ∈ S, the right-hand side of constraint (9) can be further refor-

mulated as

sup
u,v,{ρj}j∈Iv :u≤u≤ū, gsj(ρj)≤vj ,ρj=u,∀j

u⊤

(∑
i∈I

biy
u
i (s)−

∑
k∈Ks

βu
k

)
+v⊤

(∑
i∈I

biy
v
i (s)−

∑
k∈Ks

βv
k

)
,
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which is a convex optimization problem. Hence, since Slater’s condition is satisfied by u :=

(ū+u)/2, ρj =u, and v := gs(u)+1, we can conclude that strong duality holds and replace

the supremum with the dual infimum. The latter is derived as:

sup
u,v,{ρj}j∈Iv :u≤u≤ū, gsj(ρj)≤vj ,ρj=u,∀j∈Iv

c⊤1 u+ c⊤2 v

= sup
u,v,{ρj}j∈Iv

inf
η1
s ,η

2
s ,λs≥0,{wjs}j∈Iv

c⊤1 u+ c⊤2 v+(ū−u)⊤η1
s − (u−u)⊤η2

s

+
∑
j∈Iv

λjs(vj − gjs(ρj))+w⊤
js(ρj −u)

= inf
η1
s ,η

2
s ,λs≥0,{wjs}j∈Iv

sup
u,v,{ρj}j∈Iv

c⊤1 u+ c⊤2 v+(ū−u)⊤η1
s − (u−u)⊤η2

s

+
∑
j∈Iv

λjs(vj − gsj(ρj))+w⊤
js(ρj −u)

= inf
η1
s ,η

2
s ,λs≥0,{wjs}j∈Iv ,c2+λs=0,

∑
j∈Iv

wjs=c1−η1
s+η2

s

ū⊤η1
s −u⊤η2

s +
∑
j∈Iv

sup
ρj

w⊤
jsρj −λjsgjs(ρj)

= inf
η1
s ,η

2
s ,λs≥0,{wjs}j∈Iv ,c2+λs=0,

∑
j∈Iv

wjs=c1−η1
s+η2

s

ū⊤η1
s −u⊤η2

s +
∑
j∈Iv

λjsg
∗
js(wjs/λjs),

where c1 := (
∑

i∈I biy
u
i (s) −

∑
k∈Ks

βu
k ), c2 := (

∑
i∈I biy

v
i (s) −

∑
k∈Ks

βv
k), and

λjsg
∗
js(wjs/λjs) is the perspective function of the conjugate function of gsj applied on

(wsj, λj).

Similarly, we can obtain the reformulation of constraint (4b) and (4c). Therefore, the

robust optimization problem (6) is equivalent to problem (7). □

3.3. Reformulations under Specific Ambiguity Sets

In this section, we will provide several linear programming reformulations of problem (5)

based on the specific ambiguity sets discussed in Section 3.1.

In order to identify a linear programming reformulation, we make the following assumption.

Assumption 3. The Wasserstein ambiguity set uses the Wasserstein metric with ℓ1–

norm, i.e. Ws = {(u, v)|u∈ [ū,u], ||u− ûs||1 ≤ v}.

In the rest of the paper, we will focus on the Wasserstein ambiguity set with p= 1, yet it is

easy to extend the results to the one with p=∞. The following corollary gives a reformulation

of problem (5) when using the Wasserstein ambiguity set.
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Corollary 1. Under a Wasserstein ambiguity set, and Assumption 3, problem (5) is

equivalent to the following LP problem

minimize − b⊤x+ γ (10a)

subject to (1b), (1c), (6d),

γ ≥ 1

S

∑
s∈S

αs + θβ, (10b)

αs ≥
∑
i∈I

biy
0
i (s)+

(∑
i∈I

biy
u
i (s)−η1

s +η2
s

)⊤

ûs

+ ū⊤η1
s −u⊤η2

s , ∀s∈ S, (10c)

w1
s +
∑
i∈I

biy
v
i (s)−β ≤ 0, ∀s∈ S, (10d)∑

i∈I

biy
u
ij(s)− η1js+ η2js ≤w1

s , ∀j ∈ I, s∈ S, (10e)

−
∑
i∈I

biy
u
ij(s)+ η1js− η2js ≤w1

s , ∀j ∈ I, s∈ S, (10f)

y0i (s)≥ xi − ûis+
(
−yu

i (s)−η3
is +η4

is

)⊤
ûs

+ ū⊤η3
is −u⊤η4

is, ∀i∈ I, s∈ S, (10g)

w2
is − yvi (s)≤ 0, ∀i∈ I, s∈ S, (10h)

− yuij(s)− η3ijs+ η4ijs− eij ≤w2
is, ∀i, j ∈ I, s∈ S, (10i)

yuij(s)+ η3ijs− η4ijs+ eij ≤w2
is, ∀i, j ∈ I, s∈ S, (10j)

y0i (s)≥
(
−yu

i (s)−η5
is +η6

is

)⊤
ûs + ū⊤η5

is −u⊤η6
is, ∀i∈ I, s∈ S, (10k)

w3
is − yvi (s)≤ 0, ∀i∈ I, s∈ S, (10l)

− yuij(s)− η5ijs+ η6ijs ≤w3
is, ∀i, j ∈ I, s∈ S, (10m)

yuij(s)+ η5ijs− η6ijs ≤w3
is, ∀i, j ∈ I, s∈ S, (10n)

η1
s ,η

2
s ,η

3
is,η

4
is,η

5
is,η

6
is ≥ 0, ∀i∈ I, s∈ S. (10o)

Proof. Note that for the Wasserstein ambiguity set, K = 1, E = S, Q ={
(qu, qv)∈RI ×R

∣∣ qv = θ
}
, and P =

{
p∈RS

++

∣∣ ps = 1
S
,∀s∈ S

}
. The support functions are:

δ∗
(
(zu, zv)

∣∣Q)=
θzv, if zu = 0,

+∞, otherwise,
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for set Q, and for set P :

δ∗(z
∣∣P) =

1

S

∑
s∈S

zs.

We have that constraints (7b) and (7c) can be rewritten as γ ≥ 1
S

∑
s∈S

αs + ν and ν ≥ θβ

respectively. Therefore, constraints (7b) and (7c) can be rewritten as (10b). Since Iv = 1,

gs(u) = ∥u− ûs∥1, and

λs(gs)
∗(
ws

λs

) =

w⊤
s ûs, if ∥ws∥∞ ≤ λs,

∞, otherwise,

we can rewrite constraints (7d) – (7f) as constraints (10c) – (10f). Similarly, we can obtain the

other constraints. Therefore, we conclude that problem (5) under the Wasserstein ambiguity

set is equivalent to problem (10). □

For the event-wise mean absolute deviation set, we have gjs(u) = |uj − µjs|= gjs(uj) for

j ∈ Iv and s∈ S, hence, g(u) is separable. A reformulation of model (5) under this ambiguity

set is given in Corollary 2.

Corollary 2. Under the event-wise mean absolute deviation set, problem (5) is equiva-

lent to the following LP problem:

minimize − b⊤x+ γ (11a)

subject to (1b), (1c), (6d),

γ ≥
∑
s∈S

ps(αs +µ⊤
s β

u
s +σ⊤

s β
v
s ), (11b)

αs ≥
∑
i∈I

biy
0
i (s)+

(∑
i∈I

biy
u
i (s)−η1

s +η2
s −βu

s

)⊤

µs

+ ū⊤η1
s −u⊤η2

s , ∀s∈ S, (11c)

w1
s +
∑
i∈I

biy
v
i (s)−βv

s ≤ 0, ∀s∈ S, (11d)∑
i∈I

biy
u
i (s)−η1

s +η2
s −βu

s ≤w1
s , ∀s∈ S, (11e)

−
∑
i∈I

biy
u
i (s)+η1

s −η2
s +βu

s ≤w1
s , ∀s∈ S, (11f)

y0i (s)≥ xi +
(
−yu

i (s)−η3
is+η4

is

)⊤
µs

+ ū⊤η3
is−u⊤η4

is−µis, ∀i∈ I, s∈ S, (11g)



Wang & Delage: A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems

16

w2
is −yv

i (s)≤ 0, ∀i∈ I, s∈ S, (11h)

−yu
i (s)−η3

is +η4
is− ei ≤w2

is, ∀i∈ I, s∈ S, (11i)

yu
i (s)+η3

is −η4
is + ei ≤w2

is, ∀i∈ I, s∈ S, (11j)

y0i (s)≥
(
−yu

i (s)−η5
is +η6

is

)⊤
µs + ū⊤η5

is −u⊤η6
is, ∀i∈ I, s∈ S, (11k)

w3
is −yv

i (s)≤ 0, ∀i∈ I, s∈ S, (11l)

−yu
i (s)−η5

is +η6
is ≤w3

is, ∀i∈ I, s∈ S, (11m)

yu
i (s)+η5

is −η6
is ≤w3

is, ∀i∈ I, s∈ S, (11n)

η1
s ,η

2
s ,η

3
is,η

4
is,η

5
is,η

6
is ≥ 0, ∀i∈ I, s∈ S. (11o)

Proof. Note that for the event-wise mean absolute deviation ambiguity set, K =

S, Iv = I, Es = {s}, Qs =
{
(qu,qv)∈RI ×RI

∣∣ qu =µs,qv =σs

}
, for s ∈ S and P ={

p∈RS
++

∣∣ ps = 1
S
,∀s∈ S

}
. The support function of set Qs for s ∈ S is δ∗

(
(zu,zv)

∣∣Qs

)
=

µ⊤
s zu+σ⊤

s zv. Therefore, constraints (7b) and (7c) can be rewritten as (11b).

Note that gis(·) is separable, based on Ben-Tal et al. (2015), constraints (7d) – (7f) are

equivalent to

αs−
∑
i∈I

biy
0
i (s)≥

∑
j∈I

λjs(gjs)
∗(wjs/λjs)+ ū⊤η1

s −u⊤η2
s , ∀s∈ S,

λs =
∑
k∈Ks

βv
k −
∑
i∈I

biy
v
i (s), ∀s∈ S,

ws =
∑
i∈I

biy
u
i (s)−

∑
k∈Ks

βu
k −η1

s +η2
s , ∀s∈ S,

where

λjs(gjs)
∗(wjs/λjs) =

wjsµjs, if |wjs| ≤ λjs,

∞, otherwise.

Thus, we can obtain constraints (11c) – (11f). Similarly, we can obtain other constraints of

problem (11). This completes the proof. □

4. A Column Generation Solution Scheme

In this section, we will develop a novel CG decomposition scheme to solve the large-scale LPs

efficiently. In general, the CG method iteratively solves a restricted master problem (RMP).

RMP will initially contain a subset of columns of the full master problem (FMP). At each

iteration, we look in a step called the pricing step for new columns that have the potential



Wang & Delage: A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems

17

to improve the current solution and add them to the RMP, until a RMP solution is proved

optimal.

As indicated by the numerical study in Section 5, the optimal solutions of problem (7) are

highly sparse (usually more than 70%), which means that most of the terms of the optimal

solutions have a value of zero. This motivates us to propose a CG scheme. We remove a set

of most likely ineffective columns (i.e. the optimal value of these columns is expected to be

zero) from FMP and progressively identify the columns that are required to return to RMP.

This method exploits the fact that the majority of these columns might not be part of an

optimal solution.

In order to transform problem (7) to a standard form, first, we add slack variables to

all inequality constraints, and change the constraints to equality constraints. For the unre-

stricted variables, we use the difference of two restricted variables to replace the variables, for

example, we can write yu = yu+ −yu−, and yu+,yu− ≥ 0. Problem (7) can be reformulated

in the following standard form:

(FMP) minimize
∑
j∈J

cjλj (12a)

subject to
∑
j∈J

ajλj = q, (12b)

λj ≥ 0, ∀j ∈J , (12c)

where λ includes all the decision variables of problem (7), aj,q ∈ RN are the coefficient of

λj and right-hand side vector, respectively, and N is the number of constraints in problem

(7). To help with the discussion, we also present the dual LP associated to FMP:

(Dual-FMP) maximize q⊤τ (13a)

subject to a⊤
j τ ≤ cj, ∀j ∈J , (13b)

τ ∈RN , (13c)

where τ is the dual vector associated to constraint (12b).

In column generation, one can work with a subset J ′ of columns instead of the set of

columns J in RMP. Thus RMP can be described as follows:

(RMP) minimize
∑
j∈J ′

cjλj (14a)
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subject to
∑
j∈J ′

ajλj = q, (14b)

λj ≥ 0, ∀j ∈J ′. (14c)

Note that the feasibility of the RMP depends on the choice of the set J ′. On the other

hand, the boundedness of RMP can be assumed since otherwise it implies that FMP is also

unbounded. Assuming that RMP is both feasible and bounded, let λ and τ̄ be an optimal

primal dual solution pair for RMP. We are interested in verifying whether the solution pair

(λ̄, τ̄ ), where

λ̄j :=


λj if j ∈J ′,

0 otherwise

is a solution pair to the FMP in (12), and if not to identify new columns that can potentially

improve the current solution. This can be done by verifying whether constraint (13b) is

satisfied by τ̄ , a process known as searching for strictly negative “reduced costs” defined as:

c̄j := cj − τ̄⊤aj , ∀ j ∈J /J ′.

If no reduced cost is negative, then the optimality of the solution is confirmed. Otherwise, we

can add a set of columns to RMP corresponding to a subset of the negative reduced costs,

a process also referred as multiple pricing. The multiple pricing is a well-known strategy

to reduce the total number of iterations and accelerate column generation (e.g., Desrochers

and Soumis 1989, Desaulniers et al. 2002). We repeat the process until the positivity of all

reduced costs are non-negative thus confirming the optimality of (λ̄, τ̄ ) in FMP.

In problem (7), we can partition the FMP decision variables into the following five different

classes:

• the “primary set” Ju includes yu which is associated with the primary random variable

u;

• the “support set” Jη consists of η1, · · · ,η6, since these variables are introduced to refor-

mulate the support set of u;

• the “auxiliary set” Jv includes y0 and yv which is defined under the auxiliary random

variable v;

• the “objective set” Jobj includes the variables that could directly affect the objective

function, such as variables x, γ, α, ν, β;
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• the “extra set” Jextra includes all remaining variables (i.e., λ,λ′,λ′′,w) together with

the variables introduced to rewrite LP representable functions and sets to obtain a LP.

We note that the variables in set Jobj generally play a key role in the optimal objective value

since their value directly decides the objective value, while the variables in Jv and Jextra play

(as seen in the proof of Proposition 1) a key role in making the RMP feasible. We therefore

further let J0 :=Jv ∪Jobj ∪Jextra and show that RMP is always feasible with J0.

Proposition 1. Given that Assumption 2 is satisfied and that Qv
k = {qv ∈ RIv |∃qu ∈

RI , (qu,qv)∈Qk} is bounded for all k ∈K, if J0 =Jv∪Jobj ∪Jextra, then RMP with J ′ =J0

is feasible.

Proof. Note that RMP with J0 =Jv∪Jobj ∪Jextra is equivalent to the following problem:

minimize − b⊤x+ γ

subject to c⊤x= d,

xi ≥ 0, ∀i∈ I

y0i (s)+
∑
j∈Iv

yvij(s)vj ≥ 0, ∀(u,v)∈W ′
s , s∈ S, i∈ I

y0i (s)+
∑
j∈Iv

yvij(s)vj ≥ xi −ui, ∀(u,v)∈W ′
s , s∈ S, i∈ I,

γ ≥
∑
s∈S

psαs+
∑
k∈K

µv
k
⊤βv

k +
∑
k∈K

µu
k
⊤βu

k , ∀

 µk∑
s∈Ek

ps


k∈K

∈
∏
k∈K

Qk,p∈P,

αs +
∑
k∈Ks

v⊤βv
k +

∑
k∈Ks

u⊤βu
k ≥

∑
i∈I

bi(y
0
i (s)

+
∑
j∈Iv

yvij(s)vj), ∀(u,v)∈W ′
s , s∈ S,

γ ∈R, α∈RS,βu
k ∈RI ,βv

k ∈RIv , ∀k ∈K,

where W ′
s :=

{
(u,v)∈RI ×RIv

∣∣gs(u)≤ v
}
.

To construct a feasible assignment, we first identify a feasible order, e.g. x := (d/c1)e1.

Thus, the first two constraints are satisfied. We then let for all s ∈ S and all i ∈ I, y0i (s) :=

xi − τ1/τ2 and for all j ∈ Iv, yvij(s) := 1{j ∈ Īv}/τ2. This guarantees that the next two

constraints are satisfied given that:

y0i (s)+
∑
j∈Iv

yvij(s)vj = xi− τ1/τ2+
∑
j∈Īv

vj/τ2 ≥ xi− τ1/τ2+
∑
j∈Īv

gj,s(u)/τ2 ≥ xi + ∥u∥1
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≥max(0, xi −ui) .

We can then simply set αs :=
∑
i∈I

biy
0
i (s), βu

k,i := 0 and βv
k,j := (

∑
i∈I

bi)1{j ∈ Īv}/τ2 for s ∈ S,

k ∈K, i∈ I and j ∈ Iv, so that:

αs +
∑
k∈Ks

v⊤βv
k +

∑
k∈Ks

u⊤βu
k =

∑
i∈I

biy
0
i (s)+ (

∑
i∈I

bi)|Ks|
∑
j∈Īv

vj/τ2

≥
∑
i∈I

biy
0
i (s)+

∑
j∈Īv

(
∑
i∈I

bi)vj/τ2

=
∑
i∈I

bi(y
0
i (s)+

∑
j∈Iv

yvij(s)vj)

Finally, let γ :=maxs∈S αs +
∑

k∈K sup(µu
k ,µ

v
k)∈Qk

µv
k
⊤βv

k, which exists since for all k’s, the

projection on µv
k of Qk’s is assumed to be bounded. □

The following corollary shows that RMP with J0 is feasible under the Wasserstein ambi-

guity set and the event-wise mean absolute deviation set.

Corollary 3. Under the Wasserstein ambiguity set and the and event-wise mean abso-

lute deviation set, if J0 =Jv ∪Jobj ∪Jextra, then RMP with J ′ =J0 is feasible.

Proof. Recall that for the Wasserstein ambiguity set, Iv = 1 and, with Īv = {1}, we have

that
∑

j∈Īv gj,s(u) = ∥u− ûs∥1 ≥ ∥u∥1 − ∥ûs∥1, following from the triangle inequality. We

therefore have that Assumption 2 is satisfied. Moreover, K = 1 and Qv = {θ}, which is

bounded. Thus, based on Proposition 1, RMP with J0 is feasible under the Wasserstein set.

For the even-wise mean absolute deviation set, one can let Īv := {1, . . . , Iv} and confirm

that ∑
j∈Īv

gjs(u) =

Iv∑
j=1

|uj −µjs|= ∥u−µs∥1 ≥ ∥u∥1−∥µs∥1,

hence Assumption 2 is satisfied. Besides, Qv
k = {σk} for all k ∈ S is again bounded. Therefore,

RMP with J0 is feasible under the event-wise mean absolute deviation set. □

Algorithm 1 provides an outline of the CG algorithm.

4.1. Acceleration Strategy

CG algorithms are well known to suffer from convergence issues due to the potential high

degeneracy of the RMP and dual variables’ instability from one iteration to the next. This

can lead to failure in achieving the expected computational efficiency (e.g., Vanderbeck 2000,

Lübbecke and Desrosiers 2005). More specifically, a degenerate RMP often has multiple
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Algorithm 1: Column Generation Algorithm

1 Initialize The number of iterations ℓ= 0, and let L represents the maximum number

of iteration.

2 Initialize J ′ =J0 and COLUMN_FOUND=TRUE.

3 while (ℓ < L & COLUMN_FOUND=TRUE) do

4 Set ℓ := ℓ+1, COLUMN_FOUND=FALSE.

5 Solve the following RMP:

minimize
∑
j∈J ′

cjλj (15a)

subject to
∑
j∈J ′

ajλj = q, (15b)

λj ≥ 0. ∀j ∈J ′. (15c)

6 Record the optimal solution λℓ, and dual variables τ ℓ.

7 for j ∈J \J ′ do

8 Compute the reduced cost c̄j of λj: c̄j = cj − τ ℓ⊤aj.

9 if c̄j < 0 then

10 Add j to J ′.

11 COLUMN_FOUND=TRUE

12 end

13 end

14 end

15 return The optimal solution.

optimal dual solutions, therefore, calculating the reduce cost on a “low quality” optimal dual

solution might delay confirming the optimality of the primal solution. Moreover, a number

of iterations may be performed without any or almost no improvement in the RMP objective

function value (a.k.a. tailing-off effect).

Dual variable stabilization strategies have been proposed to circumvent these issues.

Du Merle et al. (1999) proposed to set the dual variable in a relatively small region around

the current dual values and to penalize if the dual variable goes outside the region. They

adjusted the region and penalty parameters dynamically in the algorithm. Such methods
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can improve the computational effectiveness when the box imposed on the dual variables is

set around a good choice of initial dual solution (Costa et al. 2019). However, we found that

this approach does not work well for our problem. Instead, Bixby et al. (1992) and Rousseau

et al. (2007) recommended using an interior point solver to obtain a dual solution that is in

the relative interior of the optimal space of dual solutions to the RMP rather than using one

of its extreme points, which should stabilizes the CG algorithm and decreases the number

of iterations.

In addition, at each CG iteration, instead of adding the columns with negative reduced

cost in the CG method, one can try to strategically select a subset of columns and add to

RMP, which is called strategical column selection. The main idea behind this technique is

that by exploiting the structure of problem, one could select more promising columns to

RMP in each iteration without overburdening it. We did experiment with this idea in our

numerical study. Specifically, for the set Ju, if the reduced cost associated to yuij(s) for some

i, j and s is negative, we add the columns {yuij(1), · · · , yuij(S)} to the RMP. For the set Jη,

our strategy for i∈ I and k= 3, · · · ,6 was as follows. If the reduced cost associated to ηkij∗s∗

is negative, where (j∗, s∗) = argmin
j,s

c̄η
k

ijs and c̄η
k

ijs is the reduced cost associated to ηkijs, we add

the columns {ηkij∗1, · · · , ηkij∗S} to the RMP. The strategies in the case of η1 and η2 are similar

to those for η3, · · · ,η6 except that the subscript i is dropped. As indicated by the numerical

study, this strategy effectively reduces the total number of iterations and the overall solution

time.

Finally, we propose an early stopping criterion based on a KKT condition test. The objec-

tive is to address the issue that CG might fail to prove the optimality of the primal solutions

by using the sign of the reduced cost due to having identified a “poor quality” dual optimal

solution. Instead, an efficient way to confirm optimality is to use the KKT condition test.

We give the KKT condition in the following lemma.

Lemma 2. (KKT optimality conditions) Let λ be the primal feasible solution of problem

(12), and τ be the feasible solution to the dual problem (13), then λ and τ are the optimal

primal dual pairs for problem (12) if and only if the following complementarity conditions

hold:

(cj −a⊤
j τ )λj = 0, ∀j ∈J . (16)
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One can therefore confirm optimality by checking if a dual feasible solution of problem

(13) satisfies the condition (16). More specifically, given the optimal solution λ of RMP, we

set

λ̄j :=


λj if j ∈J ′,

0 otherwise.

Let J + := {j ∈J
∣∣λ̄j > 0}. We then solve the following optimization problem:

maximize 0 (17a)

subject to a⊤
j τ = cj, ∀j ∈J +, (17b)

a⊤
j τ ≤ cj, ∀j ∈J \J +, (17c)

τ ∈RN . (17d)

If the above problem is feasible, we have that the feasible solution τ to (17) is also feasible

to (13) and satisfies when paired with λ̄ condition (16). Therefore, λ̄ is optimal in the FMP.

5. Numerical Study

In this section, we focus on the distributionally robust multi-item newsvendor problem with

two types of ambiguity sets. In Section 5.1, we provide some implementation details. We

present the computational results for the Wasserstein ambiguity set in Section 5.2 and for

the event-wise mean absolute deviation ambiguity set in Section 5.3.

5.1. Implementation Details

In our test examples, following Chen et al. (2020), we set u= 0 and ūi is randomly generated

from a uniform distribution on [0,100] for i∈ I. For each s∈ S, ûs and µs are randomly gen-

erated from a uniform distribution on [u, ū]. We let ci = 1, i∈ I, and d= 50I. bi is randomly

generated from a uniform distribution on [0,5] for all i∈ I. We vary the Wasserstein sets ra-

dius θ ∈ {1,2,5,10}. For the event-wise mean absolute deviation set, σs ∈ {0,1,2,5,10} was

used for s ∈ S. The number of items I ∈ {10,20} and the sample size S ∈ {500,2000,8000}

were used to generate instances. For each problem size, ten instances were generated to

generate statistics about the performance of the different algorithms. Table 1 presents the

number of variables, the number of constraints, and the proportion of the number of vari-

ables in set J0 for instances using the Wasserstein ambiguity set and the event-wise mean

absolute deviation set.
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Table 1 Classes for the standard form LP with Wasserstein ambiguity set and event-wise mean absolute deviation

set, which include the total number of variables (# of variables), the total number of constraints (# of constraints)

and the proportion of the number of variables in set J0 over the total number of variables (prop).

I S
Wasserstein ambiguity set Mean absolute deviation set

# of variables # of constraints prop # of variables # of constraints prop

10

500 567,514 231,002 45% 816,513 325,502 62%

2000 2,270,014 924,002 45% 3,266,013 1,302,002 62%

8000 9,080,014 3,696,002 45% 13,064,013 5,208,002 62%

20

500 2,132,524 861,002 43% 3,131,523 1,250,502 61%

2000 8,530,024 3,444,002 43% 12,526,023 5,002,002 61%

8000 34,120,024 13,776,002 43% 50,104,023 20,008,002 61%

All experiments are conducted on the Cedar cluster of Compute Canada with a single CPU

core and 32G memory. The algorithm was implemented in the C programming language

using IBM CPLEX solver, version 12.10 callable libraries. For all computations, we set the

maximum number of iteration to be 100 and runtime limit to be 7,200 seconds. For instances

that are solved to optimality, we report the average solution time in seconds, and use “-” to

denote that none of the ten instances were solved to optimality within the runtime limit.

The reduced cost is generally computed within seconds, so we did not present these runtimes

in the table.

5.2. Computational Results with Wasserstein Ambiguity Set

We now implement the column generation Algorithm 1 to solve the newsvendor problem

under the Wasserstein ambiguity set. The following variants are considered for solving the

problem in this section:

• CPX refers to the barrier interior point method in CPLEX on problem (12).

• CG_KKT refers to using the CG algorithm (Algorithm 1) with the KKT test-based

early-stopping criterion and strategical column selection. The KKT test is also conducted at

every iteration.

• CG_KKT* refers to using the CG algorithm (Algorithm 1) with the KKT test-based

early-stopping criterion and strategical column selection. The KKT test is conducted only

when the objective values in two successive iterations are the same.
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• CG_SCS refers to using the CG algorithm (Algorithm 1) with strategical column se-

lection but without the early-stopping criterion.

• CG refers to using the CG algorithm (Algorithm 1) with neither strategical column

selection nor the early-stopping criterion.

• CG_KKT_PS refers to the use of CG_KKT but using the primal simplex method to

solve the master problem.

• BD refers to using the multi-cut Benders decomposition method (which is described in

Appendix A).∗

Note that we use the barrier interior point method to solve (RMP) for all the variants

except CG_KKT_PS. Table 2 displays the average solution time for solving the problem,

the average time spent evaluating the KKT test-based early-stopping criterion, the average

number of iterations, and the average sparsity ratio at optimum, where the sparsity ratio

for an instance is computed as the number of variables whose optimal value is equal to zero

divided by the total number of variables.

We observe from Table 2 that the computation is more expensive as the number of scenar-

ios S increases. However, it seems that the Wasserstein radius θ does not have a significant

impact on the computational efficiency. We also observe that CG_KKT yields significantly

better performance than the other six methods for most types of instances. In fact, in com-

parison to CPX, CG_KKT decreases the solution time by an average of about 32%. For

I = 20 and S = 8000, CG_KKT can solve five out of the ten instances to optimality while

CPX cannot solve any instance to optimality within the time limit. Moreover, CG_SCS has

a significantly worse performance than CG_KKT in terms of the average solution time, and

the average number of iterations is at least twice larger than CG_KKT for most types of

instances. Only when I = 20 and S = 8000 can we observe that CG_SCS gives a comparable

performance to CG_KKT. Note that CG yields a poor performance when compared with

CG_SCS. For most types of instances, it fails to solve to optimality. This confirms that the

use of the early-stopping criterion and the column selection strategy proposed in Section

4.1 play a critical role in improving the efficiency of the column generation algorithm. If

we compare the CG_KKT and CG_KKT_PS, CG_KKT_PS can only solve 137 of the

∗We also implement the multi-cut Benders decomposition method with level regularization that was proposed in
Zverovich et al. (2012). We found that this method has a similar performance to BD, thus we did not present it in
this section.
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Table 2 The average CPU solution time (in seconds) for solving the multi-item DR newsvendor problem with

Wasserstein ambiguity set (AvT), and solving the KKT problem (KKT), the average number of iterations (Iters), and

the average sparsity ratio (SR) in percent are reported.

I S θ
CPX CG_KKT CG_KKT* CG_SCS CG CG_KKT_PS BD

AvT SR AvT KKT Iter SR AvT KKT Iter SR AvT Iter SR AvT Iter SR AvT Iter SR AvT Iter

10

500

1 40 74 23 3 4.6 59 27 0.2 5.5 60 46 6.4 60 2,473 857.1 56 157 4.6 63 560 20.7

2 39 74 27 4 4.8 60 30 0.6 5.7 59 41 6.4 59 2,262 809.6 56 318 4.8 64 878 20.3

5 38 75 24 3 4.3 58 28 0.8 5.1 57 40 5.8 57 2,216 790.3 55 312 4.3 63 1,289 19.7

10 39 74 23 3 4.0 55 28 0.4 4.9 54 42 5.9 55 1,936 723.7 55 316 4.0 62 1,781 19.5

2000

1 259 73 185 14 4.8 59 249 2.3 5.7 59 335 6.5 59 – 1,490.0 – 4,603 4.8 68 3,842[7] 19.7

2 224 73 197 15 4.8 59 236 2.1 5.7 58 304 6.4 58 – 1,475.7 – 4,592 4.6 73 – 14.0

5 245 74 168 15 4.5 58 217 5.0 5.4 58 360 6.5 59 – 1,435.4 – 4,879 4.5 72 – 11.1

10 260 74 146 15 4.1 56 185 5.3 5.0 56 364 6.6 56 – 1,451.6 – 4,271 4.1 72 – 9.4

8000

1 1,151 72 883 81 4.8 60 1,069 6.2 5.7 58 1,297 6.1 58 – 439.6 – – 3.0 – – 7.2

2 1,131 73 842 79 4.7 59 1,000 4.9 5.5 58 1,269 6.0 58 – 437.1 – – 3.0 – – 3.4

5 1,404 72 937 79 4.6 59 1,063 4.6 5.4 58 1,442 6.0 58 – 370.9 – – 3.0 – – 3.0

10 1,352 72 767 81 4.1 58 921 17.3 5.0 58 1,347 5.9 58 – 348.9 – – 3.0 – – 2.8

20

500

1 295 72 269 22 6.4 61 287 8.1 7.4 62 910 12.0 62 5,435[2] 739.1 58 3,701 6.2 73 – 10.4

2 346 73 265 23 6.4 62 308 10.0 7.4 62 836 11.5 63 4,940[1] 718.7 87 3,942 6.3 75 – 8.4

5 359 73 243 22 5.9 63 291 11.8 6.9 63 749 10.9 63 4,904[3] 673.5 69 3,755 5.8 72 – 7.4

10 423 73 251 25 5.8 61 293 12.2 6.8 61 881 11.5 62 4,475[3] 651.1 58 3,879 5.7 76 – 6.7

2000

1 2,382 72 1,485 87 6.5 66 1,789 15.7 7.3 66 2,831 8.3 72 – 374.5 – 6,351[5] 4.0 86 – 2.6

2 2,214 73 1,781 117 6.4 69 1,630 57.9 7.0 69 2,708 8.1 72 – 381.4 – 6,395[5] 3.8 86 – 2.5

5 2,825 73 1,214 87 5.6 65 1,439 26.9 6.5 65 2,582 7.6 69 – 362.7 – 4,742[5] 3.5 87 – 2.0

10 2,343 74 1,226 127 5.4 63 1,199 22.4 6.1 63 2,826 7.7 68 – 357.7 – 1,694[2] 3.6 87 – 2.0

8000

1 – 1,733[5] 781 5.0 88 1,615 219.8 5.3 88 1,446[5] 5.0 87 – 108.7 – – 2.0 – – 1.3

2 – 1,169[5] 586 4.0 87 1,426 233.1 4.1 88 1,117[5] 4.0 87 – 82.4 – – 2.0 – – 1.0

5 – 1,221[5] 578 4.0 85 1,410 150.2 4.6 83 1,404[5] 5.0 82 – 82.1 – – 2.0 – – 1.0

10 – 1,537[5] 575 4.0 79 1,671 66.2 4.7 77 1,592[5] 5.0 77 – 75.4 – – 2.0 – – 1.0

“–” in column of AvT means no instance can be solved to optimality within the time limit.

“ [ · ]” in column of AvT means the number of instances (among 10 instances) that can be solved to optimality within 7,200

seconds.
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240 instances within 2 hours, while CG_KKT can solve 220 instances, which indicates that

the interior point method can greatly improve the performance of the column generation.

We also provide an alternative way to implement the KKT-based early-stopping criterion

referred to as CG_KKT*. Naturally, it saves certain time for solving the KKT test, yet,

the performance is slightly worse in terms of the average solution time when compared with

CG_KKT. Generally, the solution time for one more iteration is longer than that of extra

KKT tests in CG_KKT. Furthermore, the results in Table 2 show the numerical limitations

of BD for solving such problems. There are only a few problem sizes that BD can solve to

optimality.

In the case of CPX, the average sparsity ratio is about 73%, which means that about

73% of the optimal solution have a value of zero. Thus, this is the observation that initially

motivated us to exploit a CG algorithm. In fact, by using our proposed CG algorithm, we can

reduce the sparsity ratio by about 12% on average and 20% at most. This seems to confirm

that CG can successfully identify the redundant columns and decrease the problem size.

Overall, CG_KKT and CG_KKT* are the most effective methods for solving the large-scale

newsvendor problem with the Wasserstein ambiguity set.

5.3. Computational Results with Event-Wise Mean Absolute Deviation Set

In this section, we present computational results of the newsvendor problem under the event-

wise mean absolute deviation set by utilizing the seven methods described in Section 5.2.

Table 3 presents the average solution time for solving the problem, the average time for

evaluating the KKT-test based early stopping criterion, the average number of iterations, and

the average sparsity ratio, where the sparsity ratio is defined in Section 5.2. We compare the

performance of the approaches described in Section 5.2. Note that CG_KKT* has a similar

performance to CG_SCS, and the multi-cut Benders decomposition with level regularization

has a similar performance to BD, thus we did not present them in Table 3. We also note that

the BD method for the newsvendor problem under an event-wise mean absolute deviation set

is similar to the one under a Wasserstein ambiguity set (i.e., see Appendix A). Therefore, we

will omit the details of the BD method for the problem under an event-wise mean absolute

deviation set.

From Table 3, we can derive some similar observations as discussed in Table 2. For in-

stance, the average solution time increases as the number of scenarios S increases, and is not

significantly different when σ varies from 1 to 10. BD is also the most inefficient approach
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Table 3 The average CPU solution time (in seconds) for for solving the multi-item DR newsvendor problem with

event-wise mean absolute deviation set (AvT), and solving the KKT problem (KKT), the average number of iterations

(Iter), and the average sparsity ratio (SR) in percent are reported.

I S σ
CPX CG_KKT CG_SCS CG CG_KKT_PS BD

AvT SR AvT KKT Iter SR AvT Iter SR AvT Iter SR AvT Iter SR AvT Iter

10

500

0 2 92.7 2 0.0 1.0 92.9 2 1.0 92.9 1 1.0 92.9 1 1.0 92.9 148 18.3

1 30 96.6 6 0.6 3.0 94.8 6 3.0 94.8 11 5.3 94.7 7 3.0 94.8 432 20.3

2 29 96.9 6 0.5 3.0 95.2 6 3.0 95.2 11 5.4 95.2 8 3.0 95.2 438 20.9

5 30 97.2 6 0.4 3.0 95.6 6 3.0 95.6 12 5.7 95.6 11 3.0 95.7 438 21.4

10 29 97.3 6 0.4 3.0 95.8 6 3.0 95.8 13 6.3 95.8 7 3.0 95.9 432 21.5

2000

0 9 92.9 6 0.0 1.0 92.9 6 1.0 92.9 6 1.0 92.9 9 1.0 92.9 455 17.1

1 200 96.1 37 13.3 3.0 93.8 22 3.1 93.8 92 11.6 93.8 84 3.0 93.9 1,591 18.5

2 205 96.4 45 19.7 3.0 94.3 23 3.1 94.3 64 8.3 94.3 88 3.0 94.4 1,635 19.1

5 200 96.7 74 48.5 3.0 94.9 25 3.3 94.9 84 9.7 94.9 115 3.0 94.9 1,795 20.7

10 197 97.1 67 41.6 3.0 95.6 27 3.3 95.6 100 10.8 95.6 107 3.0 95.6 1,681 20.1

8000

0 43 92.6 25 0.0 1.0 92.9 28 1.0 92.9 32 1.0 92.9 65 1.0 92.9 ** **

1 850 96.8 153 9.9 3.0 94.9 152 3.0 94.9 1,148 18.0 94.8 1,255 3.0 95.0 ** **

2 836 96.9 223 77.0 3.0 95.2 218 3.1 95.2 653 11.7 95.1 1,493 3.0 95.2 ** **

5 796 97.3 228 71.9 3.1 95.8 186 3.2 95.8 679 10.1 95.7 1,637 3.1 95.9 ** **

10 807 97.3 228 72.3 3.0 95.9 172 3.1 95.9 808 11.4 95.8 1,486 3.0 95.9 ** **

20

500

0 5 96.3 6 0.0 1.0 96.3 5 1.0 96.3 6 1.0 96.3 6 1.0 96.3 473 31.6

1 161 98.1 25 2.8 3.0 96.9 22 3.0 96.9 59 8.0 96.9 53 3.0 97.0 4,280 35.4

2 169 98.3 25 2.8 3.0 97.3 22 3.0 97.3 55 7.6 97.3 86 3.0 97.3 4,174 36.1

5 169 98.5 26 4.0 3.0 97.6 22 3.1 97.6 67 9.1 97.6 58 3.0 97.6 3,724 33.7

10 156 98.6 24 2.3 3.0 97.8 22 3.0 97.8 75 10.3 97.8 59 3.0 97.9 3,682 34.9

2000

0 35 96.2 28 0.0 1.0 96.3 28 1.0 96.3 27 1.0 96.3 35 1.0 96.3 ** **

1 855 98.3 118 13.7 3.0 97.2 104 3.0 97.2 672 17.3 97.2 261 3.1 97.2 ** **

2 863 98.4 120 13.7 3.0 97.4 106 3.0 97.4 512 12.8 97.4 322 3.0 97.4 ** **

5 854 98.5 115 10.7 3.0 97.7 104 3.0 97.7 557 13.0 97.7 358 3.0 97.7 ** **

10 872 98.6 186 80.9 3.0 97.8 80 3.1 97.8 739 17.3 97.8 360 3.0 97.8 ** **

8000

0 159 96.3 125 0.0 1.0 96.3 125 1.0 96.3 119 1.0 96.3 250[9] 1.0 96.3 ** **

1 – – 1,143 98.1 3.0 97.2 1,045 3.0 97.2 1,410 7.7 97.8 3,524[9] 3.0 97.3 ** **

2 – – 1,149 101.4 3.0 97.6 1,048 3.0 97.6 779 7.6 97.8 4,249[9] 3.1 97.6 ** **

5 – – 1,074 78.0 3.0 97.7 996 3.0 97.7 703 8.1 97.9 5,220[9] 3.0 97.8 ** **

10 – – 1,097 68.5 3.0 97.8 1,028 3.0 97.8 837 7.8 97.9 5,245[8] 3.0 97.9 ** **

“–” in column of AvT means no instance can be solved to optimality within the time limit.

“**” in column of AvT and Iter means that all the instances that can not be solved to optimality due to out of memory.

“ [ · ]” in column of AvT means the number of instances (among 10 instances) that can be solved to optimality within

7,200 seconds.
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among all other five approaches, it can only solve 50% of instances (i.e. 150 out of 300 in-

stances) to optimality. Besides, CG_SCS and CG_KKT significantly outperform CG and

CG_KKT_PS, which further confirms the efficiency of the proposed the column selection

strategy and the interior point method. However, there are also some different findings. Un-

like in Table 2, CG provides a better performance on the average solution time than CPX for

most types of instances. In particular, CG reduces the average solution time by an average

of about 40%. For I = 20 and S = 8000, CG can solve 31 from 50 instances to optimality,

while CPX can only solve 10 instances. It is worth noting that CG_SCS and CG_KKT*

slightly outperform CG_KKT. These methods have a similar number of iterations, which

seems to indicate that there is no need to use an early stopping technique for the CG under

the event-wise mean absolute deviation set. Moreover, the results from Table 3 show that

the average sparsity ratio in CPX is about 97%, using CG only reduce this number by on

average 1.1%. Although the reduction appears small, it actually reflects a large reduction in

problem size. For example, the average sparsity ratio from the instances with I = 10, S = 500

and σ = 1 shows that the solutions have an average of about 27,000 non-zero variables and

816,513 total variables for CPX, while for CG the solutions have an average of about 27,000

non-zero variables and 516,636 total variables. The CG scheme effectively removed about

300,000 variables from the FMP.

6. Concluding Remarks

This paper studied the distributionally robust multi-item newsvendor problem with the

event-wise ambiguity set with event-wise LDRs proposed in Chen et al. (2020). A column

generation-based decomposition scheme and several accelerating strategies are developed to

solve the problem. A numerical study is performed to confirm that the techniques developed

in this paper can improve the computational efficiency. In particular, the proposed algorithm

allows us to identify optimal solutions for several large-scale instances that cannot be solved

using CPLEX and the multicut-based Benders decomposition method within a two-hour

CPU time limit, and significantly reduces the computational time for other instances. It

would be a very interesting direction for future research to investigate how to extend our

solution scheme to the multi-stage setting and other practical applications such as inventory

control problems.
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Appendix A: A Multicut-based Benders Decomposition

In this appendix, we present a multicut-based Benders decomposition method for solving the resulting

problems. Specifically, here we focus on the problem (10) under a Wasserstein ambiguity set. We remark that

a similar procedure can also be applied to the problem (11) under an event-wise mean absolute deviation

set. For the sake of simplicity, we omit it.

Given the solution (x̄, β̄), we solve the following subproblem for s∈ S:

hs(x̄, β̄) =minimize
1

S
αs (18a)

subject to αs ≥
∑
i∈I

biy
0
i (s)+

(∑
i∈I

biy
u
i (s)−η1

s +η2
s

)⊤

ûs + ū⊤η1
s −u⊤η2

s , (18b)

w1
s +

∑
i∈I

biy
v
i (s)− β̄ ≤ 0, (18c)∑

i∈I

biy
u
ij(s)− η1

js + η2
js ≤w1

s , ∀j ∈ I, (18d)

−
∑
i∈I

biy
u
ij(s)+ η1

js − η2
js ≤w1

s , ∀j ∈ I, (18e)

y0i (s)≥ x̄i − ûis +
(
−yu

i (s)−η3
is +η4

is

)⊤
ûs + ū⊤η3

is −u⊤η4
is, ∀i∈ I, (18f)

w2
is − yv

i (s)≤ 0, ∀i∈ I, (18g)

− yu
ij(s)− η3

ijs + η4
ijs − eij ≤w2

is, ∀i, j ∈ I, (18h)

yu
ij(s)+ η3

ijs − η4
ijs + eij ≤w2

is, ∀i, j ∈ I, (18i)

y0i (s)≥
(
−yu

i (s)−η5
is +η6

is

)⊤
ûs + ū⊤η5

is −u⊤η6
is, ∀i∈ I, (18j)

w3
is − yv

i (s)≤ 0, ∀i∈ I, (18k)

− yu
ij(s)− η5

ijs + η6
ijs ≤w3

is, ∀i, j ∈ I, (18l)
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η1
s ,η

2
s ,η

3
is,η

4
is,η

5
is,η

6
is ≥ 0, ∀i∈ I. (18n)

Let τ 1-τ 12 be the dual variables of problem (18), then the optimality cut is as follows:

ρs ≥−τ2
s β+

∑
i∈I

τ5
sixi −

∑
i∈I

τ5
siûis −

∑
i∈I

τ7
sii +

∑
i∈I

τ8
sii. (19)

The master problem is defined as follows:

minimize − b⊤x+ θβ+
∑
s∈S

ρs (20a)

subject to c⊤x= d, (20b)

ρs ≥−τ2k
s β+

∑
i∈I

τ5k
si xi −

∑
i∈I

τ5k
si ûis −

∑
i∈I

τ7k
sii +

∑
i∈I

τ8k
sii , k ∈ [Ks], s∈ S, (20c)

x, β ≥ 0. (20d)

We can obtain a lower bound (LB) by solving the master problem (20), and obtain an upper bound (UB)

through,

−b⊤x̄+ β̄θ+
∑
s∈S

hs(x̄, β̄). (21)

Finally, Algorithm 2 describes the procedure of our implementation of the Benders decomposition method.
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Algorithm 2: Benders Decomposition Implementation
1: Input A tolerance ϵ≥ 0 and maximum run time stoptime

2: Initialize The number of iteration ℓ= 0, LB =−∞, UB =+∞, Ks = 0 for s∈ S.

3: while (runtime≤ stoptime and UB−LB > ϵ)

4: Set ℓ= ℓ+1, solve the master problem (20).

5: Record optimal solution (xℓ, βℓ,ρℓ) and optimal objective lobjℓ.

6: Update LB = lobjℓ.

7: Fix x̄ :=xℓ, β̄ := βℓ.

8: for s∈ S

9: Solve the subproblem (18).

10: Obtain hs(x̄, β̄) and τ ∗
s .

11: if ρs <hs(x̄, β̄)

12: Let Ks =Ks +1 and τKs
s = τ ∗

s .

13: end if

14: end for

15: Update UB =min{UB,uobjℓ} where uobjℓ is as described in (21).

16: end while

17: return UB and the corresponding optimal solution.
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