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Optimization with stochastic dominance constraints has recently received an increasing amount of attention

in the quantitative risk management literature. Instead of requiring that the probabilistic description of

the uncertain parameters be exactly known, this paper presents the first comprehensive study of a data-

driven formulation of the distributionally robust second-order stochastic dominance constrained problem

(DRSSDCP) that hinges on using a type-1 Wasserstein ambiguity set. This formulation allows us to identify

solutions with finite sample guarantees and solutions that are asymptotically consistent when observations

are independent and identically distributed. It is furthermore for the first time shown to be axiomatically

motivated in an environment with distribution ambiguity. Leveraging recent results in the field of robust

optimization, we further formulate the DRSSDCP as a multistage robust optimization problem, and further

propose a tractable conservative approximation that exploits finite adaptability and a scenario-based lower

bounding problem, both of which can reduce to linear programs under mild conditions. We then propose

the first exact optimization algorithm for this DRSSDCP, which efficiency is confirmed by our numerical

results. Finally, we illustrate how the data-driven DRSSDCP can be applied in practice on resource allocation

problems with both synthetic and real data. Our empirical results show that with a proper adjustment of

the size of the Wasserstein ball, DRSSDCP can reach “acceptable” out-of-sample feasibility while generating

strictly better performance than what is achieved by the reference strategy.

Key words : Robust stochastic dominance, distributionally robust optimization, Wasserstein ambiguity

set, affine decision rule, exact solution algorithm, resource allocation, out-of-sample SSD feasibility

1. Introduction

The fundamental concept of stochastic dominance (or stochastic order) dates back to the 1940s,

where it emerged in the field of statistics and economics (see an early survey by Bawa (1982)). The

literature primarily focuses on two types of stochastic dominance relations: first-order stochastic

dominance (FSD) and second-order stochastic dominance (SSD). Optimization with stochastic

dominance constraints (SDCs) (e.g., Dentcheva and Ruszczynski 2003, Luedtke 2008, Rudolf and

Ruszczyński 2008, Homem-de Mello and Mehrotra 2009, Hu et al. 2012, Haskell et al. 2017, Noyan

and Rudolf 2018) has been an attractive approach to manage risk over the past decade. The

1



2

classical approach minimizes some cost function c(x) subject to the constraint that a controlled

random performance function f(x,ξ) is preferable than a given reference random performance Y .

Here, “preferable” means that the controlled performance stochastically dominates the reference

performance.

A popular example consists of a portfolio selection problem, where one wishes to choose what

proportions, denoted by x ∈Rm, of his/her capital to invest in m different assets. The returns of

all assets, denoted by ξ, are drawn from a known distribution P. Without loss of generality, we

assume that both x and ξ are in Rm. Let the vector x0 denote a reference portfolio, which might be

a market index or an existing portfolio. The objective is for example to maximize the investment’s

expected return subject to the constraint that the random return stochastically dominates ξ>x0

in the second order (denoted by �(2)). In this regard, one can solve the following optimization

problem,

maximize
x:1>x=1,x≥0

E[ξ>x], s.t. ξ>x�(2) ξ
>x0.

Methodologically speaking, most of the existing studies address the optimization with SDCs

assuming that the underlying distribution is known, which gives rise to two important practical

issues. First, the resolution of problems with SDCs can constitute a real computational challenge

especially when the outcome space is continuous, necessitating the use of Sample Average Approx-

imation (SAA) schemes (Kleywegt et al. 2002, Hu et al. 2012). Second, it is usually impossible for

the decision-makers to exactly know the true distribution of random variables. Instead, in prac-

tice, it is more common to only have historical observations. Fortunately, these difficulties can

sometimes be alleviated in stochastic programs by using the distributionally robust optimization

(DRO) paradigm (e.g., Delage and Ye 2010, Wiesemann et al. 2014, Mohajerin Esfahani and Kuhn

2018), where the distribution of uncertain parameters is modeled as belonging to ambiguity sets

that accounts for available distributional information. We refer the interested readers to a survey

by Rahimian and Mehrotra (2019) for more recent advances in DRO.

While the concept of distributionally robust second-order stochastic dominance (DRSSD) was

first introduced by Dentcheva and Ruszczyński (2010), this paper presents the first comprehensive

study of a data-driven formulation of the DRSSD constrained problem (DRSSDCP) that hinges

on using the Wasserstein ambiguity set proposed in Mohajerin Esfahani and Kuhn (2018). The

proposed data-driven DRSSDCP will be well adapted to situations where the decision-maker only

has access to a set of historical observations. Moreover, it will be controlled by an ambiguity

aversion parameter ε (i.e., the radius of the ambiguity set), which can be used to cover a spectrum

of models going from the empirical SDC problem, when ε= 0, to a distribution-free statewise SDC

problem (Müller and Stoyan 2002) when ε=∞, which can be interpreted as a robust optimization

problem.
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To summarize, our contributions can be described as follows:

• From a decision theory point of view, we establish that the distributionally robust stochastic

dominance constraints is the unique extension of a stochastic dominance constraint in an envi-

ronment with distribution ambiguity as long as the decision maker’s preference is monotone and

maximally indecisive with respect to the underlying ambiguity. This provides a strong axiomatic

motivation for employing distributionally robust stochastic dominance constraints in optimization

models and, more generally, for any dominance constraint that employs an incomplete preference

relation that are distribution-based.

• From a methodological point of view, we are the first to apply the theory presented in Moha-

jerin Esfahani and Kuhn (2018) to robustify SDCs. This allows us to formulate a DRSSDCP that

is flexible enough to identify solutions with finite sample guarantees and that converge to the true

optimal solution when observations are independent and identically distributed. While the resulting

DRSSDCP appears to be generally intractable, we show that it can be reduced to a form of multi-

stage robust optimization problem. Exploiting recent results in the field of robust optimization, we

further propose a tractable conservative approximation and a lower bounding problem that reduce,

under mild conditions, to linear programming (LP) models. Finally, we obtain analogous results

for a version of the DRSSDCP that can be used when different sources of information are used for

the controlled and reference performance functions.

• From an algorithmic point of view, we propose the first exact optimization solution method

for a DRSSDCP that employs a type-1 Wasserstein ambiguity set. The algorithm integrates the

two approximations iteratively; each iteration identifies promising modifications to tighten the

approximation models using so-called active scenarios. Our numerical results provide evidence that

our solution method is practicable, i.e., it can solve most instances of a data-driven DRSSDCP of

reasonable size within 2 hours time limit.

• From an empirical point of view, we illustrate how the data-driven DRSSDCP can be applied

in practice on resource allocation problems. Using a synthetic data generation environment where

the i.i.d. assumption is satisfied, we confirm that out-of-sample SSD feasibility is improved by

carefully tuning the level of robustification. We however observe for the first time in the literature

that perfect out-of-sample feasibility comes at a heavy price in terms of optimality. To correct

for this effect, we instead aspire to an acceptable level of feasibility that is based on the out-

of-sample performance of a hypothetical controlled variable that is independently and identically

distributed to the reference one. Our second set of experiments involve a portfolio optimization

problem where data comes from a real stock market. Here, our empirical results show that the

data-driven DRSSDCP, after being calibrated using cross-validation, can reach an acceptable level

of out-of-sample SSD feasibility while generating significantly higher expected return than what is
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achieved by both an SAA approach and the reference portfolio, i.e. an equally weighted reference

portfolio.

The remainder of this paper is organized as follows. Section 2 presents a review of relevant lit-

erature. We recall several fundamental concepts of stochastic dominance in Section 3. We present

an axiomatic motivation for distributionally robust stochastic dominance in Section 4. Section 5

presents the modeling framework for optimization with DRSSD constraints under type-1 Wasser-

stein metric. We propose an exact iterative partitioning solution scheme for the DRSSDCP in

Section 6. Section 7 presents a version of DRSSDCP where the distribution information decom-

poses with respect to the controlled and reference variables. We present and discuss the results of

empirical experiments involving a simple resource allocation problem, with i.i.d. observations, and

a portfolio optimization problem, with real market data, in Section 8. We give some concluding

remarks and thoughts on future research directions in Section 9. Finally, all proofs can be found

in the Appendix together with a brief list of supplementary materials.

Notation: We use boldface uppercase (e.g., X) and lowercase (e.g., x) characters to denote

matrices and vectors respectively. We use (x)+ to denote the positive part of x, i.e., max (0, x).

We denote an indicator function by 1{·}, which returns 1 if the statement inside the brackets is

true, and 0 otherwise. We let (Ω,F ,P) be a probability space, where Ω is an outcome space, F

the sigma algebra, and P is a probability measure from M(Ω), the set of all probability measures

on (Ω,F). We let Mr(Ω) be a subset of M(Ω) with finite r-th moment for r ∈ [1,∞). We let EP[·]

denote the mathematical expectation with respect to probability measure P. We use [N ] to denote

the set of running index {1,2, · · · ,N}. For some ξ ∈ Rm, we denote by δξ the Dirac distribution

that concentrates a unit of mass at ξ. Given any norm ‖ · ‖ in Rm, the dual norm is defined as

‖x‖∗ := sup
y∈Rm:‖y‖≤1

x>y. Given a function f :Rm→R, the conjugate function f∗ :Rm→R is defined

as f∗(y) := sup
x∈Rm

y>x− f(x). The support function of a set Ξ ⊆ Rm is denoted by δ(z | Ξ) and

defined as δ(z |Ξ) := sup
ξ∈Ξ

ξ>z.

2. Literature Review

Optimization with SDCs was firstly introduced in the pioneering work of Dentcheva and Ruszczyn-

ski (2003), where they derive a LP reformulation. This methodological framework has been inves-

tigated in various fields, especially in portfolio selection (e.g., Roman et al. 2013, Post and Kopa

2017, Sehgal and Mehra 2020), optimal path (e.g., Zhang and Homem-de Mello 2016), power sys-

tem optimization (e.g., Carrión et al. 2009), emergency medical service (EMS) location (e.g., Noyan

2010, Peng et al. 2020), as well as homeland security resource planning (e.g., Hu et al. 2011).

The literature on optimization with SDCs primarily focuses on FSD and SSD constraints. Since

FSD constraints usually define a non-convex feasible set, most of the existing studies mainly focus
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on SSD constraints. To model such optimization problems, people usually assume that the probabil-

ity measure is discrete, or can be approximated by a discrete one as is the case when using an empir-

ical distribution (e.g., Dentcheva and Ruszczynski 2003, Luedtke 2008, Rudolf and Ruszczyński

2008, Dentcheva and Ruszczyński 2009, Lizyayev and Ruszczyński 2012, Noyan and Rudolf 2013,

Ruszczyński 2013, Dentcheva and Wolfhagen 2015, Armbruster and Luedtke 2015, Dentcheva et al.

2016, Haskell et al. 2017, Noyan and Rudolf 2018, Noyan 2018, and references therein). Moreover,

two-stage problems with SDCs in the second-stage are also studied (e.g., Dentcheva and Martinez

2012, Dentcheva and Wolfhagen 2016). Similarly, they still assume that the random parameters

have a discrete distribution in order to derive two-stage linear formulations. Apart from the above

classical version of stochastic dominance, Müller et al. (2017) and Huang et al. (2020) also pro-

pose fractional degree stochastic dominance that is defined in terms of a set of utility functions.

Unfortunately, it is extremely difficult to elicit the form that this set should take in practice.

A related line of literature focuses on risk-averse optimization under the expected utility frame-

work when there is incomplete preference information, i.e. about the utility function. For instance,

Armbruster and Delage (2015) focuses on discrete outcome spaces and addresses this issue by

proposing a LP reformulation that accounts for a set of pairwise comparisons. Haskell et al. (2016)

extends this work by considering ambiguity about both preferences and distribution. They obtain

a LP reformulation under the assumption of a polyhedral distributional ambiguity set with a finite

number of vertices. For more general ambiguity sets, they propose conservative approximations

that are based on reformulation-linearization techniques and semi-definite programming. Given

that SSD constraints are known to be equivalent to robust expected utility constraints where the

utility function belongs to the set of monotone concave functions (see Lemma 1), our DRSSDCP

can be thought of as falling in this category of models. Yet, the main distinctions with this prior

work are that we consider a continuous outcome space (instead of discrete), employ a Wasserstein

ambiguity set, and provide an exact solution scheme for a large range of problems.

Recently, a few studies have specifically considered distributionally robust stochastic dominance

constraints. Dentcheva and Ruszczyński (2010) is the first to propose a robust version of stochastic

dominance for risk-averse optimization. Their work focuses on proving optimality conditions for the

general formulation. Also on a more theoretical level, Chen and Jiang (2018) derives quantitative

stability results for optimization problems with k-th order distributionally robust SDC problems

with respect to simultaneous perturbation of the controlled and reference variables. Neither of the

two papers studies numerical schemes for such problems. Guo et al. (2017) appears to be the first

to propose numerical schemes for DRSSDCP with a moment-based ambiguity set. Their approach

relies on a dense discretization of the outcome space to approximate the DRSSDCP. Unfortunately,

such an approach necessarily becomes intractable as the dimension of ξ increases. In contrast, our
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work focuses on the Wasserstein ambiguity set, which is known to have better asymptotic properties

than moment-based sets (see Theorem 3.6 in Mohajerin Esfahani and Kuhn (2018)). Furthermore,

our proposed solution scheme will rely on an adaptive discretization of a one-dimensional bounded

interval irrespective of the dimension of ξ.

Perhaps, the closest related studies consist in Sehgal and Mehra (2020) and Kozmı́k (2019),

although our work can be considered as independently performed as it was mostly accomplished

during an overlapping period. Sehgal and Mehra (2020) studies a portfolio optimization problem

with SSD constraints where the discrete return scenarios are allowed to be jointly perturbed inside

a budgeted uncertainty set. The authors reformulate the problem as a LP by exploiting well-known

results from Dentcheva and Ruszczynski (2003) and Bertsimas and Sim (2004). Kozmı́k (2019)

rather studies different variations of portfolio optimization problem with DRSSD constraints where

the distribution belongs to a type-1 Wasserstein ball that is intersected with different subsets of the

space of M -points distributions. In the most general setting, they reduce the feasibility problem

of DRSSDCP, i.e. identifying a worst-case M -point distribution for the SSD constraint, to a large

non-convex polynomial optimization problem. Given the difficulty of resolution of such a model,

they further restrict the ambiguity set to include information about either return scenarios or

probabilities. In both cases, they identify the LP based conservative approximations.

The main distinction with these two works consists in the fact that our work is the only one that

studies an untempered version of the Wasserstein ambiguity set proposed in Mohajerin Esfahani

and Kuhn (2018). This is how our solutions inherit strong statistical guarantees that were derived

for this type of ambiguity set and which are not known to hold for the solutions produced using the

two other works. Another important distinction with Sehgal and Mehra (2020) resides in the fact

that we allow the reference performance to be defined in terms of a continuous random variable

with inexactly known distribution instead of an exactly known discrete distribution function. We

will actually briefly discuss the case of a known discrete distribution function in Section 7, where

an equivalent LP representation will also be derived for our DRSSDCP. Conversely, unlike the

work of Kozmı́k (2019) who only identifies a tractable conservative approximation, we additionally

propose an efficient exact algorithm for solving a DRSSDCP which a priori should constitute an

even harder challenge given that the worst-case analysis considers a larger and less structured space

of probability measures.

3. Preliminaries

Section 3.1 firstly recalls the basic characterizations of stochastic dominance, commonly known as

the FSD, SSD, and distributionally robust stochastic dominance (DRSD). Then we present the

optimization problems with DRSD in Section 3.2. We finally provide examples of how one might
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choose the reference performance in practice in Section 3.3. Throughout this section, we assume

that X captures a random revenue that needs to be maximized.

3.1. Stochastic Dominance

Given a probability space (Ω,F ,P), for any random variable X : Ω→R with distribution function

F
(1)
X (η) = P(X ≤ η), one can define F

(k)
X (η) =

∫ η
−∞F

(k−1)
X (t)dt, for all η ∈R and k = 2,3, . . . Hadar

and Russell (1969) initially proposes the definition of stochastic dominance in the first and second

order from the distribution function viewpoint.

Definition 1 (stochastic dominance). Given any two random variables X and Y capturing

some earnings, we consider that X stochastically dominates Y to the k-th order, denoted by

X �(k) Y , if and only if

F
(k)
X (η)≤ F (k)

Y (η),∀η ∈R.

Furthermore, the dominance is known as first-order stochastic dominance when k= 1 and second-

order stochastic dominance when k= 2.

Note that SSD has been extensively studied in the literature (e.g., Dentcheva and Ruszczynski

2003, Luedtke 2008, Rudolf and Ruszczyński 2008, Homem-de Mello and Mehrotra 2009), in which

a number of equivalent representations are known.

Lemma 1. The property X �(2) Y is equivalent to:

1. E[(η−X)+]≤E[(η−Y )+],∀η ∈R

2. E[u(X)]≥E[u(Y )] for all non-decreasing concave utility functions u :R→R.

The second equivalence denoted in the lemma points to a valuable interpretation of SSD which

states that X is preferred to Y by all risk averse expected utility maximizer’s.

Note that the case where k = 0 also exists and is known as zero-th order stochastic dominance

(or almost sure dominance), and refers to the property that:

P(X ≥ Y ) = 1 .

The notion of stochastic dominance needs to be modified in situations where the probability

measure is undefined. In particular, one might instead need to consider a measurable space (Ω,F)

with an ambiguous set of probability measures P ⊆M(Ω), where M(Ω) the set of all probability

measures on (Ω,F). In this context, Dentcheva and Ruszczyński (2010) proposes a robust stochastic

dominance criterion.
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Definition 2 (Distributionally robust stochastic dominance, DRSD). Given two ran-

dom variables X and Y and an ambiguity set P, we say that X robustly stochastically dominates

Y to the k-th order if and only if:

X �P
(k) Y ∀P∈P,

where X �P
(k) Y refers to the fact that X stochastically dominates Y to the k-th order when the

probability measure attached to (Ω,F) is P. Again, we refer to this relation as distributionally

robust FSD and distributionally robust SSD when k= 1 and k= 2 respectively.

3.2. Optimization with Stochastic Dominance Constraints

In the context of decision making and optimization, stochastic dominance can be used to ensure that

the random controlled performance of one’s action dominates a reference uncertain performance.

Specifically, to simplify the notation, we consider the measurable space (Ξ,B(Ξ)), with Ξ ⊆ Rm

and B(Ξ) the Borel sigma algebra on Ξ, which assumes that all the uncertainty is captured in a

vector of uncertain parameters ξ ∈Ξ.

Given that the probability measure on (Ξ,B(Ξ)) is known to be P, the k-th order stochastic

dominance constrained optimization problem takes the form:

[SDCPk] minimize
x∈X

h(x) (1a)

subject to f(x,ξ)�P
(k) f0(ξ) (1b)

where x∈X ⊆Rm is the vector of decision variable in its feasible set, h(x) is a cost function that

needs to be minimized, f(x,ξ) is the random controlled performance function (that we wish to

maximize) of x which needs to dominate the random reference performance captured by f0(ξ).

Note that in practice, it can be useful to model f0(ξ) := f(x0,ξ) for some reference action x0 ∈X .

In the case that P is only known to be part of P, a distributionally robust version of problem

(1) can be used.

[DRSDCPk] minimize
x∈X

h(x) (2a)

subject to f(x,ξ)�P
(k) f0(ξ) ∀P∈P. (2b)

This paper mainly focuses on the version of problem (2) where k= 2 and P takes the form of a

type-1 Wasserstein ambiguity set centered at some empirical distribution P̂.
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3.3. Examples of Schemes for Choosing the Reference Performance

Stochastic dominance based-approach requires the decision maker to select a random reference

performance that directly defines the feasible region. This reference performance therefore plays

an important role on the optimality of decisions. In this section, we briefly present examples of

how reference performance have been selected in different applications found in the literature. The

hope is that this section can serve as inspiration for practitioners.

One common way of selecting a reference performance is to base it on the performance of a refer-

ence action, e.g., Y := f(x0,ξ) where x0 is this reference action. For instances, in portfolio optimiza-

tion, the models usually employ a reference portfolio (e.g., uniform portfolio x0 = [1/n, · · · ,1/n]

with n available assets) (e.g., Dentcheva and Ruszczynski 2003, Luedtke 2008, Guo et al. 2017,

Kozmı́k 2019). Another example is in Peng et al. (2020), which considers a EMS location problem

and where a reference coverage profile is constructed based on the solution of the deterministic

formulation with nominal parameter settings. Zhang and Homem-de Mello (2017) consider mini-

mizing the expected cost of a path while imposing a stochastic dominance constraint to control the

risk of long delays. They suggest using the route obtained from a typical route-finding software as

reference.

An alternative way to choose the reference performance consists in identifying a reference dis-

tribution. For instance, in portfolio optimization problems, many works have used the distribution

of returns of a financial market index, which might be summarized using an empirical distribu-

tion (e.g., Roman et al. 2013, Sehgal and Mehra 2020, Liesiö et al. 2020). Noyan (2010) define a

reference coverage level for EMS service based on the distribution of recent historical emergency

demand. Moreover, Carrión et al. (2009) study a risk-averse electricity contract design problem

with SSD constraints and similarly consider a reference cost profile defined based on a finite num-

ber of observations. A predefined distribution is further used as reference in AlAshery et al. (2019),

which study a SSD constrained wind power producer’s bidding problem. Finally, Zarif et al. (2012)

study a mid-term scheduling problem for large industrial consumers with SSD constraints and

constructs the reference performance using the distribution of the performance of optimal solutions

in nominal models identified using clustering techniques.

It is worth noting that many of the prior studies consider a distribution-based reference per-

formance rather than a reference random variable (or reference action). In a known probability

setting, this choice might often be for simplicity of presentation given that the two approaches are

equivalent. This is no longer the case when considering an ambiguous probability setting. While

most of this paper will consider the more general case of employing a random variable as reference,

Section 7 will also propose some reformulations that are specialized for distribution-based reference

performances (see for instance Proposition 9).
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We finally remark that depending on the choice of a reference performance, the DRSDCPk might

become infeasible. This can be verified by solving a phase-1 DRSDCPk of the form:

minimize
x∈X ,s

s

subject to f(x,ξ) + s�P
(k) f0(ξ) ∀P∈P,

for which a strictly positive s∗ indicates that the the feasible space in DRSDCPk is infeasible.

Moreover, the magnitude of a negative s∗ can provide information about the “size” of the feasible

set of DRSDCPk. In what follows, we will in time consider that f0(ξ) := f(x0,ξ), for some x0 ∈X ,

which by construction implies that x0 is a feasible solution to the problem.

4. An Axiomatic Motivation for DRSD Constraints

Although there are a number of articles that study the robust stochastic dominance and its appli-

cation in the literature (e.g., Dentcheva and Ruszczyński 2010, Chen and Jiang 2018, Sehgal and

Mehra 2020), to the best of our knowledge, it is still unclear whether such type of constraints are

well motivated from an axiomatic perspective. In this section, we propose a motivation for the

DRSD constraint that will identify two axioms, namely “ambiguity monotonicity” and “maximally

ambiguity indecisiveness”, as needed to make the DRSD constraint the only possible extension of

a stochastic dominance constraint in an ambiguous probability space (as defined in Delage et al.

(2019)).

Formally speaking, let us consider a non-atomic ambiguous probability space (Ω,F ,P) (see

Definition 13 in Delage et al. (2019)). Let L∞(Ω,F ,P) = ∩P∈P0
L∞(Ω,F ,P) be the space of all

random variables that are essentially bounded with respect to every probability measure in the

ambiguity set P. We also define the space of unambiguous random variables as

U := {X ∈L∞(Ω,F ,P) | ∃FX ,FX = F P
X , ∀P∈P}.

Take any preference relation � on random variables in L∞(Ω,F ,P). Assume that for all unam-

biguous random variable, the preference relation is law-invariant, i.e.

(Law-invariance on U) if {X,Y } ⊂ U and FX = FY , then X ∼ Y .

Given that the ambiguous probability space is non-atomic, this means by definition that there

exists a random variable U0 ∈ U that follows the standard uniform distribution under all P∈P. We

can therefore overload the notation for this preference relation to apply it on distribution functions:

F1 � F2⇔ F−1
1 (U0)� F−1

2 (U0) ,
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where F−1(y) := inf{x : F (x)≥ y} so that X ′ := F−1
1 (U0) is a random variable in U that satisfies

F P
X′ = F1 for all P∈P.

We can now present our main representation results for a general law-invariant preference relation

as follows.

Theorem 1. If the preference relation � is law-invariant on U and satisfies:

• (Ambiguity Monotonicity) If F P
X � F P

Y for all P∈P, then X � Y

• (Maximal Ambiguity Indecisiveness) If ∃P∈P such that F P
X 6� F P

Y , then X 6� Y .

Then, for any random variables X,Y ∈ L∞(Ω,F ,P), we have that X � Y if and only if F P
X � F P

Y

for all P∈P. Moreover, if � is transitive and reflexive on U , then it also satisfies these properties

on L∞(Ω,F ,P).

Note that ambiguity monotonicity was already introduced in Delage et al. (2019). The maximal

ambiguity indecisiveness property appears to be new and captures the fact that the decision maker

becomes indecisive about the dominance between X and Y the moment that none of the weak

dominance of X on Y and of Y on X make a unanimous consensus among the probability measures

in P. It is also interesting to observe that � might not be a complete preference relation in

L∞(Ω,F ,P) even when it is complete on the set U .

The following corollary further presents our representation result to a general k-th order stochas-

tic dominance relation.

Corollary 1. Given a preference relation � that reduces to �(k) when applied on the space of

unambiguous random variables and is both ambiguity monotone and maximally ambiguity indeci-

sive, then it necessarily satisfies:

X � Y ⇔ F P
X �(k) F

P
Y , ∀P∈P . (3)

Furthermore, the condition that the controlled performance f(x,ξ) be preferred to a reference per-

formance f0(ξ) according to � reduces to

f(x,ξ)�P
(k) f0(ξ), ∀P∈P .

We also remark that, based on Proposition 3.3 (i) and (iii) of Chapter 3 in Quiggin (1993),

and Theorem 1, we have the following corollary that provides an alternative formulation of our

axiomatic representation for the case of DRSSD.

Corollary 2. Given preference relation � that satisfies the following condition:

∀X,Y ∈ U ,X � Y ⇔∃Z ∈ U , {EP[Z|Y ]}P∈P = {0}& FX = FY+Z
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and is both ambiguity monotone and maximally ambiguity indecisive, then it necessarily satisfies:

X � Y ⇔ F P
X �(2) F

P
Y , ∀P∈P .

Furthermore, the condition that the controlled performance f(x, ξ) be preferred to a reference per-

formance f0(ξ) according to � reduces to

f(x, ξ)�P
(2) f0(ξ), ∀P∈P .

We finally note that some alternative representations have been proposed in Montes et al. (2014)

for extending the notion of stochastic dominance to an ambiguous probability space. Yet, all the

proposed extensions either don’t satisfy basic properties one would expect from preference relations

in this space, namely reflexivity and transitivity, or make additional unexplained assumptions

about how the ambiguity about indecisiveness should be resolved. We refer the interested readers

to Appendix B.1 for a more detailed comparison.

5. Data-Driven DRSSDCP

In this section, we consider the distributionally robust second-order SDCP model of the form

[DRSSDCP] minimize
x∈X

c>x (4a)

subject to f(x,ξ)�P
(2) f0(ξ) ∀P∈P, (4b)

where for simplicity of exposition, we focus on minimizing a simple linear cost function c>x. We

now present the assumptions that we make on the outcome set Ξ and the form of controlled

performance function f(x,ξ) and reference performance function f0(ξ).

Assumption 1. The feasible set X is a non-empty convex set and the outcome space Ξ is a non-

empty compact convex set.

Assumption 2. The performance functions f(x,ξ) and f0(ξ) are piecewise linear concave func-

tions in both x and ξ, namely, f(x,ξ) := min
n∈[N ]

an(x)>ξ+ bn(x) and f0(ξ) := min
n∈[N ]

a0
n
>
ξ+ b0

n with

an(x) and bn(x) affine in x for all n∈ [N ].

First note that Assumption 1 is relatively weak and often satisfied. Assumption 2 is comparatively

much more restrictive, yet it is satisfied by linear performance functions, or performance functions

that compute the amount of shortfall for reaching a prescribed target, e.g. f(x,ξ) := −max(b−
a(ξ)Tx, 0), where a(ξ)Tx, with a(ξ) affine in ξ, computes the performance achieved and b is

the target level. More generally speaking, f(x,ξ) could be the optimal value of a linear recourse

optimization model with right-hand-side uncertainty:

f(x,ξ) := max
y:Ax+By≤Dξ

d>y= min
n∈[N ]

s>n (Dξ−Ax) ,
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where {sn}n∈[N ] is the set of vertices of the feasible set of the dual linear program. However, our

proposed approach will for simplicity assume that N is of reasonable size.

In the following, we give the definition of Wasserstein metric and Wasserstein ambiguity set.

Definition 3 (Wasserstein Metric). For any r≥ 1, letMr(Ξ) denote the set of all probability

measures P on (Ξ,B(Ξ)) satisfying EP[d(ξ,ξ0)r] =
∫

Ξ2 d(ξ,ξ0)rP(dξ) <∞ for the same reference

point ξ0 ∈ Ξ and where d(ξ,ξ0) is a continuous reference metric on Ξ. The type-r Wasserstein

distance between distributions P1 ∈Mr(Ξ) and P2 ∈Mr(Ξ) is defined as

drW(P1,P2) = inf
Q∈M(P1,P2)

(∫
Ξ2

d(ξ1,ξ2)rQ(dξ1, dξ2)

) 1
r

,

where M(P1,P2) is the set of joint distribution Q ∈Mr(Ξ × Ξ) of ξ1 ∈ Ξ and ξ2 ∈ Ξ with the

marginal distributions equal to P1 and P2, i.e., Q(Ξ′ ×Ξ) = P1(Ξ′) and Q(Ξ×Ξ′) = P2(Ξ′) for all

Ξ′ ⊆Ξ.

Definition 4 (Wasserstein Ambiguity Set). The Wasserstein ambiguity set of radius ε cen-

tered at P̄ is defined by

PrW(P̄, ε) :=
{
P∈Mr(Ξ)

∣∣drW(P, P̄)≤ ε
}
,

where dW is the Wasserstein metric that is given in Definition 3.

One can think of the Wasserstein radius ε as a budget on the transportation cost induced by

rearranging the reference distribution P̄ to obtain P. When the only information about the true P

consists in a limited number of sampled observations {ξ̂i}Mi=1, a natural choice for P̄ consists in the

empirical distribution P̂ := 1
M

∑
i∈[M ]

δξ̂i , which assigns equal weights to each observed realizations.

A special case of Wasserstein ambiguity set is characterized by the following assumption which

will help identify a linear programming reformulation of Wasserstein-based distributionally robust

stochastic dominance constraints.

Assumption 3. The Wasserstein ambiguity set P1
W uses a type-1 Wasserstein distance with the

`1-norm or `∞-norm as the reference metric, i.e., d(ξ1,ξ2) := ‖ξ1− ξ2‖p with p∈ {1,∞}.

Remark 1. Although the rest of the paper mainly focuses on P1
W(P̂, ε) under Assumption 3, we

can also straightforwardly extend the proposed solution scheme to P∞W (P̂, ε) with the `1-norm or

`∞-norm as the reference metric. We refer the interested readers to Appendix B.2 for more details.

To provide more intuition about DRSSDCP with a Wasserstein ambiguity set, in the following

we start by demonstrating in Section 5.1 that DRSSDCP (4) generalizes two popular classes of

stochastic dominance problems. Section 5.2 presents statistical properties of DRSSDCP (4) that

emerge when the historical observations are drawn independently and identically. We then derive a
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multistage robust optimization reformulation for DRSSDCP under mild conditions in Section 5.3.

We then conservatively approximate it as an adaptive robust linear optimization problem by using

finite adaptability and affine decision rules in Section 5.4. Finally, we provide a lower bounding

approximation by using finite scenarios and derive the tractable reformulation in Section 5.5.

5.1. Reduction to Classical Optimization Problems

In the following two propositions, we show that, under a Wasserstein ambiguity set, the distribu-

tionally robust SSD constraint can model a wide spectrum of ambiguity aversions: ranging from the

classical empirical SSD constraints when ε= 0 to a distribution-free statewise dominance constraint

when ε=∞, which can be interpreted as a robust optimization problem.

Proposition 1 (Reduction to SDCP2). The DRSSDCP (4) with PrW(P̂,0) reduces to a

SDCP2 model (1) with h(x) := c>x and P := P̂. Moreover, under assumptions 1 and 2, it can be

reformulated as a linear programming problem when X is polyhedral.

Proposition 2 (Reduction to DFSDCP). The DRSSDCP (4) with PrW(P̂,∞) reduces to the

following Distribution-Free Statewise Dominance Constrained Problem (DFSDCP),

[DFSDCP] minimize
x∈X

c>x (5a)

subject to f(x,ξ)≥ f0(ξ) ∀ξ ∈Ξ. (5b)

Moreover, under assumptions 1 and 2, problem (5) can be reformulated as a linear programming

problem when Ξ and X are polyhedral.

In the remaining of this paper, we focus on the case where ε∈ (0,+∞) and derive reformulations

and propose solution schemes for the case where a type-1 Wasserstein metric is used and either

`1-norm or `∞-norm is used as the reference distance d(ξ1,ξ2).

5.2. Statistical Properties of DRSSDCP Solutions

We briefly summarize some valuable properties that are held by solutions of the DRSSDCP in a

data-driven context. First, Theorem 3.5 in Mohajerin Esfahani and Kuhn (2018) actually estab-

lished conditions under which P1
W(P̂, ε) is known to contain the true distribution that generated

the i.i.d. observations {ξ̂i}Mi=1 with high probability. These conditions straightforwardly imply a

finite sample guarantee for DRSSDCP solutions.

Proposition 3 (Finite sample guarantee of DRSSDCP solutions). Suppose that Assump-

tion 1 holds and that each observations in {ξ̂i}Mi=1 are drawn i.i.d. from some P̄, with M ≥ 1 and



15

m> 2. Given some β ∈ (0,1), let x̂M be the optimal solution of the DRSSDCP with ambiguity set

P1
W(P̂, εM(β)) where

εM(β) :=


(

log(c1β
−1)

c2M

)1/max(m,2)

if M ≥ log(c1β
−1)

c2(
log(c1β

−1)

c2M

)1/a

otherwise ,

and where c1, c2, and a > 1 are positive constants (see Mohajerin Esfahani and Kuhn (2018)

for details). One has the guarantee that, with probability larger than 1− β, x̂M satisfies the SSD

constraint under P̄, i.e., f(x̂M ,ξ)�P̄
(2) f0(ξ).

Alternatively, Theorem 3.1 of Hu et al. (2012) establishes conditions under which the SAA of

SDCP2 (i.e., ε= 0) converges to the set of the “near-optimal solutions” as the number of samples

goes to infinity. The following proposition further generalizes this result for the case when ε > 0.

Proposition 4 (Asymptotic consistency of DRSSDCP solutions). Suppose that assump-

tions 1 and 2 hold, that X is bounded, and that βM ∈ (0,1) satisfies
∑∞

M=1 βM < ∞ and

limM→∞ εM(βM) = 0. Consider the following φ-SDCP2 model:

[φ-SDCP2] minimize
x∈X

c>x

subject to EP̄
[
(t− f(x,ξ))+

]
≤EP̄

[
(t− f0(ξ))+

]
+φ ∀t∈R,

with φ > 0, and assume that Slater’s condition is satisfied. Let each observations in {ξ̂i}Mi=1 be

drawn i.i.d. from some P̄, xM be an optimal solution of the φ-DRSSDCP:

[φ-DRSSDCP] minimize
x∈X

c>x

subject to EP
[
(t− f(x,ξ))+

]
≤EP

[
(t− f0(ξ))+

]
+φ ∀t∈R, ∀P∈P1

W(P̂, ε),

with ambiguity set P1
W(P̂, εM(βM)), and X ∗ be the set of optimal solutions to the φ-SDCP2 under

the true distribution P̄. Then one has the guarantee that xM converges almost surely to X ∗ as M

goes to infinity.

In summary, we see that for appropriately chosen values of ε, a slightly perturbed version of

DRSSDCP can identify solutions that either achieve relevant finite sample guarantees for small

observation sets, or achieve near optimality for the true underlying SDCP2 when M is sufficiently

large. In practice, one should rely on cross-validation schemes (e.g., as is described in Section 8.2.3)

to identify the size of ε that is most appropriate for the data set.
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5.3. Exact Multistage Robust Optimization Reformulation

We now focus on converting the DRSSDCP to a multistage robust optimization model using the

results of Wasserstein DRO from Mohajerin Esfahani and Kuhn (2018) when Assumption 3 is

satisfied. In particular, based on Lemma 1, we can first rewrite the equivalent representation of

model (4) in the form of

minimize
x∈X

c>x (6a)

subject to EP
[
(t− f(x,ξ))+

]
≤EP

[
(t− f0(ξ))+

]
∀ t∈R, ∀P∈P1

W(P̂, ε). (6b)

Moreover, constraint (6b) can be rewritten as

sup
P∈P1

W
(P̂,ε)

EP [g(x,ξ, t)]≤ 0, ∀t∈R , (7)

where g(x,ξ, t) := (t−f(x,ξ))+− (t−f0(ξ))+. The theory of Mohajerin Esfahani and Kuhn (2018)

can therefore be applied to obtain the reformulation presented in the following proposition.

Proposition 5. Under assumptions 1 and 2, and with ε ∈ (0,∞), the DRSSDCP (6) coincides

with the optimal value of the following multistage robust optimization problem with two stages of

decisions (i.e. x followed with λ and q) and two stages of adversarial perturbations (i.e. t then ξ):

minimize
x∈X

c>x (8a)

subject to L(x, t)≤ 0 ∀t∈ T̄ , (8b)

where T̄ := [tmin, tmax], with tmin := inf
ξ∈Ξ

f0(ξ), tmax := sup
ξ∈Ξ

f0(ξ), and where

L(x, t) := inf
λ,q

λε+
1

M

∑
i∈[M ]

qi (9a)

subject to gn(x,ξ, t)−λ‖ξ− ξ̂i‖ ≤ qi ∀ξ ∈Ξ, n∈ [N ], i∈ [M ] (9b)

λ≥ 0,q ∈RM , (9c)

where

gn(x,ξ, t) := min
n′∈[N+1]

(a0
n′ −an(x))>ξ+ b0

n′ − bn(x)− (c0
n′ − cn)t

with aN+1 = bN+1 = cN+1 = a0
N+1 = b0

N+1 = cN+1 = 0, and cn = c0
n = 1 for all n ∈ [N ]. Moreover,

it can be reformulated as a multistage robust linear optimization problem when Assumption 3 is

satisfied and when X and Ξ are polyhedral.
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We wish to emphasize the fact that most of the previously proposed solution schemes for the

optimization problems with SSD constraints (e.g., Dentcheva and Ruszczynski 2003) exploit the

property that when the constraint is violated, it is necessarily violated for t at one of the support

points of f0(ξ). The fact that P1
W(P̂, ε) includes distributions that make f0(ξ) continuously sup-

ported prevents us from restricting t to take values in a finite set. We also note that the multistage

robust optimization problem (8) takes the form of min
x

-sup
t

-min
λ,q

-sup
ξ

, which cannot be tractably

reformulated using duality theory. Next, we propose two tractable approximations that can be

used to bound the optimal value of problem (8). This in turn will motivate an exact iterative

partitioning optimization solution scheme for the problem.

Remark 2. More recently, there are several commonly used methods for the risk-averse DRO

problems with a Wasserstein ambiguity set in the literature, e.g., distributionally robust chance

constraints (e.g., Chen et al. 2018, Xie 2021), distributionally robust risk measures (e.g., Guo and

Xu 2019, Ji and Lejeune 2021) and distributionally robust expected utility (e.g., Gao and Kley-

wegt 2016, Zhao and Guan 2018, Mohajerin Esfahani and Kuhn 2018, Long et al. 2021). The

resolution methods for these risk-averse Wasserstein DRO problems usually relies on the approx-

imation schemes (e.g., CVaR and Bonferroni approximations), the Fenchel Robust Counterpart

theory (Ben-Tal et al. 2015) and strong duality to derive the tractable finite-dimensional convex

reformulations under mild conditions, which can usually be solved by the state-of-art solvers (e.g.,

CPLEX, GUROBI) for the small/medium-sized problems. While the methods that we will employ

have been used in other settings, this paper is the first to propose an exact solution scheme for

risk-averse optimization problems with DRSSD constraints.

5.4. Tractable Conservative Approximation Formulation via Finite Adaptability

In this section, we first present a conservative approximation model of multistage robust optimiza-

tion problem (8) by applying finite adaptability and then derive its tractable reformulation under

mild conditions, which provides an upper bound for problem (8).

Since robust multistage optimization problems are generally hard to solve, a common approach

is to employ affine decision rules to obtain a conservative approximation (Ben-Tal et al. 2004).

Unfortunately, in problem (8), the term λ(t)‖ξ− ξ̂i‖ makes this approach challenging. Therefore,

we hereby consider the adjustable decisions λ(t) and q(t) to be respectively piecewise constant

and piecewise linear on a partition P := {Tk}Kk=1 of T̄ , i.e., λ(t) =
∑
k∈[K]

λk1{t ∈ Tk} and qi(t) =∑
k∈[K]

(q̄ik + qikt)1{t∈ Tk} respectively.

In doing so, this gives rise to the following robust optimization problem,

minimize
x∈X ,λ,q,q̄

c>x (10a)
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subject to λkε+
1

M

∑
i∈[M ]

(q̄ik + qikt)≤ 0 ∀t∈ Tk, k ∈ [K] (10b)

gn(x,ξ, t)−λk‖ξ− ξ̂i‖ ≤ q̄ik + qikt ∀ξ ∈Ξ, t∈ Tk, k ∈ [K], i∈ [M ], n∈ [N + 1] (10c)

λk ≥ 0, qik, q̄ik ∈R ∀k ∈ [K], i∈ [M ], (10d)

where gn(x,ξ, t) = max
η∈Γη(ξ,t)

−an(x)>ξ− bn(x) + cnt+η with aN+1 = bN+1 = cN+1 = 0, and cn = 1 for

all n∈ [N ], and Γη(ξ, t) :=
{
η : η≤ a0

n′
>
ξ+ b0

n′ − t, ∀n′ ∈ [N ]; η≤ 0
}

. Note that model (10) always

constructs a conservative approximation for problem (8), as the former restricts the space of decision

rules to those which are piecewise linear and static over the partition. That is to say, all feasible

solutions of problem (10) are necessarily feasible in problem (8) and the optimal value of problem

(10) provides a upper bound on the objective value of problem (10)’s solution in problem (8). In

the following theorem, we provide an exact finite-dimensional convex optimization reformulation

of model (10), in which we employ the Fenchel Robust Counterpart theory in Ben-Tal et al. (2015)

to derive the equivalent reformulations of robust constraints (10b) and (10c) respectively.

Theorem 2. Suppose that assumptions 1 and 2 hold, for the given partition P := {Tk}Kk=1, the

conservative approximation model (10) is equivalent to the following finite-dimensional convex

optimization problem,

minimize
x∈X ,λ,ρ,q,q̄,v,u,w

c>x

subject to λkε+
1

M

M∑
i=1

(qik t̄
+
k + q̄ik)≤ 0, ∀k ∈ [K]

λkε+
1

M

M∑
i=1

(qik t̄
−
k + q̄ik)≤ 0 ∀k ∈ [K]

δ(vink |Ξ) +uink t̄
−
k −w>inkξ̂i− q̄ik

− bn(x) +
∑
n′∈[N ]

ρinkn′b
0
n′ ≤ 0 ∀i∈ [M ], n∈ [N + 1], k ∈ [K]

δ(vink |Ξ) +uink t̄
+
k −w>inkξ̂i− q̄ik

− bn(x) +
∑
n′∈[N ]

ρinkn′b
0
n′ ≤ 0 ∀i∈ [M ], n∈ [N + 1], k ∈ [K]

wink = vink +an(x)−
∑
n′∈[N ]

ρinkn′a
0
n′

‖wink‖∗ ≤ λk ∀i∈ [M ], n∈ [N + 1], k ∈ [K]

uink + qik +
∑
n′∈[N ]

ρinkn′ − cn = 0 ∀i∈ [M ], n∈ [N + 1], k ∈ [K]∑
n′∈[N ]

ρinkn′ ≤ 1 ∀i∈ [M ], n∈ [N + 1], k ∈ [K]
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λk, ρinkn′ ≥ 0;wink,vink ∈Rm;uink, q̄ik, qik ∈R ∀i∈ [M ], n′ ∈ [N ], n∈ [N + 1], k ∈ [K],

where t̄−k and t̄+k are the two boundaries of each interval Tk. Furthermore, it can be reformulated as

a linear programming problem if X and Ξ are polyhedral and Assumption 3 is satisfied.

5.5. Tractable Lower Bounding Approximation via Finite Scenarios

Since the conservative approximation model (10) becomes difficult to solve when the size of the

partition becomes large, it is useful to know how far the current optimal solution is from being

optimal. In this regard, we now propose a tractable approximation for problem (8) that will provide

a lower bound. More specifically, inspired by the scenario-based two-stage robust optimization

problem in Hadjiyiannis et al. (2011), we employ a finite scenarios set T̂ := {t̂1, · · · , t̂k, · · · , t̂K} to

replace T̄ in problem (8) (e.g. uniformly spread scenarios on the interval T̄ ). This gives rise to the

following optimization problem,

minimize
x∈X ,λ,q

c>x (11a)

subject to λkε+
1

M

∑
i∈[M ]

qik ≤ 0 ∀k ∈ [K] (11b)

gn(x,ξ, t̂k)−λk‖ξ− ξ̂i‖ ≤ qik ∀ξ ∈Ξ, i∈ [M ], n∈ [N + 1], k ∈ [K] (11c)

λk ≥ 0, qik ∈R ∀i∈ [M ], k ∈ [K]. (11d)

In the following Proposition 6, we show that the objective value of problem (11) provides a lower

bound, and can be reformulated as a linear programming problem under mild conditions. The

latter follows from employing Fenchel Robust Counterpart approaches presented in Ben-Tal et al.

(2015).

Proposition 6. Given a finite scenarios set T̂ = {t̂1, · · · , t̂k, · · · , t̂K}, problem (11) provides a

lower bounding approximation for problem (8). Suppose that assumptions 1 and 2 hold, problem

(11) is equivalent to the following finite-dimensional convex optimization problem,

minimize
x∈X ,λ,q,ρ,w

c>x

subject to λkε+
1

M

∑
i∈[M ]

qik ≤ 0 ∀k ∈ [K]

δ(wink +
∑
n′∈[N ]

ρinkn′a
0
n−an′(x) |Ξ)−wink

>ξ̂i

+
∑
n′∈[N ]

ρinkn′b
0
n′ − bn(x)− (

∑
n′∈[N ]

ρinkn′ − cn)t̂k− qik ≤ 0 ∀i∈ [M ], n∈ [N + 1], k ∈ [K]

‖wink‖∗ ≤ λk ∀i∈ [M ], n∈ [N + 1], k ∈ [K]
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n′∈[N ]

ρinkn′ ≤ 1 ∀i∈ [M ], n∈ [N + 1], k ∈ [K]

λk, ρinkn′ ≥ 0; qik ∈R;wink ∈Rm ∀i∈ [M ], n∈ [N + 1], k ∈ [K], n′ ∈ [N ].

Furthermore, it can be reformulated as a linear programming problem if X and Ξ are polyhedral

and Assumption 3 is satisfied.

6. An Exact Solution Scheme

Inspired by Postek and den Hertog (2016) and Bertsimas and Dunning (2016), in this section we

propose an exact solution scheme for the multistage robust optimization problem (8) by using an

iterative partitioning method. In what follows, we first present the iterative partition based solution

algorithm in Section 6.1, then describe how finite scenarios set T̂ gets updated in Section 6.2 and

how to modify the partition P at each step in Section 6.3.

6.1. Iterative Partition based Solution Algorithm

We now show how the upper bound and lower bound can be updated iteratively. At the beginning,

we initialize an original partition P1 = {T̄ } and an original scenario set T̂ 0 := ∅. In each iteration

`= 1,2, . . . , given the partition P`, we solve the upper bound problem (10) to obtain the optimal

solutions (x∗`,λ∗`,q∗`, q̄∗`) and the current upper bound UB`. By using the optimal solutions,

we can generate a so-called “active scenario set” Â`, i.e., a set of scenarios considered to make

constraints (10b) and (10c) binding. We provide the details on how to detect an active scenarios set

in Section 6.2. We can then potentially improve the lower bound LB` obtained from (11) by adding

such active scenarios to T̂ `. We further attempt to improve the upper bound by exploiting the

active scenarios to refine the partition P`+1 := V(P`, Â`), which details can be found in Section

6.3. We repeat these steps until either the time or iteration limit is reached or when a sub-optimality

of ε has been confirmed. We present the pseudo-code of such an iterative partition based solution

method in Algorithm 1.

The following proposition provides conditions under which one has monotonous improvement

guarantees for the upper bound and lower bound generated by Algorithm 1.

Proposition 7. When Algorithm 1 is followed, then LB`+1 ≥ LB`. Moreover, if for all T ′ ∈P`+1,

there exists T ′′ ∈P` such that T ′ ⊆T ′′, then UB` ≥UB`+1.

6.2. Detecting an Active Scenarios Set

In the following, we present a simple way to obtain an active scenarios set by identifying the

scenarios of t, in which we expect that these active scenarios that bind the solutions with finitely

adaptive policies are also binding the fully adaptive solutions.1

1 A scenario t̂ is considered “binding” in problem (10) either if constraint (10b) is active at t̂ or if there exists a triplet
(ξ, i, n) that makes constraint (10c) active at t̂.
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Algorithm 1 Iterative Partition based Solution Algorithm

1: Initialize: LB0 =−∞, UB0 = +∞, T̄ := [inf
ξ∈Ξ

f0(ξ), sup
ξ∈Ξ

f0(ξ)], P1 := {T̄ }, `= 1, T̂ 0 := ∅, ε.

2: while |(UB`−1−LB`−1)/UB`−1× 100%|> ε do

3: Solve the upper bound problem (10) with the partition P`.

4: Identify the optimal solution (x∗`,λ∗`,q∗`, q̄∗`) and optimal objective UB`.

5: Calculate an active scenarios set Â`. . Section 6.2

6: Update the finite scenarios set T̂ `←Â`
⋃
T̂ `−1.

7: Solve lower bound problem (11) with T̂ ` and identify the new lower bound LB`.

8: Update the partitions P`+1←V(P`, Â`), and l := l+ 1. . Section 6.3

9: end while

10: return optimal objective value z∗ and optimal solution (x∗,λ∗,q∗, q̄∗).

In order to detect the active scenarios at `-th iteration, let (x∗,λ∗,q∗, q̄∗) be the optimal solutions

of problem (10) at the `-th iteration. For constraint (10b), one can identify an active scenario t̂ as

t̂1k ∈ arg min
t∈Tk

−λ∗kε− 1

M

∑
i∈[M ]

(q̄∗ik + q∗ikt)

 . (12)

Similarly, for constraint (10c), we can use a minimizer as

t̂2k ∈ arg min
t∈Tk

{
q̄∗ik + q∗ikt− gn′(x∗,ξ, t) +λ∗k‖ξ− ξ̂i‖, ∀ξ ∈Ξ, i∈ [M ], n′ ∈ [N + 1]

}
. (13)

Finally, we let Â =
⋃

k∈[K]

{
t̂1k
⋃
t̂2k
}

. Note that an alternative method for detecting the active

scenarios is presented in Hadjiyiannis et al. (2011).

6.3. Updating the Partition

In the following, we describe how to update the partition P`+1 by exploiting a new set of active

scenarios Â` while satisfying the nested condition in Proposition 7. More specifically, given a

partition P`, the new partition is constructed by using a Voronoi diagram partition:

V
(
P`, Â`

)
:=

⋃
T ∈P`

⋃
t̂∈Â`

(
T ∩

{
t | |t̂− t| ≤ |t̂′− t|, ∀t̂′ ∈ Â`

})
.

The idea behind this operation is to create intervals that are “centered” at each active scenario.

In the following example, we illustrate how this operation works.

Example 1. Given a partition P := {[0,3], [3,8], [8,10]} and an active scenario set Â := {1,6,7},

we obtain V
(
P, Â

)
= {[0,3], [3,3.5], [3.5,6.5], [6.5,8], [8,10]} when performing the above operation.

Note that, for any members T ∈ V
(
P, Â

)
, there always exists a member T ′ in P for which T ⊆ T ′.
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7. Analysis of a Decomposable DRSSDCP Formulation

One might consider a number of different variations of the data-driven DRSSDCP presented in

Section 5. The choice of the formulation might depend on the type of information that is at hand

regarding the distributions of both the controlled and reference performance variables. For example,

in some situations, the reference performance might be formulated based on a study of the past,

while the controlled performance considers events that are to happen in the future. Alternatively,

the information about the two variables could come from two separate datasets with no information

about how the perturbations of one might affect the other, e.g. when comparing the distribution

of lost sales for a new product compared to the distribution of an old one. This section focuses on

a second variation of the DRSSDCP that can be used to handle these situations and describe how

the methods presented in sections 5 and 6 might be adapted to it.

We start by considering that both the controlled performance function and reference performance

function are now parameterized by f(x,ξ) and f0(ζ) respectively, with ξ ∈ Ξξ ⊂Rm and ζ ∈ Ξζ ⊂

Rm denoting two possibly different sources of uncertainty. Let the new measurable space be the

product space (Ξξ ×Ξζ ,B(Ξξ ×Ξζ)).

In this new environment, Assumption 1 can be reformulated as follows.

Assumption 4. The feasible set X is a non-empty convex set, and the sets Ξξ and Ξζ are non-

empty compact convex.

We are now interested in the case that the marginal distributions Pξ and Pζ are only known

to belong to their respective Wasserstein ambiguity sets. Hence, we will consider the following

Decomposable-DRSSDCP:

[D-DRSSDCP] minimize
x∈X

c>x (14a)

subject to f(x,ξ)�P
(2) f0(ζ) ∀P∈PrW2 , (14b)

where Pr
W2 :=

⋃
Pξ∈Prξ (P̂ξ,εξ),Pζ∈Prζ (P̂ζ ,εζ)

M(Pξ,Pζ), andM(Pξ,Pζ) is the set of all distributions of ξ and

ζ with marginal distributions Pξ and Pζ , and where

Prξ (P̂ξ, εξ) :=
{
Pξ ∈M(Ξξ)

∣∣∣ drW(Pξ, P̂ξ)≤ εξ
}
,

and

Prζ (P̂ζ , εζ) :=
{
Pζ ∈M(Ξζ)

∣∣∣ drW(Pζ , P̂ζ)≤ εζ
}

with P̂ξ and P̂ζ as the respective empirical distributions with {ξ̂i}
Mξ

i=1 and {ζ̂i′}
Mζ

i′=1.

We remark that this variation recovers the DRSSDCP (4) only when {ξ̂i}
Mξ

i=1 = {ζ̂i′}
Mζ

i′=1, εξ = εζ ,

and one additionally imposes that the marginals Pξ = Pζ . The latter implies that D-DRSSDCP
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should not be considered a generalization of DRSSDCP but could serve as its conservative

approximation. Furthermore, the ambiguity set could have alternatively been defined as Pr
W2 :=⋃

Pξ∈Prξ (P̂ξ,εξ),Pζ∈Prζ (P̂ζ ,εζ)

Pξ ×Pζ , given that from Lemma 1, we have that, for all Q∈M(Pξ,Pζ),

f(x,ξ)�Q
(2) f0(ζ) ≡ ∀η ∈R, EQ[(η− f(x,ξ))+]≤EQ[(η− f0(ζ))+]

≡ ∀η ∈R, EPξ [(η− f(x,ξ))+]≤EPζ [(η− f0(ζ))+]

≡ ∀η ∈R, EPξ×Pζ [(η− f(x,ξ))+]≤EPξ×Pζ [(η− f0(ζ))+]

≡ f(x,ξ)�Pξ×Pζ
(2) f0(ζ)

In other words, constraint (14b) is insensitive to the type of correlation that are imposed between

ξ and ζ in Pr
W2 .

We briefly discuss some special cases of D-DRSSDCP. First, it is straightforward to see that

once again, D-DRSSDCP reduces to SDCP2 and DFSDCP (with constraint (5b) replaced with

f(x,ξ)≥ f0(ζ), ∀(ξ,ζ) ∈ Ξξ ×Ξζ) when εξ = εζ = 0 and εξ = εζ =∞ respectively. The cases where

either εξ > εζ = 0 and εζ > εξ = 0 allows one to model situations where the distribution of either the

controlled performance or the reference performance is exactly known. The former is particularly

useful in situations where we wish to describe the reference performance in terms of a distribution

function rather than as a random variable. This is in particular the form that appears in Sehgal

and Mehra (2020) as summarized in Appendix B.3.

Finally, the case where εξ > 0 and εζ > 0 captures ambiguity about the distributions of both the

controlled and reference variables with information possibly originating from two separate datasets.

In the following proposition, we show that D-DRSSDCP (14) can be reformulated as a multistage

robust optimization problem under mild conditions, which takes the form of min
x

-sup
t

- min
λ1,λ2,q,r

-sup
ξ,ζ

.

Proposition 8. Under assumptions 2 and 4, D-DRSSDCP (14) coincides with the optimal value

of the following multistage robust optimization problem:

minimize
x∈X

c>x (15a)

subject to H(x, t)≤ 0 ∀t∈ T̄ ′, (15b)

where T̄ ′ := [t′min, t
′
max], with t′min := inf

ζ∈Ξζ
f0(ζ) and t′max := sup

ζ∈Ξζ

f0(ζ), and where

H(x, t) := inf
λ1,λ2,q,r

λ1εξ +λ2εζ +
1

Mξ

∑
i∈[Mξ]

qi +
1

Mζ

∑
i′∈[Mζ ]

ri′ (16a)

subject to sup
ξ∈Ξξ

(t− f(x,ξ))
+−λ1‖ξ− ξ̂i‖ ≤ qi ∀i∈ [Mξ] (16b)

sup
ζ∈Ξζ

−(t− f0(ζ))+−λ2‖ζ− ζ̂i′‖ ≤ ri′ ∀i′ ∈ [Mζ ] (16c)

λ1, λ2 ≥ 0;q ∈RMξ ;r ∈RMζ . (16d)
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Following similar procedures to those discussed in Section 5, we can also obtain a conserva-

tive approximation of D-DRSSDCP by using finite adaptability, which provides an upper bound,

and derive a lower bound by using a finite scenario set. For completeness, we provide the finite-

dimensional reformulation of the conservative approximation for problem (15) in Appendix B.4.

Moreover, by following similar steps, we can adapt Algorithm 1 to iteratively tighten the upper

and lower bounds. For the sake of conciseness, we omit these details.

In the following, we will focus on the case where the reference performance function f0(ζ) has

a known distribution, i.e., εζ = 0. In this case, P1
ζ (P̂ζ , εζ) reduces to a singleton {P̂ζ}. Now we

conclude this section with Proposition 9, which shows that D-DRSSDCP reduces to solving a

finite-dimensional convex optimization problem.

Proposition 9. Given that εξ > εζ = 0, and that P1
W2 is used, under assumptions 2 and 4, D-

DRSSDCP (14) reduces to the following finite-dimensional convex optimization problem,

minimize
x∈X ,λ,s,v

c>x (17a)

subject to λjεξ +
1

Mξ

∑
i∈[Mξ]

sij ≤ γj ∀j ∈ [Mζ ] (17b)

δ(vijn|Ξξ)−w>ijnξ̂i− bn(x) + cntj ≤ sij ∀i∈ [Mξ], j ∈ [Mζ ], n∈ [N + 1] (17c)

‖wijn‖∗ ≤ λj ∀i∈ [Mξ], j ∈ [Mζ ], n∈ [N + 1] (17d)

wijn = vijn +an(x) ∀i∈ [Mξ], j ∈ [Mζ ], n∈ [N + 1] (17e)

λj ≥ 0,vijn ∈Rm, sij ∈R ∀i∈ [Mξ], j ∈ [Mζ ], n∈ [N + 1], (17f)

where aN+1 = bN+1 = cN+1 = 0 and cn = 1 for all n ∈ [N ], γj = 1
Mζ

∑
i∈[Mζ ]

(
tj − f0(ζ̂i)

)+

and tj =

f0(ζ̂j) for all j ∈ [Mζ ]. Moreover, it can be reformulated as a linear programming problem if X and

Ξξ are polyhedral and Assumption 3 is satisfied.

8. Numerical Study

In this section, we consider two applications to illustrate our DRSSDCP modeling paradigm and

proposed solution scheme. For the sake of brevity, we focus on the DRSSDCP discussed in Section

5. We will investigate the computational efficiency of our iterative partitioning algorithm and the

effect of changing the radius of the Wasserstein ball on out-of-sample performance in the contexts

involving both synthetic and real-world data. Section 8.1 considers a simple resource allocation

problem where the marginal revenue of projects is modeled using independent continuous distri-

butions. Here, we expect that data-driven robustification (using DRSSDCP with the Wasserstein

ambiguity set) will allow us to identify better performing solutions, compared to those produced

using a SAA scheme, when evaluated on the true underlying distribution. Section 8.2 considers a
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more realistic portfolio optimization problem where historical observations are used to approximate

the future distribution of stock returns. We are interested in verifying whether a DRSSDCP can

effectively mitigate the fact that real stock returns processes do not satisfy the i.i.d. assumption

made by empirical risk models.

On the technical side, in both applications, we will use the `1-norm as the reference distance

metric, namely, d(ξ1,ξ2) := ‖ξ1−ξ2‖1. Also, all our experiments are implemented in C programming

language and use IBM CPLEX solver, version 12.10.0 callable libraries with the default settings. All

experiments are conducted on the cedar cluster of Compute Canada. When solving a DRSSDCP,

the algorithm proposed in Section 6 is run until either an optimality gap of 1% or a maximum of

2 hours time limit is reached. If the instances cannot be solved optimally within the time limit, we

choose the most recent solutions of the conservative approximation model as the optimal solution.

Remark 3. DRSSD constraints are known to suffer from numerical issues because they do not

satisfy Slater’s constraint qualification (e.g., Hu et al. 2011, Guo et al. 2017, Hu et al. 2012, Chen

and Jiang 2018), for this reason, in the following two numerical studies, we will consider the slightly

relaxed φ-DRSSDCP where constraint (6b) takes the form:

EP
[
(t− ξ>x)+

]
≤EP

[
(t− ξ>x0)+

]
+φ, ∀t∈R, ∀P∈P1

W(P̂, ε)

with φ= 0.01.

8.1. A Simple Resource Allocation Problem

In this section, we conduct our numerical experiments on a simple resource allocation problem

with DRSSD constraints. More specifically, we are interested in determining the optimal allocation

x := [x1, x2, x3]
>

of the total resources to invest in a set of 3 projects, with x1 + x2 + x3 = 1 and

xj ≥ 0,∀j ∈ [3]. The marginal revenue of each project is denoted by ξ := [ξ1, ξ2, ξ3]
>

, and considered

uncertain. The information available about ξ consists in a set of i.i.d. observations
{
ξ̂1, ξ̂2, · · · , ξ̂M

}
.

This motivates the use of a Wasserstein set P1
W(P̂, ε), with P̂ as the empirical distribution and a

box support set Ξ := [0, 10]3 assumed to contain the support of the true underlying distribution

P̄.2 A natural DRSSDCP that can be used in this context lets c := EP̂[ξ], f(x,ξ) := ξ>x, and

f0(ξ) := ξ>x0, where x0 = [1,0,0]
>

is a reference strategy that invests all resources in project #1. In

words, the objective is to maximize the expected revenue based on the empirical distribution while

enforcing that the revenue of the selected projects robustly stochastically dominates the revenue

of a reference allocation strategy. Note that we omit to include a worst-case expected revenue

objective function in order to focus our attention on statistical robustness of the SSD constraint.

2 In our experiments, this box set ended up covering 99.8% of the mass of the unknown measure.
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In the following, we first describe the details of the synthetic data instances in Section 8.1.1,

then show the computational performance of our proposed algorithm in terms of different ε and

M in Section 8.1.2. We discuss some numerical results regarding the average optimal allocation for

different in-sample sizes M as a function of ε in Section 8.1.3. Finally, we present out-of-sample

performance of DRSSCP solutions with respect to different values of ε and M in Section 8.1.4.

8.1.1. Synthetic Data Generation Scheme Our numerical experiments employ synthetic

data in order to create an environment in which the observations that are used by our data-

driven model are drawn from the same distribution as those used to measure the out-of-sample

performance. Specifically, we consider that the underlying distribution P̄ is designed such that the

three projects are independent from each other, while their respective marginal distribution is such

that they satisfy ξ3 �P̄
(2) ξ1 �P̄

(2) ξ2 and EP̄[ξ3]> EP̄[ξ2] = EP̄[ξ1]. This means that theoretically it is

optimal to invest all the resources in project #3 since it stochastically dominates ξ1 and achieves

the highest expected revenue. On the other hand, it is theoretically infeasible to invest all resources

in project #2. To be precise about P̄, we first define the distribution of the marginal revenue of

project #1, i.e. ξ1, using an auxiliary random variable z0 ∼ logN(0.08,0.03), i.e. with a lognormal

distribution such that E[z0] = 0.08 and (E[(z0− 0.08)2])1/2 = 0.03, to get ξ1 ∼ logN(z0,5). We then

have that ξ2 is independently distributed as ξ2 ∼ logN(ξ1
′,5), where ξ1

′ is i.i.d. to ξ1. Finally, we

have that ξ3 = 1.125z0
′ where z0

′ is i.i.d. to z0. 3

Each experiment will involve M ∈ {10,100,1000} empirical samples that are identically and

independently generated from P̄. For each size M , we repeat 100 experiments in which the out-of-

sample performance is measured using a second set of 10,000 independent samples.

8.1.2. Computational Performance Table 1 reports on the numerical efficiency of our iter-

ative partition based solution algorithm. One can first observe that, while most instances (i.e.,

99.4%) are solved in less than 2 hours, the solution time increases as M increases. Perhaps more

interestingly, it appears that some computational difficulties appear for midrange values of ε, which

causes more rounds of partitions. The reported numerical efficiency for large ε might be due to the

fact that the DRSSDCP reduces to the DFSDCP which is insensitive to the size of T and M .

3 Indeed, we have that, for any given t≥ 0, P(ξ3 ≥ t) = P(1.125z0
′ ≥ t) = P(z0

′ ≥ t/1.125)≥ P(z0
′ ≥ t). Based on the

definition of FSD, we have ξ3 �(1) z0
′. Given that z0

′ is i.i.d. to z0, so ξ3 �(1) z0. Since FSD implies SSD, we further
have that ξ3 �(2) z0. For any given t, we also have E[(ξ1− t)+] = E[E[(ξ1− t)+|z0]]≥E[(E[ξ1|z0]− t)+] = E[(z0− t)+],
where the inequality comes from the Jensen’s inequality. Moreover, the inequality is strict when t= E[z0]. Based on
the definition of SSD, we say z0 �(2) ξ1. Therefore, ξ3 �(2) ξ1. On the other hand, we have E[(ξ2 − t)+] = E[E[(ξ2 −
t)+|ξ1′]]≥ E[(E[ξ2|ξ1′]− t)+] = E[(ξ1

′ − t)+], with a strict inequality when t= E[ξ1], so ξ1
′ �(2) ξ2. Since ξ1

′ is i.i.d.
to ξ1, then ξ1 �(2) ξ2. We thus conclude that ξ3 �(2) ξ1 �(2) ξ2. The relation between the expected revenues is more
straightforward.
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Table 1 The average computational performance with respect to different ε and in-sample sizes

(M ∈ {10,100,1000}), in terms of average CPU time (Time, in seconds), proportion of unsolved instances (prop, in

%) within the 2 hour limit, and average number of iterations (# of Iter).

M 10 100 1000

ε Time prop # of Iter Time prop # of Iter Time prop # of Iter

0.0001 7.7 0.0 2.5 14.6 0.0 2.7 98.8 0.0 3.1

0.0005 7.2 0.0 2.7 15.8 0.0 2.7 108.6 0.0 3.1

0.0022 7.8 0.0 3.2 17.8 0.0 3.0 142.7 0.0 3.4

0.01 152.8 0.0 7.3 148.4 0.0 5.1 624.2 0.0 5.0

0.0464 52.7 0.0 11.1 466.6 0.0 7.1 5393.3 0.12[10.8] 7.8

0.2154 6.8 0.01[1.75] 9.6 15.4 0.0 3.6 44.8 0.0 1.5

1 2.6 0.0 5.5 3.4 0.0 1.1 12.1 0.0 1.0

Average 34.0 - 5.9 97.4 - 3.6 917.8 - 3.6

[ · ] in column of prop reports the average sub-optimality gap (in %) for the unsolved instances within the
time limit.

8.1.3. Analysis of Optimal Allocation Figure 1 visualizes the impact of the size of the

Wasserstein ball ε on the average optimal allocation policies for M ∈ {10,100,1000} over 100 runs.

As we can see from the figure, for all empirical sample sizes, the average optimal allocation gradually

tends to turn into the reference strategy as ε increases. This can be explained by the fact that

the feasible set shrinks as the ambiguity set becomes larger while the reference strategy always

remains feasible since f(x0,ξ) �P
(2) f0(ξ) for all P. More interestingly, we can also observe that

when M is small (see Figure 1(a)) the SDCP2 model (captured by the case where ε→ 0) ends up

recommending on average a large investment of 68% in project #2, which by construction is strictly

stochastically dominated by the reference project #1. This is clear evidence of the optimizer’s curse

which is also referred as the problem of overfitting the small set of observations. Luckily, this issue

appears to be partially resolved by using the DRSSDCP after properly sizing the ambiguity set.

Namely for smaller M = 10, a larger ε can be used to recover a portfolio that is more similar to the

reference one, while for larger M = 1000 a smaller ε will mostly suggest investing in the optimal

project #3. This will further be confirmed in the following out-of-sample analysis. Alternatively,

one can also confirm in Figure 1(c) that with a small radius, the DRSSDCP recovers the SAA

solution, which is an allocation that is nearly optimal (i.e., fully invested in project #3) when the

sample size is large enough.

8.1.4. Out-of-Sample Performance of DRSSDCP solutions We now turn to evaluating

the out-of-sample performance of the different policies generated by the DRSSDCP as we change

the size of the Wasserstein ball ε. In particular, one might start by considering the out-of-sample

expected revenue which statistics (over 100 experiments) are presented in Figure 2. As we can see
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(a) M = 10
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(b) M = 100
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(c) M = 1000

Figure 1 The average optimal allocation as a function of the size of Wasserstein ball ε for (a) M = 10, (b) M = 100,

(c) M = 1000 training samples over 100 runs. The blue, yellow and red regions represent the average

optimal allocation of resources for the project #1, project #2 and project #3, respectively.

from the figure, for M ∈ {10,100,1000} the average out-of-sample expected revenue decreases as ε

increases yet always outperforms the average expected revenue (dashed line) that is achieved by the

reference strategy. This improved performance is gradually lost as we increase ε, being sacrificed

to improve SSD feasibility. The performance also improves as M increases given that the empirical

distribution model becomes a better representation of the underlying theoretical model.
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Figure 2 Statistics of the out-of-sample expected revenue as a function of ε (each with 10,000 testing samples)

for M ∈ {10,100,1000}. Solid lines indicate the average while the confidence bars identify the 10-th

and 90-th percentiles based on the 100 runs. Finally, the dashed line and pink confidence bar show the

statistics of the expected revenue achieved by the reference strategy.

In order to explore out-of-sample SSD feasibility, we introduce the notion of out-of-sample dis-

tance from SSD feasibility, which measures how far the proposed DRSSD policy is from being SSD

feasible with respect to the out-of-sample distribution. Appendix B.5 provides further details about
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this measure which can be summarized as the type-1 Wasserstein distance of the out-of-sample

distribution to its projection on the set of out-of-sample feasible distributions. Alternatively, we

will also be interested in estimating the out-of-sample feasibility frequency, i.e. the probability of

obtaining a DRSSDCP solution that satisfies the SSD constraint out-of-sample. Figure 3 presents

statistics of both of these measures for M ∈ {10,100,1000}, as ε varies. We can observe from this

figure that the out-of-sample feasibility is improved as ε increases, which is inline with our previous

observation that the optimal allocation converges to the reference strategy as ε varies from 0 to 1.
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(b)
Figure 3 Statistics of the out-of-sample feasibility. (a) presents the mean (solid), 10-th, and 90-th percentiles

(bars) of the out-of-sample distance from SSD feasibility. (b) presents the estimated out-of-sample

feasibility frequency (with 90% confidence intervals) as a function of ε for M ∈ {10,100,1000} empirical

samples. The dashed lines identify an acceptable level of performance that is based on the mean out-

of-sample distance from SSD feasibility (in (a)) and the out-of-sample feasibility estimate (in (b)) of a

re-sampled version of the reference strategy’s revenue distribution.

Interestingly, even when M is large, one sees that one still needs a large amount of robustness

in order to achieve a nearly perfect level of feasibility (say a feasibility frequency above 95%).

Unfortunately, the experiments reveal that near perfect out-of-sample feasibility is only achieved by

using a strategy that is nearly identical to the reference one. This is in contradiction with the fact

that by construction project #3 is theoretically SSD feasible and achieves higher expected return.

This leads us to conclude that near perfect out-of-sample feasibility is too strict of a criterion

to aspire to. Alternatively, we consider a hypothetical project (call it project #1’) which revenue

is identically and independently distributed to the revenue of the reference project #1 and will

use its out-of-sample feasibility performance as a threshold to identify strategies that have an

“acceptable” level of out-of-sample feasibility. In simple words, a strategy will be considered out-

of-sample acceptable if its out-of-sample performance is at least as feasible as a strategy that has
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the same revenue distribution as the reference strategy while being independent from it. This so-

called “acceptable threshold” is presented in Figure 3 as the dashed lines. Note that based on the

asymptotic convergence of empirical distributions, this acceptable level of feasibility is expected to

converge to imposing nearly perfect SSD feasibility as M goes to infinity.

Studying more closely which strategy is out-of-sample acceptable, we notice that when the in-

sample size is small (i.e., M = 10), the average out-of-sample feasibility frequency fails to surpass

the acceptable threshold if ε is also small (i.e., ε ≤ 0.04). This can however be fixed either by

increasing the in-sample size (i.e. at M = 100 or M = 1000) or by increasing the radius of the

Wasserstein ball (i.e. for ε > 0.04). This confirms that DRSSDCP is an effective modeling paradigm

to employ in a data-driven context where the number of observations is fixed.

Finally, Figure 4 presents two sets of bi-objective performance curves based on the strategies

produced by the DRSSDCP as ε varies. We can clearly see that for any fixed in-sample size, it is

possible to calibrate ε to identify strategies that outperform (by up to 12.5%) the reference strategy

in terms of out-of-sample expected revenue while achieving an acceptable level of SSD feasibility.
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Figure 4 Bi-objective out-of-sample performance curves for strategies produced by the DRSSDCP. (a) presents

the average out-of-sample expected revenue vs. the average out-of-sample distance from SSD feasibility.

(b) presents resents the average out-of-sample expected revenue vs. the estimated out-of-sample feasi-

bility frequency. In both figures, the star and the circle indicate respectively the performance achieved

by the reference strategy and a re-sampled version of the reference strategy’s revenue distribution.

8.2. A Data-driven Portfolio Optimization using Stock Market Data

We now turn to experimenting with the DRSSDCP in a real data-driven environment. Namely, we

consider a portfolio optimization problem with an SSD constraint. Specifically, we are interested in

choosing the proportions x∈Rm of our total wealth to invest in each of m assets, while assuming
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for simplicity that short-selling is forbidden. This leads to a similar definition of X as in Section 8.1,

i.e.,
∑m

j=1 xj = 1 and x≥ 0. The vector of weekly random return of each asset is denoted by ξ ∈Rm.

We will consider that the information available about the distribution of ξ consists in a set of

historical observations of the M most recent weekly returns,
{
ξ̂1, ξ̂2, · · · , ξ̂M

}
. This motivates the

use of a Wasserstein ambiguity set P1
W(P̂, ε), with P̂ as the empirical distribution and a box support

set Ξ := {ξ ∈Rm | ξ− ≤ ξ≤ ξ+} assumed to contain the support of a “true” underlying distribution

P̄.4 Since the portfolio optimization problem is also a class of resource allocation problem, similarly,

let c := EP̂[ξ], f(x,ξ) := ξ>x, and f0(ξ) := ξ>x0, where x0 := [1/m, 1/m, . . . , 1/m]> is a reference

portfolio that invests uniformly in all assets. The objective is to maximize the empirical expected

return while enforcing that the return of the selected portfolio robustly stochastically dominates

the returns of the reference portfolio.

The main purpose of this case study is to further explore the robustness of DRSSDCP solutions

in a real data-driven environment, i.e. using stock market data, where both in-sample and out-of-

sample realizations might not satisfy the i.i.d. assumption. Specifically, in the following we first

describe our stock market data in Section 8.2.1. In Section 8.2.2, we show how the computational

performance of our algorithm is affected by the number of stocks and samples. We then present a

cross-validation scheme for selecting ε and M in Section 8.2.3. Finally, we present the out-of-sample

performance of our DRSSDCP solutions in Section 8.2.4.

8.2.1. Stock Market Data Description Simillarly to the work of Delage et al. (2021) and

Delage and Li (2018), our case study uses the stock market data of the weekly returns of the stock

value of companies that compose the S&P 500 index during the period spanning from January

1994 to December 2019. We partition the data into two parts, where the first part (called in-sample

data) is used for model selection (i.e., M and ε in problem (6)), while the second part (called out-

of-sample data) is used for comparing the out-of-sample performance of our calibrated DRSSDCP

model to an SAA approach. The in-sample data spans the period from January 1994 to December

2013 and include the 335 companies of the S&P 500 index that were continuously part of the index

during this period. The out-of-sample data covers the next period from January 2014 to December

2019 and similarly the 257 companies that were present through that whole period. We note that

the in-sample data is also used in our study of the computational performance of Algorithm 1.

8.2.2. Computational Performance In this section, we further show the computational

performance for the more realistic-sized problems. We consider a set of stocks of size m ∈

{10,50,100} and a set of observations of size M ∈ {50,100} and randomly generate 20 instances for

each pair of m-M using the in-sample data. We also focus on ε∈ {0.01, 0.0464} as these midrange

4 The values of ξ−j and ξ+
j were chosen in a way that the box covers all realizations observed in the last 4 years.
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Table 2 The average computational performance with respect to different ε, number of stocks

(m∈ {10,50,100}) and in-sample sizes (M ∈ {50,100}), in terms of average CPU time (Time, in seconds),

proportion of unsolved instances (prop, in %), and average number of iterations (# of Iter) over 20 runs.

m 10 50 100

M ε Time prop # of Iter Time prop # of Iter Time prop # of Iter

50
0.01 242.3 0 6.0 1997.1 0.05[1.90] 5.0 3979.3 0.25[2.25] 5.0

0.0464 103.2 0 5.0 3418.1 0.10[1.47] 6.0 5966.3 0.25[3.83] 6.0

100
0.01 1528.0 0 6.0 6259.1 0.05[3.01] 6.0 6269.0 0.45[4.59] 5.0

0.0464 506.7 0 5.0 5966.3 0.25[3.83] 6.0 5073.3 0.8[2.21] 6.0

Average 595.1 0 5.5 4410.2 0.11[2.55] 5.8 5322.0 0.44[3.22] 5.3

[ · ] in column of prop reports the average sub-optimality gap (in %) for the unsolved instances within 2 hours limit.

values appeared to be the hardest to handle in Section 8.1.2 (see Table 1). All the measurements

are averages based on 20 runs.

Similarly to Table 1, Table 2 reports the numerical efficiency of our iterative partition based

solution algorithm for a realistic-sized number of stocks and empirical samples. As we can see

from the table, our algorithm can solve nearly 82% of the “hardest” problem instances optimally

within 2 hours limit. The average solution time is increasing as the number of stocks m and size of

observation set M increase. However, we remark that the average sub-optimality gap for instances

that were not solved optimally within 2 hours limit, is relatively small, i.e., close to 2.55% and

3.22% on average for 50 and 100 stocks respectively. We suspect that most of these harder instances

should be solved to a 1% gap in less than 5 hours.

8.2.3. A Cross-validation Scheme for Selecting ε and M This section employs the in-

sample data set to calibrate the ε and M parameters of the DRSSDCP in order to account for

the non-stationarities that are present in our stock market data when composing a portfolio of

m= 5 assets drawn randomly from this market. Our approach is inspired by sliding window cross-

validation methods for time-series, which would suggest to create blocks of training and validation

data by progressively passing a window through the whole in-sample period for each set of m= 5

assets. To reduce computing time, we instead create such blocks by first randomly selecting m= 5

companies from the pool of 335 and randomly pick a time point in the 19-years period. The sampled

training block then consists of the 208 most recent weekly returns at that date for the 5 companies,

while the validation block consists of the next M ′ = 26 weeks of returns. Model selection will

therefore be based on the performance, measured with respect to the empirical distribution of the

validation block, of the solution of a DRSSDCP that employs the most recent M weekly return

observations to define P̂. Our experiment involves 1000 such runs and our results report different

statistics of the expected return, distance from SSD, and feasibility frequency over these runs.
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We consider M as ranging among {12,52,104,208} to represent quarterly, yearly, two-year and

four-year periods of historical observations, while ε will span the range from 0 to 1.

The performance regarding expected return, distance from SSD, and feasibility frequency of

the different model configurations are presented respectively in figures 5 and 6. Finally, Figure 7

presents the bi-objective curves which allow us to identify for each M the optimal level of robustness

that needs to be applied in order to maximize average expected returns in the validation runs while

ensuring that the portfolios produced by DRSSDCP have an acceptable level of feasibility.

As in Section 8.1.4, it is clear that once again increasing robustness (ε) leads to better feasibility

on the validation data at the price of a reduction in expected return. One should remark however

that the effect of historical sample size is different in this real-world setting. Indeed, it is not the

case anymore that a larger set of historical observations necessarily leads to an improvement in out-

of-sample performance. For instance, when ε is small, both the expected return and SSD feasibility

is maximized by using M = 52. We believe this is due to the fact that stock return processes are

non-stationary and therefore that optimization models that are based on empirical distributions

suffer from higher generalization errors as M becomes too large (i.e., M > 52).

Regarding the notion of acceptable feasibility, we note that since, in this real-world setting, we

do not have access to the “true” underlying distribution, a different procedure therefore needs to be

followed in order to produce an acceptable SSD feasibility thresholds. In the spirit of bootstrapping

methods, a natural approach consists in comparing the feasibility measurement to the performance

achieved by an investment that has its “true” underlying distribution exactly identical (and inde-

pendent) to the realized empirical distribution of the reference portfolio in the validation block.

To be more specific, in the case of Figure 6(a), the acceptable level of feasibility (i.e. the dashed

line) consists in the average distance to SSD feasibility of the empirical distribution obtained by

re-sampling (with replacement) M ′ return scenarios from the returns produced with the reference

portfolio in the validation block.

Given this new definition of acceptable feasibility, we conclude based on studying figures 5, 6 and

7 that the optimal choice of hyper-parameters in this case study consists in M ∈ {52, 104, 208} and

ε= 0.01. Indeed, under these settings, the portfolio becomes acceptable with respect to the feasi-

bility on the validation data while having a significantly better performance in terms of expected

return compared to all other acceptable ones. In particular, the expected returns is nearly 0.029 p.p.

higher than with the reference portfolio, and at least 0.02 p.p. higher than with the best acceptable

portfolio achieved when M = 12. We suspect this is respectively due to the fact that the uniform

portfolio does not take into account any historical information about potential future expected

returns, and to the fact that when M = 12, the historical information is too noisy and causes large

generalization errors. If asked to choose among M ∈ {52, 104, 208}, we would recommend M = 52
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given that, as mentioned above, it appears that for low level of robustification (i.e., ε < 0.01), the

average performance under M = 52 dominates what is achieved under M = 104 and M = 208.
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Figure 5 Statistics of the expected return (in p.p.) on validation data as a function of ε over a time period of 26

weeks for M ∈ {12,52,104,208}. Solid lines indicate the average while the confidence bars identify the

10-th and 90-th percentiles based on the 1000 runs. Finally, the dashed line and pink confidence bar

show the statistics of the expected return achieved by the reference portfolio.
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Figure 6 Statistics of the feasibility on validation data. (a) presents the mean (solid), 10-th, and 90-th percentiles

(bars) of the out-of-sample distance from SSD feasibility. (b) presents the estimated feasibility frequency

(with 90% confidence intervals) on validation data as a function of ε for M ∈ {12,52,104,208} empirical

weeks. The dashed lines identify an acceptable level of performance that is based on a re-sampled version

of the reference return’s distribution.
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Figure 7 Bi-objective performance curves for strategies produced by the DRSSDCP on validation data. (a)

presents the average expected return vs. the average distance from SSD feasibility. (b) presents the

average expected return vs. the estimated feasibility frequency. In both figures, the star and the circle

indicate respectively the performance achieved by the reference portfolio and a re-sampled version of

the reference return’s distribution.

8.2.4. Out-of-Sample Performance of DRSSDCP Solutions In this section, we evaluate

the out-of-sample performance (i.e. using the out-of-sample data) of the DRSSDCP model that was

calibrated in Section 8.2.3, i.e. with M = 52 and ε= 0.01. To be consistent with the cross-validation

procedure, these out-of-sample experiments still involve m= 5 and will consider 12 000 runs that

each involve blocks of train (M = 52 weeks) and test (M ′ = 26 weeks) data obtained again by

picking a random subset of m = 5 companies and a random week in the 6 years out-of-sample

period. The performance of DRSSDCP is compared to the performance of SAA, which uses the

M = 52 most recent weekly return observations, and of the reference portfolio.

Table 3 compares the statistics of the out-of-sample performance for the three types of portfolios,

including the expected return, standard deviation, 90% of CVaR, SSD distance and SSD feasibility.

From Table 3, we observe that our DRSSDCP policy achieves the highest average expected return

among all three type of portfolios. In terms of out-of-sample SSD feasibility, we see that the

DRSSDCP portfolios has a significantly smaller average SSD distance than SAA and actually falls

below the estimated acceptable threshold. Similar observations can be made in terms of feasibility

frequency, namely the DRSSDCP portfolios were feasible with respect to the SSD constraint in

95.7% of the 12 000 runs. This out-of-sample feasibility performance again slightly exceeds the

estimated acceptable threshold (94.2%). These results confirm that our calibrated DRSSDCP model

performs very well out-of-sample when compared with an SAA approach and the reference portfolio.

In terms of statistical significance of our findings, we conducted one-side t-tests to verify if we

could safely reject the hypothesis that each mean of the three statistics of interest (expected return,
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Table 3 The average performance for the SAA, DRSSDCP (ε= 0.01) and reference policies in terms of

expected return, standard deviation, 90% of CVaR, and SSD distance and feasibility frequency, in which the

portfolio is rebalanced every 26 weeks.

Descriptive statistics SAA DRSSDCP Reference Acceptable threshold

Average expected return (in p.p.) 0.183 0.190 0.184 -

Average standard deviation 0.032 0.029 0.022 -

Average CVaR(0.90) 0.054 0.048 0.037 -

Average SSD distance (×10−3) 0.486 0.088 0 0.225

SSD feasibility frequency 0.868 0.957 1 0.942

distance to feasibility, and actual feasibility) is worst for the DRSSDCP portfolios than for the

portfolios obtained from SAA or the reference portfolio. For instance, the hypotheses comparing

DRSSDCP to SAA with respect to the mean of expected returns can be described as follows:

H0 : the mean of expected returns for DRSSDCP portfolios is smaller than for SAA portfolios.

H1 : the mean of expected returns for DRSSDCP portfolios is larger than for SAA portfolios.

Table 4 reports the p-values for all six hypothesis tests. If we choose a significance level of 5%, then

we see that all three hypothesis that compares to SAA can safely be rejected. We can also see that

we can safely reject the hypothesis that the mean of expected returns for DRSSDCP portfolios is

smaller that for the reference portfolio. On the other hand, it comes with no surprise that we can

only accept the fact that the mean SSD distance and feasibility frequency are respectively larger

and smaller for DRSSDCP than for the reference portfolio.

Table 4 The p-values of the one-side t-tests describing the chance of falsely rejecting the hypothesis that

DRSSDCP has a worse performance

Different policies SAA Reference
Mean expected return 10−4 0.05
Mean SSD distance 0 1
SSD feasibility probability 0 1

We conclude this section with one last set of results comparing the average CVaR profiles of the

three approaches computed on the in-sample (on validation data) and out-of-sample (on test data)

data sets. This is presented in Figure 8. One can observe that the average CVaR profile for the

DRSSDCP portfolios dominates the profile of the SAA portfolios. When comparing the DRSSDCP

profile to the profile of the reference portfolio, we notice that the latter performs better for strictly

positive risk aversion levels (α). This appears to be the price that DRSSDCP pays in order to

improve by 0.006 percentage point the average expected return (see Table 3).
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Figure 8 The average in-sample CVaR profile of the calibrated models (in (a)) and out-of-sample CVaR profile

with 26 weekly returns (in (b)) as a function of the risk level α for the SAA, DRSSDCP (ε= 0.01) and

reference policies with the test data.

9. Concluding Remarks

In this paper, we present the first comprehensive study of a data-driven formulation of the DRSS-

DCP that hinges on using the Wasserstein ambiguity set proposed in Mohajerin Esfahani and

Kuhn (2018). Our study includes summarizing two valuable statistical properties (namely finite

sample guarantees and asymptotic consistency) of its solution in a data-driven context, identifying

two tractable approximations and an exact solution algorithm, and performing an extensive set of

numerical experiments with a special focus on the out-of-sample feasibility of the SSD constraint.

Methodologically speaking, we believe that our proposed results are flexible enough to straight-

forwardly be adapted to other versions of the DRSSDCP. While we already summarized how this

can be done for the decomposable-DRSSDCP formulation, which is convenient when the infor-

mation about the reference variable corresponds to a known distribution function, this could also

straightforwardly be done for data-driven DRSSDCP that exploit a type-infinity (instead of type-1)

Wasserstein ambiguity set (e.g., Gao and Kleywegt 2017, Bertsimas et al. 2021, Xie 2020). Future

research should investigate how to explore the potential strategies that could be used to speed up

our solution algorithm for large-scale problems (e.g., up to 1000 stocks and 500 empirical sam-

ples) or to address multivariate SSD constrained problems (e.g., Dentcheva and Ruszczyński 2009,

Homem-de Mello and Mehrotra 2009, Hu et al. 2012).

On the empirical side, this paper demonstrated how, in a data-driven portfolio optimization

problem, out-of-sample SSD feasibility can be improved by carefully tuning the level of robustifi-

cation of the DRSSDCP without sacrificing much (if at all) in terms of expected return. We are

now especially curious to see what might be the benefits of using the data-driven DRSSDCP/D-

DRSSDCP in other fields of applications where it is natural to compare the performance of the
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decisions to a reference performance, e.g. EMS location problems such as in Noyan (2010) and

Peng et al. (2020).
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Appendix A: Proofs

A.1. Proof of Theorem 1

Our proof is straightforward since the properties of maximal ambiguity indecisiveness and ambi-

guity monotonicity are respectively responsible for the “if” and “only if” part of the statement:

X � Y ⇔∀P∈P, F P
X � F P

Y .

The second part of our claim is simple to derive based on the representation. Firstly, if X � Y �

Z, then for all P∈P we have that:

F P
X � F P

Y � F P
Z .

If � is transitive on U and distribution based, then this implies that F P
X � F P

Z for all P∈P, which

lets us conclude that X �Z. Secondly, we have that for all P∈P, F P
X = F P

X so that if � is reflexive

on U and distribution based, then F P
X � F P

X for all P∈P, hence X �X. �

A.2. Proof of Proposition 1

Based on its definition, the Wasserstein ambiguity set PrW(P̂, ε) reduces to the singleton {P̂} when

ε= 0. Therefore, it is easy to verify that DRSSDCP (4) can reduce to the SDCP2 with h(x) := c>x

and P := P̂.

Next, we obtain a finite linear programming reformulation by exploiting the fact that P̂ is discrete

and finite. In this context, one can employ Proposition 3.2 in Dentcheva and Ruszczynski (2003)
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to equivalently replace t∈R with t∈ {t1, . . . , tM}, where each ti := f0(ξ̂i). By introducing epigraph

variables, we further obtain that DRSSDCP, i.e., SDCP2, reduces to the following problem:

minimize
x∈X ,s≥0

c>x

subject to
1

M

∑
k∈[M ]

sik ≤
1

M

∑
k∈[M ]

(ti− f0(ξ̂k))
+ ∀i∈ [M ]

f(x, ξ̂k) + sik ≥ ti ∀i∈ [M ], k ∈ [M ].

Finally, under Assumption 2 and X polyhedral, this optimization model further reduces to the

following linear program:

minimize
x∈X ,s≥0

c>x

subject to
1

M

∑
k∈[M ]

sik ≤
1

M

∑
k∈[M ]

(ti− f0(ξ̂k))
+ ∀i∈ [M ]

an(x)>ξ̂k + bn(x) + sik ≥ ti ∀n∈ [N ],∀i∈ [M ], k ∈ [M ]. �

A.3. Proof of Proposition 2

Our first step consists in proving the reduction of DRSSDCP to the DFSDCP (5) under PrW(P̂,∞).

According to the definition of PrW(P̂, ε), if ε=∞, then dW(P, P̂)≤ ε always holds. Thus, the Wasser-

stein ambiguity set PrW(P̂, ε) reduces M(Ξ) := {P | P (ξ ∈Ξ) = 1}.
We firstly prove that constraint (4b) implies constraint (5b). If f(x,ξ)�P

(2) f0(ξ), ∀P∈M(Ξ) is

satisfied, then for any ξ̄ ∈ Ξ, then f(x,ξ)�
δξ̄
(2) f0(ξ), where δξ̄ is the Dirac function that puts all

the weight on ξ̄. Based on the representation of SSD in Lemma 1, for each ξ̄ ∈Ξ, we have:

Eδξ̄ [(t− f(x, ξ̄))+]≤Eδξ̄ [(t− f0(ξ̄))+], ∀t∈R ⇔ (t− f(x, ξ̄))+ ≤ (t− f0(ξ̄))+, ∀t∈R.

We can now show by contradiction that this constraint implies constraint (5b). Specifically, let there

exist a ξ̄ ∈ Ξ such that f(x, ξ̄)< f0(ξ̄) hold, then there must be a t̄ for which f(x, ξ̄)< t̄ < f0(ξ̄),

which also implies that t̄− f0(ξ̄)< 0< t̄− f(x, ξ̄). Thus we have that:(
t̄− f0(ξ̄)

)+
= 0< t̄− f(x, ξ̄) =

(
t̄− f(x, ξ̄)

)+
.

This contradicts the fact that
(
t− f(x, ξ̄)

)+ ≤
(
t− f0(ξ̄)

)+
for all t ∈ R and all ξ ∈ Ξ. Thus, we

must have that f(x, ξ̄)≥ f0(ξ̄), ∀ξ̄ ∈Ξ.

On the other hand, if constraint (5b) holds, then for all P ∈M(Ξ), we have P (f(x,ξ)≤ t) ≤
P (f0(ξ)≤ t) , ∀t ∈ R. In other words, f(x,ξ) stochastically dominates f0(ξ) in the first-order for

all P∈M(Ξ), which is known to imply that the same dominance hold in the second-order. We can

conclude that (5b) implies (4b), so that the two constraints are equivalent and DRSSDCP with

PrW(P̂,∞) reduces to the DFSDCP (5).



44

Next, we derive a linear programming formulation under mild conditions. Under assumptions 1

and 2, constraint (5b) can be further rewritten as

min
n∈[N ]

an(x)>ξ+ bn(x)≥ min
n′∈[N ]

a0
n

>
ξ+ b0

n ∀ξ ∈Ξ,

which can be reformulated as

∀ n∈ [N ], min
ξ∈Ξ

max
θ∈RN+ :

∑N
j=1 θ

n
j =1

an(x)>ξ+ bn(x)−
∑
j∈[N ]

θjn(a0
n

>
ξ+ b0

n)≥ 0.

Applying Sion’s minimax theorem (see Sion et al. (1958)), we obtain an equivalent condition:

∀ n∈ [N ], max
θ∈RN+ :

∑
j∈[N ] θj=1

min
ξ∈Ξ

an(x)>ξ+ bn(x)−
∑
j∈[N ]

θj(a
0
n

>
ξ+ b0

n)≥ 0.

Based on the Fenchel duality (see Ben-Tal et al. (2015)), we can show that the condition can be

rewritten as:

∃θ ∈RN×N+ , ∀ n∈ [N ],
∑
j∈[N ]

θjn = 1 & − δ

∑
j∈[N ]

θjna
0
n−an(x)

∣∣Ξ
−∑

j∈[N ]

θjnb
0
n + bn(x)≥ 0.

Thus, problem (5) is equivalent to the following convex optimization problem:

minimize
x∈X ,θ≥0

c>x

subject to − δ

∑
j∈[N ]

θjna
0
n−an(x)

∣∣Ξ
−∑

j∈[N ]

θjnb
0
n + bn(x)≥ 0 ∀n∈ [N ]

∑
j∈[N ]

θjn = 1 ∀n∈ [N ],

where δ(·) represents the support function and Ξ is the support set. Moreover, it is easy to verify

that it can be reformulated as a linear program if Ξ has a linear programming representation

support function (i.e. is polyhedral), and if X is polyhedral. �

A.4. Proof of Proposition 3

Our proof mainly employs the result of finite sample guarantee in Theorem 3.5 of Mohajerin

Esfahani and Kuhn (2018). Based on Theorem 3.5 in Mohajerin Esfahani and Kuhn (2018), and

suppose that Assumption 1 holds and that each observations in {ξ̂i}Mi=1 are drawn i.i.d. from some

P̄, for a given β ∈ (0,1), we obtain that P1
W(P̂, εM(β) is known to contain the true distribution P̄

with high probability 1−β, where

εM(β) :=


(

log(c1β
−1)

c2M

)1/max(m,2)

if M ≥ log(c1β
−1)

c2(
log(c1β

−1)

c2M

)1/a

otherwise ,
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and where c1, c2, and a> 1 are known positive constants.

Let x̂M be the optimal solution of the DRSSDCP with ambiguity set P1
W(P̂, εM(β)). If P̄ is in

P1
W(P̂, εM(β)), then necessarily x̂M satisfies the SSD constraint over P̄. The probability that x̂M

satisfies the SSD constraint over P̄ is therefore larger than 1−β, given the above statistical property

of P1
W(P̂, εM(β)). �

A.5. Proof of Proposition 4

We start our proof by rewriting the φ-DRSSDCP based on Section 5.3, as follows:

[φ-DRSSDCP] minimize
x∈X

c>x (18a)

subject to EP [g(x,ξ, t)]≤ φ ∀ t∈ T̄ , ∀P∈P1
W(P̂, ε), (18b)

where g(x,ξ, t) := (t − f(x,ξ))+ − (t − f0(ξ))+ and T̄ := [tmin, tmax], with tmin := inf
ξ∈Ξ

f0(ξ), and

tmax := sup
ξ∈Ξ

f0(ξ).

Similarly, we can also rewrite the φ-SDCP2 in the form of

[φ-SDCP2] minimize
x∈X

c>x (19a)

subject to EP̄ [g(x,ξ, t)]≤ φ ∀ t∈ T̄ . (19b)

Let fM ,xM ,XM be the optimal value, optimal solution and optimal solution set of the φ-

DRSSDCP respectively. Let f∗,x∗,X ∗ be the optimal value, optimal solution and optimal solution

set of the φ-SDCP2 respectively.

To clarify presentation, we define

v̄(x) := sup
t∈T̄

EP̄ [g(x,ξ, t)]−φ and vM(x) := sup
P∈P1

W
(P̂,εM (βM ))

sup
t∈T̄

EP [g(x,ξ, t)]−φ,

respectively.

Now we can easily establish the following two lemmas.

Lemma 2. There exists an optimal solution x′∗ ∈ X ∗ such that for any given τ > 0, there is a

x∈X , with ‖x−x′∗‖2 ≤ τ , v̄(x)< 0.

. Proof of Lemma 2 This results is trivial if there exists a x′∗ ∈ X ∗ such that v̄(x∗)< 0. In

the case where this does not apply, one can take any x′∗ ∈X ∗ (with v̄(x∗) = 0), and use the feasible

solution that satisfies Slater’s condition, i.e. some x̄ ∈ X that satisfies v̄(x̄)< 0, to identify an x

with the required property. Namely, for any τ , one can identify a convex combination of x′∗ and

x̄, i.e. xθ := θx̄+ (1− θ)x′∗ with 0< θ≤ 1, such that ‖xθ −x′∗‖2 ≤ τ . By convexity of X and v̄(·),
we necessarily have that:

v̄(xθ) = v̄(θx̄+ (1− θ)x′∗)≤ θv̄(x̄) + (1− θ)v̄(x′∗) = θv̄(x̄)< 0 ,

where we exploit the fact that v̄(x′∗) = 0, θ > 0 and v̄(x̄)< 0. �
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Lemma 3. Given that Assumption 2 is satisfied, for any given x ∈ X , the function g(x,ξ, t) is

Lξ-Lipschitz continuous in ξ with respect to the `p-norm where:

Lξ := sup
x∈X

max
n∈[N ]

‖an(x)‖p∗+ max
n∈[N ]

‖a0
n‖p∗,

with ‖ · ‖p∗ as the dual of the `p-norm. Moreover, it is Lx-Lipschitz continuous in x with respect to

norm ‖ · ‖2 for all ξ ∈Ξ, where:

Lx := sup
ξ∈Ξ

max
n∈[N ]

‖ān(ξ)‖2,

where we let ān(ξ)Tx+ b̄n(ξ) be the affine representation of an(x)Tξ+ bn(x) in x.

. Proof of Lemma 3 First, we have that, based on the definition of f(x,ξ) and f0(ξ), both

are Lipschitz continuous with constants maxn∈[N ] ‖an(x)‖p∗ and maxn∈[N ] ‖a0
n(x)‖p∗ respectively.

Focusing on (t−f(x,ξ))+, it is clear that the Lipschitz constant remains below maxn∈[N ] ‖an(x)‖p∗
since the function takes the maximum between 0 and the difference between t and f(x,ξ). The same

argument applies for (t−f0(ξ))+ to verify that its Lipschitz constant is below maxn∈[N ] ‖a0
n(x)‖p∗.

We then use the fact that the Lipschitz constant of a sum of functions is smaller then the sum of

their Lipschitz constants. A similar argument applies for obtaining Lx. �

We first prove that P̄∞-almost surely we have that fM → f∗ as M →∞. We will then derive the

implications regarding the convergence of xM to X ∗.
Using similar arguments as used in proving Proposition 3, we have that, for xM ∈ XM , xM

satisfies the relaxed SDC in φ-SDCP2 with a probability of at least 1−βM . Therefore, we have

P̄M
{
f∗ ≤ fM

}
= P̄M

{
f∗ ≤ c>xM

}
≥ P̄M

{
EP̄ [g(xM ,ξ, t)]≤ φ, ∀ t∈ T̄

}
≥ 1−βM .

Since
∑∞

M=1 βM <∞ and based on the Borel-Cantelli Lemma, we further have that

P̄∞
{
f∗ ≤ fM for all sufficiently largeM

}
= 1.

To reach our objective, we are left with proving that

P̄∞
{
f∗ ≥ fM for all sufficiently largeM

}
= 1.

To do so, we first show that for all x∈X :

limsup
M→∞

vM(x) = v̄(x)

P̄∞-almost surely holds.

Given any x∈X and any sequence δM > 0 such that limM→∞ δM = 0, let Q̂M ∈P1
W(P̂M , εM(βM))

be a δM -optimal worst-case distribution with

sup
P∈P1

W
(P̂M ,εM (βM ))

sup
t∈T̄

EP [g(x,ξ, t)]≤ sup
t∈T̄

EQ̂M [g(x,ξ, t)] + δM .
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Such a probability measure exists given that

sup
P∈P1

W
(P̂M ,εM (βM ))

sup
t∈T̄

EP [g(x,ξ, t)]≤ sup
ξ∈Ξ

sup
t∈T̄

g(x,ξ, t)<∞ ,

due to T̄ and Ξ being bounded (see Assumption 1) and g(x,ξ, t) being continuous in ξ and t.

Hence, for any given x∈X we have

limsup
M→∞

vM(x) = lim sup
M→∞

sup
P∈P1

W
(P̂M ,εM (βM ))

sup
t∈T̄

EP [g(x,ξ, t)]−φ (20)

≤ limsup
M→∞

sup
t∈T̄

EQ̂M [g(x,ξ, t)] + δM −φ (21)

≤ limsup
M→∞

sup
t∈T̄

EP̄ [g(x,ξ, t)] +LξdW(P̄, Q̂M) + δM −φ (22)

= sup
t∈T̄

EP̄ [g(x,ξ, t)]−φ P̄∞-almost surely (23)

= v̄(x), (24)

where the equality (20) is based on the definition of vM(x) and the inequality (21) is based on the

δM -optimal worst-case distribution Q̂M . The inequality (22) follows from Theorem 3.2 in Mohajerin

Esfahani and Kuhn (2018) and the equality (23) holds due to Lemma 3.7 in Mohajerin Esfahani

and Kuhn (2018), which shows the almost sure convergence of any sequence Q̂M ∈P1
W(P̂M , εM(βM))

to P̄ under the Wasserstein metric if Assumption 1 holds and βM ∈ (0,1) satisfies
∑∞

M=1 βM <∞
and limM→∞ εM(βM) = 0.

Based on Lemma 2, for all τ > 0 there is a xτ ∈ X , with ‖xτ − x′∗‖2 ≤ τ and v̄(xτ ) < 0. By

passing to a sub-sequence if necessary, we may assume without loss of generality that lim
τ→0

xτ =x′∗.

Then we can obtain that

P̄∞
{
vM(xτ )≤ 0 for all sufficiently largeM

}
= 1,

hence that

P̄∞
{
c>xτ ≥ fM for all sufficiently largeM

}
= 1.

Finally, we have that

P̄∞
{
f∗ = c>x′∗ = lim

τ→0
c>xτ ≥ lim

M→∞
fM
}

= 1.

Therefore, so far we have proved that P̄∞ {fM = f∗ for all sufficiently largeM}= 1.

We can now turn to showing that xM converges almost surely to X ∗ as M goes to infinity.

Specifically, we will demonstrate (by contradiction) that

P̄∞{ lim
M→∞

D(XM ,X ∗) = 0}= 1

where D(·, ·) denotes the Hausdorff distance between two sets, i.e., D(A,B) :=

max(supx∈A dist(x,B), supx∈B dist(x,A)) with dist(x,B) = inf
y∈B
‖x − y‖. Let us assume that
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P̄∞{ lim
M→∞

D(XM ,X ∗) > 0} > 0. Looking at any realisation where lim
M→∞

D(XM ,X ∗) > 0, we have

that there must exist a sequence x′M ∈ XM , such that limM→∞ dist(x′M ,X ∗) > 0. Since we know

that the feasible set X is convex and compact, by passing to a sub-sequence if necessary, we may

assume that x′M → x′ ∈X . So we have x′ /∈X ∗. Recall that x′M ∈XM , that, with probability one,

vM(x) converges pointwise to v̄(x), and that v̄(x) is continuous. Hence,

v̄(x′) = lim
M→∞

vM(x′)

= lim
M→∞

vM(x′M) + vM(x′)− vM(x′M)

≤ lim
M→∞

vM(x′M) + sup
P∈P1

W
(P̂,εM (βM ))

sup
t∈T̄

EP [g(x′,ξ, t)− g(x′M ,ξ, t)]

≤ lim
M→∞

vM(x′M) + sup
P∈P1

W
(P̂,εM (βM ))

sup
t∈T̄

EP [Lx‖x′−x′M‖2]

= lim
M→∞

vM(x′M) +Lx‖x′−x′M‖2

= lim
M→∞

vM(x′M)≤ 0 ,

where the second inequality comes from Lemma 3.

We can therefore conclude that x′M is a feasible solution of the φ-SDCP2 and therefore that

c>x′ > f∗. These arguments point to:

0< P̄∞{ lim
M→∞

D(XM ,X ∗)> 0} ≤ P̄∞{∃x′ ∈X/X ∗, lim
M→∞

fM = c>x′ > f∗}= P̄∞{ lim
M→∞

fM > f∗} .

However, this contradicts the fact that P∞{ lim
M→∞

fM = f∗}= 1.

This completes our proof. �

A.6. Proof of Proposition 5

We start our proof by presenting the following lemma, which exploits the compactness of Ξ to

present an equivalent representation of constraint (6b) where t ∈ R is restricted to a bounded

interval T̄ .

Lemma 4. Under assumptions 1 and 2, then constraint (6b) is equivalent to

EP
[
(t− f(x,ξ))+

]
≤EP

[
(t− f0(ξ))+

]
∀P∈P1

W(P̂, ε), ∀t∈ T̄ , (25)

where T̄ := [tmin, tmax], with tmin := inf
ξ∈Ξ

f0(ξ), and tmax := sup
ξ∈Ξ

f0(ξ).

. Proof of Lemma 4 Our proof simply relies on verifying that this equivalence holds when

P ∈ P1
W is fixed. Since T̄ ’s definition is independent of P, we will be able to conclude that the

equivalence holds for all P∈P1
W.

When P∈P1
W is fixed, Proposition 1.2 in Hu et al. (2012) states that

EP
[
(t− f(x,ξ))+

]
≤EP

[
(t− f0(ξ))+

]
, t∈R
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is equivalent to

EP
[
(t− f(x,ξ))+

]
≤EP

[
(t− f0(ξ))+

]
, t∈ T̄

as long as f0(ξ)’s support is bounded by T̄ . We are left with confirming that with probability one:

f0(ξ)∈ [inf
ξ∈Ξ

f0(ξ), sup
ξ∈Ξ

f0(ξ)] = [tmin, tmax] ,

where both tmin and tmax are finite since f0(ξ) is assumed piecewise linear (based on Assumption

2) and Ξ is assumed compact (based on Assumption 1). �

Next, let us define g(x,ξ, t) := (t− f(x,ξ))+ − (t− f0(ξ))+. We then give the following lemma

that is later used for deriving the reformulation of constraint (25).

Lemma 5. Suppose that Assumption 2 holds, for any x ∈ Rm, the function g(x,ξ, t) is the max-

imum of jointly piecewise linear concave functions in ξ and t. Specifically, it can be represented

as:

g(x,ξ, t) := max
n∈[N+1]

gn(x,ξ, t) ,

where

gn(x,ξ, t) := min
n′∈[N+1]

(a0
n′ −an(x))>ξ+ b0

n′ − bn(x)− (c0
n′ − cn)t

where aN+1 = bN+1 = cN+1 = a0
N+1 = b0

N+1 = cN+1 = 0, and cn = c0
n = 1 for all n∈ [N ].

. Proof of Lemma 5: Based on Assumption 2, we can rewrite g(x,ξ, t) as

g(x,ξ, t) =

(
t− min

n∈[N ]
an(x)>ξ+ bn(x)

)+

−
(
t− min

n∈[N ]
a0
n

>
ξ+ b0

n

)+

= max

(
0, max

n∈[N ]
t−an(x)>ξ− bn(x)

)
+ min

(
0, min

n∈[N ]
−t+a0

n

>
ξ+ b0

n

)
= max

n∈[N+1]
cnt−an(x)>ξ− bn(x) + min

n′∈[N+1]
a0
n′
>
ξ+ b0

n′ − c0
n′t

= max
n∈[N+1]

gn(x,ξ, t) . �

Finally, we move to derive the multistage robust optimization formulation of DRSSDCP under

P1
W(P̂, ε) with ε∈ (0,∞). We know that g(x,ξ, t) is a maximum of concave functions in ξ by Lemma

5 and that Ξ is a non-empty convex and bounded set by Assumption 1. Under these conditions

and by using the strong duality results in Mohajerin Esfahani and Kuhn (2018), for any given fixed

t∈ T̄ , the worst-case expectation

sup
P∈P1

W
(P̂,ε)

EP[g(x,ξ, t)]

coincides with the optimal value of the following optimization problem:

inf
λ,q

λε+
1

M

∑
i∈[M ]

qi (26a)
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subject to g(x,ξ, t)−λ‖ξ− ξ̂i‖ ≤ qi ∀ξ ∈Ξ, i∈ [M ] (26b)

λ≥ 0,q ∈RM . (26c)

Therefore, let the infimum in (26) be denoted by L(x, t), then DRSSDCP (4) is equivalent to

the multistage robust optimization problem (8). Moreover, when Assumption 3 is satisfied, if the

Wasserstein metric is a `1-norm, constraint (26b) reduces to:

gn(x,ξ, t)−λ‖ξ− ξ̂i‖1 ≤ qi ∀ξ ∈Ξ, n∈ [N + 1], i∈ [M ].

It further reduces to:

min
n′∈[N+1]

(a0
n′−an(x))>ξ+b0

n′−bn(x)−(c0
n′−cn)t−λ

∑
j∈[m]

νj ≤ qi ∀ν ∈ Γiν(ξ), ξ ∈Ξ, n∈ [N+1], i∈ [M ],

where Γiν(ξ) := {ν ∈Rm|−ν ≤ ξ− ξ̂i ≤ ν}. We finally, can introduce epigraph adversarial variables

to obtain:

η−an(x)>ξ− bn(x) + cnt−λ
∑
j∈[m]

νj ≤ qi ∀η ∈ Γη(ξ, t), ν ∈ Γν(ξ), ξ ∈Ξ, n∈ [N + 1], i∈ [M ] ,

where Γη(ξ, t) :=
{
η : η≤ a0

n
>
ξ+ b0

n− c0
nt, ∀n∈ [N + 1]

}
. Thus obtaining the following second-stage

robust linear program:

inf
λ,q

λε+
1

M

∑
i∈[M ]

qi

subject to η−an(x)>ξ− bn(x) + cnt−λ
∑
j∈[m]

νj ≤ qi ∀(η,ν,ξ)∈ Γiη,ν,ξ, n∈ [N + 1], i∈ [M ]

−νi ≤ ξ− ξ̂i ≤ νi ∀ i∈ [M ]

λ≥ 0,q ∈RM ,

where Γiη,ν,ξ is the polyhedron capturing the joint feasible assignments for η, ν and ξ.

It is therefore easy to see that problem (8) can be reformulated as a multistage robust linear

optimization problem, given that X and Ξ are assumed polyhedral. A similar argument holds for

the case of a `∞-norm Wasserstein distance metric. �

A.7. Proof of Theorem 2

Our proof mainly employs the Fenchel Robust Counterpart theory in Ben-Tal et al. (2015) to derive

the equivalent reformulations of robust constraints (10b) and (10c).

First, for the robust linear constraint (10b), one can directly derive the following equivalent

formulation which verifies the two boundary scenarios t̄−k and t̄+k , given that the constraint function

is linear in t,

λkε+
1

M

M∑
i=1

(qik t̄
+
k + q̄ik)≤ 0, ∀k ∈ [K] (27a)
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λkε+
1

M

M∑
i=1

(qik t̄
−
k + q̄ik)≤ 0, ∀k ∈ [K]. (27b)

Second, for constraint (10c), for any fixed k ∈ [K], i ∈ [M ] and n ∈ [N + 1], let φikn (x,ξ, t) :=

gn(x,ξ, t)−λk‖ξ− ξ̂i‖− q̄ik− qikt. Note that, φikn (x,ξ, t) is convex in x for all ξ ∈Ξ and t∈ T̄ since

it is the some of two concave functions and an affine one. Based on the Fenchel duality theory (see

Ben-Tal et al. (2015)), a robust constraint that takes the form of

φ(x,ξ, t)≤ 0 ∀ξ ∈Ξ, t∈ Tk,

is equivalent to

∃ v ∈Rm, u∈R, δ(v|Ξ) + δ(u|Tk)−φ∗(x, u,v)≤ 0,

where δ(v|Ξ) and δ(u|Tk) are support functions, and φ∗(x, u,v) is the partial concave conjugate

function of φ(x,ξ, t). More specifically, one can directly derive the following equivalent formulation

of δ(u|Tk) which verifies the two boundary scenarios t̄−k and t̄+k , given that the constraint function

is linear in t,

δ(u|Tk) = sup
t∈R:t̄−

k
≤t≤t̄+

k

u t = max
(
ut̄−k , ut̄

+
k

)
.

As for the partial concave conjugate of φikn (x,ξ, t), we exploit the representation

gn(x,ξ, t) :=−an(x)>ξ− bn(x) + cnt+ inf
ρ≥0:

∑
n′ ρn′≤1

∑
n′∈[N ]

ρn′
(
a0
n′
>
ξ+ b0

n′ − t
)
,

and have that:

φikn∗(x, u,v) = inf
ξ∈Rm

v>ξ+ inf
t∈R

tu−
(
gn(x,ξ, t)−λk‖ξ− ξ̂i‖− q̄ik− qikt

)
= inf
ξ∈Rm

inf
t∈R
v>ξ+ tu+an(x)>ξ+ bn(x)− cnt+λk‖ξ− ξ̂i‖+ q̄ik + qikt

+ sup
ρ≥0:

∑
n′ ρn′≤1

∑
n′∈[N ]

ρn′
(
−a0

n′
>
ξ− b0

n′ + t
)

= sup
ρ≥0:

∑
n′ ρn′≤1

inf
ξ∈Rm

(v+an(x)−
∑
n′∈[N ]

ρn′a
0
n′)
>ξ+λk‖ξ− ξ̂i‖+ inf

t∈R
(u+

∑
n′∈[N ]

ρn′ − cn + qik)t

+ q̄ik + bn(x)−
∑
n′∈[N ]

ρn′b
0
n′

= sup
ρ≥0:

∑
n′ ρn′≤1

inf
ξ∈Rm

wn(x,ρ)
>
ξ+λk‖ξ− ξ̂i‖+ inf

t∈R
(u+ qik− cn +

∑
n′∈[N ]

ρn′)t

+ q̄ik + bn(x)−
∑
n′∈[N ]

ρn′b
0
n′

= sup
ρ≥0:

∑
n′ ρn′≤1

wn(x,ρ)
>
ξ̂i−λk

(
sup
ζ∈Rm

(
−w

n(x,ρ)

λk

)>
ζ−‖ζ‖

)
+ inf
t∈R

(u+ qik− cn +
∑
n′∈[N ]

ρn′)t
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+ q̄ik + bn(x)−
∑
n′∈[N ]

ρn′b
0
n′

=



sup
ρ,w

w>ξ̂i + q̄ik + bn(x)−
∑
n′∈[N ]

ρn′b
0
n′

s.t. ‖w‖∗ ≤ λk

w= v+an(x)−
∑
n′∈[N ]

ρn′a
0
n′

u+ qik +
∑
n′∈[N ]

ρn′ − cn = 0∑
n′∈[N ]

ρn′ ≤ 1

ρ≥ 0,

where we replaced wn(x,ρ) := v+an(x)−
∑

n′∈[N ]

ρn′a
0
n′ and where ‖ · ‖∗ is the dual norm of ‖ · ‖.

In details, the first equality straightforwardly follows from the definition of conjugate function,

and second equality follows from the definition of gn(x,ξ, t). The third equality holds by applying

Sion’s minimax theorem (see Sion et al. (1958)). Finally, the last equality is based on the definition

of the conjugate of the norm.

We thus conclude that, for any fixed k, i, and n, constraint (10c) is equivalent to the existence

of some u∈R, ρ∈RN , w ∈Rm, and v ∈Rm such that:

δ(v |Ξ) +ut̄−k −w>ξ̂i− q̄ik− bn(x) +
∑
n′∈[N ]

ρn′b
0
n′ ≤ 0 (28a)

δ(v |Ξ) +ut̄+k −w>ξ̂i− q̄ik− bn(x) +
∑
n′∈[N ]

ρn′b
0
n′ ≤ 0 (28b)

w= v+an(x)−
∑
n′∈[N ]

ρn′a
0
n′ (28c)

‖w‖∗ ≤ λk (28d)

u+ qik +
∑
n′∈[N ]

ρn′ − cn = 0 (28e)∑
n′∈[N ]

ρn′ ≤ 1 (28f)

ρ≥ 0. (28g)

This completes our reformulation that is presented in the theorem.

Moreover, under Assumption 3 and when Ξ is polyhedral, one has that ‖w‖∗, δ(v | Ξ), and X

are LP representable, hence the problem can be reformulated as a linear program. �

A.8. Proof of Proposition 6

First, one concludes that the optimal value of problem (11) provides a lower bound for the optimal

value of (8) based on the fact that the latter is obtained by relaxing constraint (8b).
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Given a finite scenario set T̂ = {t̂1, · · · , t̂k, · · · , t̂K}, to obtain a finite-dimensional representation

of problem (11), we just need to derive the equivalent reformulation of robust constraint (11c).

For this purpose, we can apply exactly the same steps as used in the proof of Theorem 2, while

letting t̄−k = t̄+k = t̂k, q̄ik = qik and qik = 0. We obtain that for any fixed i, n, and k, constraint (11c)

is equivalent to the condition that there exists ρ∈RN , w ∈Rm, and v ∈Rm such that:

δ(w+
∑
n′∈[N ]

ρn′a
0
n−an′(x) |Ξ)−w>ξ̂i +

∑
n′∈[N ]

ρn′b
0
n′

− bn(x)− (
∑
n′∈[N ]

ρn′ − cn)t̂k− qik ≤ 0

‖w‖∗ ≤ λk∑
n′∈[N ]

ρn′ ≤ 1

ρ≥ 0.

Finally, we obtain the finite-dimensional convex optimization formulation of problem (11). More-

over, under Assumption 3 and when Ξ is polyhedral, one has that ‖w‖∗, δ(· | Ξ), and X are LP

representable, hence the problem can be reformulated as a linear program. �

A.9. Proof of Proposition 7

The first part of our proof can be straightforward given from the way we construct the finite

scenarios set that is described in Algorithm 1, namely, T̂ ` := T̂ `−1
⋃
Â`, which means that T̂ `−1

is a subset of T̂ `. Thus, the lower bounding problem (11) with T̂ ` is a relaxation to problem (11)

with T̂ `+1, and we have LB`+1 ≥ LB`.

An analogous argument can be made about how UB` is generated. Indeed, problem (10) under

P`+1 can be considered a relaxation of problem (10) under P` since any optimal solution

(x`,λ`,q`, q̄`) of the latter can be used to produce a feasible solution (x`+1,λ`+1,q`+1, q̄`+1) to the

former by using the following construction:

x`+1 :=x`, λ`+1
k :=

∑
k′∈[|P`|]:T `+1

k
⊆T `

k′

λ`k′ , ∀k ∈ [|P`+1|],

q`+1
ik :=

∑
k′∈[|P`|]:T `+1

k
⊆T `

k′

q`ik′ , q̄`+1
ik :=

∑
k′∈[|P`|]:T `+1

k
⊆T `

k′

q̄`ik′ , ∀k ∈ [|P`+1|].

Thus, for the conservative approximation model (10), we can easily obtain UB` ≥UB`+1. �

A.10. Proof of Proposition 8

Our proof follows similar steps as in the proof of Proposition 5. Based on the result in Lemma 1,

we first rewrite D-DRSSDCP (14) with P1
W2 as follows:

minimize
x∈X

c>x (29a)
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subject to sup
P∈P1

W2

EP
[
(t− f(x,ξ))+− (t− f0(ζ))+

]
≤ 0 ∀t∈R. (29b)

Similar to Lemma 4, here we also derive an equivalent representation of constraint (29b) by

restricting t∈ T̄ ′ := [t′min, t
′
max], where t′min := inf

ζ∈Ξζ
f0(ζ) and t′max := sup

ζ∈Ξζ

f0(ζ). Under the definition

of P1
W2 , we can further rewrite constraint (29b) as

sup
Pξ∈P1

ξ
(P̂ξ,εξ)

EPξ

[
(t− f(x,ξ))+

]
+ sup

Pζ∈P1
ζ

(P̂ζ ,εζ)

EPζ

[
−(t− f0(ζ))+

]
≤ 0 ∀t∈ T̄ ′. (30)

Under assumptions 2 and 4, by using the strong duality results for Wasserstein DRO in Mohajerin

Esfahani and Kuhn (2018), for any given fixed t ∈ T̄ ′, we can derive the equivalent reformulation

for constraint (30). Then we can easily obtain the multistage robust optimization formulation that

is presented in the proposition, which also takes the form of min
x

-sup
t

- min
λ1,λ2,q,r

-sup
ξ,ζ

. �

A.11. Proof of Proposition 9

Our proof reuses some of the steps presented in the proof of Proposition 11 as we will employ

Proposition 3.2 in Dentcheva and Ruszczynski (2003). Yet, the type-1 Wasserstein DRO reformu-

lations from Mohajerin Esfahani and Kuhn (2018) are now necessary. First, when εζ = 0, P1
ζ (P̂ζ , εζ)

reduces to a singleton {P̂ζ}. DRSSD constraint (30) can be rewritten as

sup
Pξ∈P1

ξ
(P̂ξ,εξ)

EPξ

[
(t− f(x,ξ))

+
]
≤ 1

Mζ

∑
i∈[Mζ ]

(
t− f0(ζ̂i)

)+

∀t∈ T̄ ′. (31)

Since Pζ is supported on {ζ̂i}
Mζ

i=1, and f0(ζ) is independent of decision x, so f0(ζi) is always

supported on {f0(ζ̂i)}
Mζ

i=1. Thus, for any given Pξ ∈ P1
ξ (P̂ξ, εξ), one can employ Proposition 3.2

in Dentcheva and Ruszczynski (2003) to equivalently replace T̄ ′ with {t1, · · · , tMζ
}, where each

tj := f0(ζ̂j). Let us define γj = 1
Mζ

∑
i∈[Mζ ]

(
tj − f0(ζ̂i)

)+

for all j ∈ [Mζ ], then constraint (31) can be

further rewritten as the following finite number of constraints,

sup
Pξ∈P1

ξ
(P̂ξ,εξ)

EPξ

[
(tj − f(x,ξ))+

]
≤ γj ∀j ∈ [Mζ ]. (32)

Based on assumptions 2 and 4, following the similar steps in Mohajerin Esfahani and Kuhn

(2018), we can derive the equivalent condition that there exists λ∈RMζ such that:

λjεξ +
1

Mξ

∑
i∈[Mξ]

sup
ξ∈Ξξ

(
(tj − f(x,ξ))

+−λj‖ξ− ξ̂i‖
)
≤ γj ∀j ∈ [Mζ ]. (33)

Based on Assumption 2, (tj − f(x,ξ))+ = max
n∈[N+1]

cntj − an(x)>ξ− bn(x), where aN+1 = bN+1 =

cN+1 = 0 and cn = 1 for all n∈ [N ]. By following the Fenchel Robust Counterpart theory in Ben-Tal

et al. (2015), constraint (33) is equivalent to the condition that there exists λ∈RMζ , s∈RMξ×Mζ ,

v ∈RMξ×Mζ×(N+1)×m, and w ∈RMξ×Mζ×(N+1)×m such that:
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λjεξ +
1

Mξ

∑
i∈[Mξ]

sij ≤ γj ∀j ∈ [Mζ ] (34)

δ(vijn|Ξξ)−w>ijnξ̂i− bn(x) + cntj ≤ sij ∀i∈ [Mξ], j ∈ [Mζ ], n∈ [N + 1] (35)

‖wijn‖∗ ≤ λj ∀i∈ [Mξ], j ∈ [Mζ ], n∈ [N + 1] (36)

wijn = vijn +an(x) ∀i∈ [Mξ], j ∈ [Mζ ], n∈ [N + 1] (37)

λ≥ 0. (38)

Thus we finally derive the finite-dimensional convex optimization problem (17). Moreover, under

Assumption 3 and when Ξξ is polyhedral, one has that ‖w‖∗, δ(v |Ξξ), and X are LP representable,

hence problem (17) can be reformulated as a linear program. �

Appendix B: Supplementary Material

B.1. Alternative Representations in Montes et al. (2014)

In this appendix, we attempt to make a comparison to the alternative representations that have

been proposed in Montes et al. (2014) for extending the notion of stochastic dominance to an

ambiguous probability space. In their Definition 5, the authors propose the following six different

formulations:

X �(39) Y ⇔ F P1
X �(k) F

P2
Y , ∀P1,P2 ∈P (39)

X �(40) Y ⇔ ∃P1 ∈P, F P1
X �(k) F

P2
Y , ∀P2 ∈P (40)

X �(41) Y ⇔ ∀P2 ∈P, ∃P1 ∈P, F P1
X �(k) F

P2
Y (41)

X �(42) Y ⇔ ∃P1,P2 ∈P, F P1
X �(k) F

P2
Y (42)

X �(43) Y ⇔ ∃P2 ∈P, F P1
X �(k) F

P2
Y , ∀P1 ∈P (43)

X �(44) Y ⇔ ∀P1 ∈P, ∃P2 ∈P, F P1
X �(k) F

P2
Y . (44)

Yet, we can easily observe that (39), (40), and (43) are not necessarily reflexive while (42) is not

necessarily transitive. Specifically, take the example of a random variable X with an ambiguity set

P = {P1,P2} such that neither F P1
X 6�(k) F

P2
X nor F P2

X 6�(k) F
P1
X : e.g. in the case of k = 1, when F P1

X

is Bernoulli {0, 1} with P1(X = 1) = 50% while F P2
X is a guaranteed return of 0.6. In this case we

have that

F P1
X 6�(k) F

P2
X ⇒∃P1,P2, F

P1
X 6�(k) F

P2
X ⇒X 6�(39) X

F P1
X 6�(k) F

P2
X & F P2

X 6�(k) F
P1
X ⇒6 ∃P1,∀P2, F

P1
X �(k) F

P2
X ⇒X 6�(40) X

F P1
X 6�(k) F

P2
X & F P2

X 6�(k) F
P1
X ⇒6 ∃P2,∀P1, F

P1
X �(k) F

P2
X ⇒X 6�(43) X.
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To demonstrate that �(42) is non-transitive, we consider the following three random variables which

are deterministic under both P1 and P2:

F P
A(y) := 1{y≥ 2} F P

B(y) :=

{
1{y≥ 0} if P= P1

1{y≥ 4} if P= P2
F P
C(y) := 1{y≥ 1}.

Thus, we get:

F P2
B �(k) F

P2
A ⇒B �(42) A & F P1

C �(k) F
P1
B ⇒C �(42) B.

Yet,

∀P,Q∈ {P1,P2}, F P
C = 1{y≥ 1} 6�(k) 1{y≥ 2}= FQ

A ⇒ C 6�(42) A.

Looking now more closely at (41) and (44), one can confirm that the two extensions satisfy

ambiguity monotonicity, yet we have that:

X �(3) Y ⇔ F P
X �(k) F

P
Y , ∀P∈P ⇒∀P2 ∈P, ∃P1 ∈P, F P1

X �(k) F
P2
Y ⇒X �(41) Y

and

X �(3) Y ⇔ F P
X � F P

Y , ∀P∈P ⇒∀P1 ∈P, ∃P2 ∈P, F P1
X �(k) F

P2
Y ⇒X �(44) Y .

This allows us to conclude that the extension of stochastic dominance that we propose in Section

4 is more indecisive than the formulations in (41) and (44). In other words, our formulation makes

less assumptions on how the ambiguity about stochastic dominance is resolved.

B.2. DRSSDCP with a type-infinity Wasserstein Ambiguity Set

In this appendix, we will show that the proposed solution scheme can be straightforwardly extended

for DRSSDCP with a type-infinity Wasserstein ambiguity set. In the following, we present how to

derive its multistage robust optimization reformulation under mild conditions.

Extending Definition 3 to the case of r=∞, the Wasserstein metric between distributions P1 ∈

M(Ξ) and P2 ∈M(Ξ) can be defined as

d∞W(P1,P2) = inf
Q∈M(P1,P2)

{
ess sup

Q
‖ξ1− ξ2‖

}
,

where (ξ1,ξ2)∼Q.

The following proposition gives the multistage robust reformulation of DRSSDCP with P∞W (P̂, ε)

under mild conditions, which takes the similar problem structure with problem (8). Hence, we can

directly adapt the solution scheme that is proposed in sections 5, 6 and 7 to solve problem (45).
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Proposition 10. Under assumptions 1, 2 and P∞W(P̂, ε) with ε∈ (0,∞), DRSSDCP (6) coincides

with the optimal value of the following multistage robust optimization problem:

minimize
x∈X

c>x (45a)

subject to L(x, t)≤ 0 ∀t∈ T̄ , (45b)

where T̄ := [tmin, tmax] with tmin := inf
ξ∈Ξ

f0(ξ) and tmax := sup
ξ∈Ξ

f0(ξ), and where

L(x, t) := inf
λ,q

1

M

∑
i∈[M ]

qi (46a)

subject to λiε+ g(x,ξ, t)−λi‖ξ− ξ̂i‖ ≤ qi ∀ξ ∈Ξ, i∈ [M ] (46b)

λ≥ 0,q ∈RM , (46c)

where g(x,ξ, t) = (t− f(x,ξ))+ − (t− f0(ξ))+. Moreover, it can be reformulated as a multistage

robust linear optimization problem when `1-norm (or `∞-norm) of the Wasserstein distance metric

is used, and when X , Ξ are polyhedral.

. Proof of Proposition 10 Our proof follows the similar steps of the proof for Proposition

5 in Appendix A.6. For the sake of completeness and simplicity, here we mention the key steps of

the proof.

Similar to Lemma 4, under assumptions 1 and 2, constraint (6b) is equivalent to

sup
P∈P∞

W
(P̂,ε)

EP [g(x,ξ, t)]≤ 0 ∀t∈ T̄ ,

where T̄ := [tmin, tmax] with tmin := inf
ξ∈Ξ

f0(ξ) and tmax := sup
ξ∈Ξ

f0(ξ).

Based on Lemma 5, we know that g(x,ξ, t) is a maximum of piecewise linear concave functions

in ξ and t for all x∈Rm if Assumption 2 holds. By following the similar steps in Bertsimas et al.

(2021), for any given fixed t ∈ T̄ , the worst-case expectation sup
P∈P∞

W
(P̂,ε)

EP [g(x,ξ, t)] coincides with

the optimal value of the following optimization problem:

inf
λ,q

1

M

∑
i∈[M ]

qi (47a)

subject to λiε+ g(x,ξ, t)−λi‖ξ− ξ̂i‖ ≤ qi ∀ξ ∈Ξ, i∈ [M ] (47b)

λ≥ 0,q ∈RM . (47c)

Therefore, DRSSDCP (4) with P∞W (P̂, ε) is equivalent to the multistage robust optimization

problem (45). Moreover, it is easy to obtain that problem (45) can be reformulated as a multistage

linear optimization problem if either `1-norm or `∞-norm in constraint (47b) is used, and if X and

Ξ are polyhedral. �
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B.3. Robust Second-order Stochastic Dominance Constrained Portfolio Optimization

Problem in Sehgal and Mehra (2020)

In this appendix, we briefly show that our D-DRSSDCP with εξ > εζ = 0 can recover the robust

second-order stochastic dominance constrained portfolio optimization problem in Sehgal and Mehra

(2020), which can be summarized in the following proposition.

Proposition 11. The robust second-order stochastic dominance constraint proposed in Sehgal and

Mehra (2020) is a special case of D-DRSSDCP with P∞
W2, εζ = 0, Ξξ =Rm, and the semimetric

d(ξ,ξ0) :=

{
∞ if ‖ξ− ξ0‖∞ > 1

‖ξ− ξ0‖1 otherwise.

. Proof of Proposition 11 Our proof follows similar steps as presented in the proof of

Proposition 3 in Bertsimas et al. (2021) and the well-known duality results for the budgeted

uncertainty set. First, let us remind the reader that the type-∞ Wasserstein distance is defined as

d∞W(P1,P2) = inf
Q∈M(P1,P2)

Q-ess sup d(ξ1,ξ2), which implies that:

d∞W(Pξ, P̂ξ) = inf
{Qi}

Mξ
i=1∈M

Mξ (Ξξ):Pξ=(1/Mξ)
∑
i Qi

max
i∈[Mξ]

ess sup Qid(ξ, ξ̂i)

= inf{s : ∃{Qi}
Mξ

i=1 ∈MMξ(Ξξ) : Pξ = (1/Mξ)
∑
i

Qi, ess sup Qid(ξ, ξ̂i)≤ s ∀i∈ [Mξ]},

where ess sup Qid(ξ, ξ̂i) considers ξ∼Qi. Hence, we can exploit the fact that

P∞ξ (P̂ξ, εξ) = {Pξ ∈M(Ξξ)|∃{Qi}
Mξ

i=1 ∈MMξ(Ξξ), ess sup Qid(ξ, ξ̂i)≤ εξ, Pξ = (1/Mξ)
∑
i

Qi}. (48)

We can thus show that constraint (14b) reduces to

f(x,ξ)�P
(2) f0(ζ), ∀P∈P∞W2

⇔EPξ [(t− f(x,ξ))+]≤EP̂ζ [(t− f0(ζ))+], ∀t∈R, ∀Pξ ∈P∞ξ (P̂ξ, εξ) (49)

⇔EPξ [(tj − f(x,ξ))+]≤ γj, ∀j ∈ [Mζ ], ∀Pξ ∈P∞ξ (P̂ξ, εξ) (50)

⇔ sup
Pξ∈P∞ξ (P̂ξ,εξ)

EPξ [(tj − f(x,ξ))+]≤ γj, ∀j ∈ [Mζ ] (51)

⇔ sup
{Qi}

Mξ
i=1∈M

Mξ (Ξξ):ess sup Qi
d(ξ,ξ̂i)≤εξ

1

Mξ

Mξ∑
i=1

EQi [(tj − f(x,ξ))+]≤ γj, ∀j ∈ [Mζ ] (52)

⇔ 1

Mξ

Mξ∑
i=1

sup
Qi∈M(Ξξ):ess sup Qi

d(ξ,ξ̂i)≤εξ

EQi [(tj − f(x,ξ))+]≤ γj, ∀j ∈ [Mζ ] (53)

⇔ 1

Mξ

Mξ∑
i=1

sup
ξ∈Ξξ:d(ξ,ξ̂i)≤εξ

(tj − f(x,ξ))+ ≤ γj, ∀j ∈ [Mζ ] (54)
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⇔ 1

Mξ

Mξ∑
i=1

sup
ξ∈Ξξ∩Budget(ξ̂i,εξ)

(tj − f(x,ξ))+ ≤ γj, ∀j ∈ [Mζ ] (55)

⇔∃ d∈RMξ×Mζ
+ ,

{
1
Mξ

∑Mξ

i=1 dij ≤ γj, ∀j ∈ [Mζ ],

dij ≥ supξ∈Ξξ∩Budget(ξ̂i,εξ) tj − f(x,ξ), ∀i∈ [Mξ], j ∈ [Mζ ],
(56)

where tj := f0(ζ̂j) and γj :=EP̂ζ [(tj − f0(ζ))+], and where Budget(ξ̂i, εξ) := {ξ | ‖ξ− ξ̂i‖∞ ≤ 1, ‖ξ−

ξ̂i‖1 ≤ εξ}. In details, Equation (49) follows from the fact that εζ = 0. Equation (50) follows from

the fact that P̂ζ is discrete (see Proposition 3.2 in Dentcheva and Ruszczynski (2003)). Then, we

exploit equation (48) in (52) and the fact that the supremums in (53) are achieved using Dirac

distributions. Finally, in (56) we employ an epigraph representation of the condition. Given that the

portfolio selection problem in Sehgal and Mehra (2020) has f(x,ξ) := ξ>x and Ξξ = Rm, the rest

follows from well-known reformulations of robust linear constraints with the budgeted uncertainty

set (see Bertsimas and Sim (2004)). �

B.4. Deriving Reformulation of Conservative Approximation for Problem (15)

In this appendix, we show how to derive the reformulation for the conservative approximation of

problem (15) when a partition of T̄ is given.

Given the partition P := {Tk}Kk=1, similar to Section 5.4, here we apply the piecewise constant

policies to λ1(·) and λ2(·), and piecewise linear policies to q(·), r(·) respectively, namely, λ1(t) =∑
k∈[K]

λ1
k1{t∈ Tk} and qi(t) =

∑
k∈[K]

(q̄ik + qikt)1{t∈ Tk} for all i∈ [Mξ], λ
2(t) =

∑
k∈[K]

λ2
k1{t∈ Tk} and

ri′(t) =
∑
k∈[K]

(r̄i′k + ri′kt)1{t∈ Tk} for all i′ ∈ [Mζ ]. In doing so, problem (15) can be conservatively

approximated as the following optimization problem:

minimize
x,λ1,λ2,q,q̄,r,r̄

c>x (57a)

subject to λ1
kεξ +λ2

kεζ +
1

Mξ

∑
i∈[Mξ]

(qik + q̄ikt)

+
1

Mζ

∑
i′∈[Mζ ]

(ri′k + r̄i′kt)≤ 0 ∀t∈ Tk,∀k ∈ [K] (57b)

sup
t∈Tk

sup
ξ∈Ξξ

−an(x)>ξ− bn(x) + cnt−λ1
k‖ξ− ξ̂i‖ ≤ qik + q̄ikt ∀i∈ [Mξ], n∈ [N + 1], k ∈ [K]

(57c)

sup
t∈Tk

sup
ζ∈Ξζ

min
n∈[N+1]

a0
n

>
ζ+ b0

n− c0
nt−λ2

k‖ζ− ζ̂i′‖ ≤ ri′k + r̄i′kt ∀i′ ∈ [Mζ ], k ∈ [K] (57d)

x∈X ;λ1,λ2 ≥ 0;q, q̄ ∈RMξ×K ;r, r̄ ∈RMζ×K . (57e)

where aN+1 = bN+1 = cN+1 = a0
N+1 = b0

N+1 = cN+1 = 0, and cn = c0
n = 1 for all n∈ [N ].
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First, as in the proof of Theorem 2, for constraint (57b), one can directly derive the following

equivalent formulation which verifies the two boundary scenarios t̄−k and t̄+k given that the constraint

functions are linear in t,

λ1
kεξ +λ2

kεζ +
1

Mξ

∑
i∈[Mξ]

(q̄ik + qikt
+
k ) +

1

Mζ

∑
i′∈[Mζ ]

(r̄i′k + ri′kt
+
k )≤ 0 ∀k ∈ [K] (58)

λ1
kεξ +λ2

kεζ +
1

Mξ

∑
i∈[Mξ]

(q̄ik + qikt
−
k ) +

1

Mζ

∑
i′∈[Mζ ]

(r̄i′k + ri′kt
−
k )≤ 0 ∀k ∈ [K]. (59)

Next, we can treat each of constraints (57c) and (57d) as constraint (10c) that was treated in

the proof of Theorem 2 to derive the tractable reformulations of the constraints in problem (57).

Letting gn(x,ξ, t) := −an(x)>ξ − bn(x) + cnt, we have that constraint (57c) is equivalent to the

condition that there exists u∈RMξ×K×(N+1), and w ∈RMξ×K×(N+1)×m such that:

δ (wikn−an(x) |Ξξ)−wikn
>ξ̂i + t̄+k uikn− q̄ik− bn(x)≤ 0 ∀i∈ [Mξ], n∈ [N + 1], k ∈ [K] (60)

δ (wikn−an(x) |Ξξ)−wikn
>ξ̂i + t̄−k uikn− q̄ik− bn(x)≤ 0 ∀i∈ [Mξ], n∈ [N + 1], k ∈ [K] (61)

‖wink‖∗ ≤ λ1
k ∀i∈ [Mξ], n∈ [N + 1], k ∈ [K] (62)

uikn + qik− cn = 0 ∀i∈ [Mξ], n∈ [N + 1], k ∈ [K]. (63)

Similarly, for constraint (57d), we can let gn(x,ζ, t) := inf
ρ≥0:

∑
n′ ρn′≤1

∑
n′∈[N ]

ρn′
(
a0
n′
>
ξ+ b0

n′ − t
)

to

obtain that it is equivalent to the condition that there exists u ∈ RMζ×K , w ∈ RMζ×K×m, and

ρ∈RMζ×K×N such that:

δ(wi′k +
∑
n′∈[N ]

ρikn′a
0
n′ |Ξζ)−w>i′kζ̂i′ + t̄+k ui′k− r̄i′k +

∑
n′∈[N ]

ρikn′b
0
n′ ≤ 0 ∀i′ ∈ [Mζ ], k ∈ [K] (64)

δ(wi′k +
∑
n′∈[N ]

ρikn′a
0
n′ |Ξζ)−w>i′kζ̂i′ + t̄−k ui′k− r̄i′k +

∑
n′∈[N ]

ρikn′b
0
n′ ≤ 0 ∀i′ ∈ [Mζ ], k ∈ [K] (65)

‖wi′k‖∗ ≤ λ2
k ∀i′ ∈ [Mζ ], k ∈ [K] (66)

ui′k + ri′k +
∑
n′∈[N ]

ρikn′ = 0 ∀i′ ∈ [Mζ ], k ∈ [K] (67)∑
n′∈[N ]

ρikn′ ≤ 1 ∀i′ ∈ [Mζ ], k ∈ [K] (68)

ρ≥ 0. (69)

Finally, this completes our finite-dimensional convex optimization formulation problem (15),

which is further equivalent to a linear programming problem if Assumption 3 holds and when X ,

Ξξ and Ξζ are polyhedral.
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B.5. Out-of-Sample Distance from SSD Feasibility

In this appendix, we present a method for measuring the distance from SSD feasibility when the

controlled and reference are described using their distribution function. In the context of out-of-

sample analysis, the two distribution functions will constitute of the empirical distribution function

based on out-of-sample observations considered equiprobable.

We first propose a definition of distance to SSD feasibility for distribution functions based on

Wasserstein distance in (R,B(R)). We then show how to mathematically calculate this distance

when the distribution functions are empirical ones.

Definition 5. Numerically speaking, given two random earning variables X and Y , and SSD

constraint X �(2) Y , the type-r Wasserstein distance of distribution function FX from the reference

FY is defined as distSSD(FX ;FY ), where FX is the distribution function of X and where

distSSD(FX ;FY ) := inf
(P̂,P̄,G)∈M(R)3

drW(P̂,G)

subject to ξ �(ξ,ξ̄)∼G×P̄
(2) ξ̄

P̂(ξ̂ ≤ z) = FX(z), ∀z ∈R

P̄(ξ̄ ≤ z) = FY (z), ∀z ∈R,

where M(R)3 is the Cartesian product of three copies of the set of all probability measures in the

measurable space (R,B(R)) and where drW is the type-r Wasserstein metric on M(R). In other

words, distSSD(FX ;FY ) measures the smallest amount of mass (measured in Wasserstein distance

on R) that needs to be moved in order to make the distribution function of X stochastically

dominate the distribution function of Y .

Given two random variables X̂ and X̄, we focus on the case where both FX̂ and FX̄ are empirical

distributions based on M samples, i.e., FX̂(x) :=
∑M

i=1 1{x̂i ≤ x} and FX̄(x) :=
∑M

i=1 1{x̄i ≤ x}. In

this case:

distSSD(FX̂ ;FX̄) = minimize
{Gi}Mi=1∈M(R)M

1/M
∑
i∈[M ]

EGi [‖ξ− x̂i‖
r]

1/r

(70a)

subject to 1/M
∑
i∈[M ]

EGi [(t− ξ)
+]≤ 1/M

∑
i∈[M ]

(t− x̄i)+ ∀t∈R, (70b)

where EGi [h(ξ)] refers to the expected value of h(ξ) when ξ ∼Gi, and where G is parametrized as

G= 1/M
∑

iGi to model with each Gi how the mass is moved from x̂i to create the distribution G.

By Jensen inequality, we have that for any feasible solution {Gi}Mi=1 to problem (70), the candidate
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{δµi}Mi=1, where δx refers to the Dirac measure that puts all its mass at x and where µi := EGi [xi],

is also feasible since:

1/M
∑
i∈[M ]

Eδµi [(t− ξ)
+] = 1/M

∑
i∈[M ]

(t−EGi [ξ])
+ ≤ 1/M

∑
i∈[M ]

EGi [(t− ξ)
+]≤ 1/M

∑
i∈[M ]

(t− x̄i)+

and achieves a lower objective value since again1/M
∑
i∈[M ]

Eδµi [‖ξ− x̂i‖
r]

1/r

=

1/M
∑
i∈[M ]

‖EGi [ξ]− x̂i‖
r

1/r

≤

1/M
∑
i∈[M ]

EGi [‖ξ− x̂i‖
r]

1/r

.

The problem therefore reduces to:

distSSD(FX̂ ;FX̄) = minimize
µ

1/M
∑
i∈[M ]

‖µi− x̂i‖r
1/r

subject to 1/M
∑
i∈[M ]

(t−µi)+ ≤ 1/M
∑
i∈[M ]

(t− x̄i)+ ∀t∈R.

Furthermore, by Proposition 3.2 in Dentcheva and Ruszczynski (2003), it further reduces to the

following finite-dimensional convex optimization problem:

distSSD(FX̂ ;FX̄) = minimize
µ

1/M
∑
i∈[M ]

‖µi− x̂i‖r
1/r

(71a)

subject to 1/M
∑
i∈[M ]

(x̄j −µi)+ ≤ 1/M
∑
i∈[M ]

(x̄j − x̄i)+ ∀j ∈ [M ]. (71b)

In the case of r= 1 and r=∞ this can easily be computed as shown in the following proposition.

Proposition 12. Let r= 1, then

distSSD(FX̂ ;FX̄) =

 max
j∈[M ]

1

M

∑
i∈[M ]

(x̄j − x̂i)+− 1

M

∑
i∈[M ]

(x̄j − x̄i)+

+

.

Alternatively, if r=∞, then

distSSD(FX̂ ;FX̄) = minimize
∆

∆ (72a)

subject to 1/M
∑
i∈[M ]

(x̄j −∆− x̂i)+ ≤ 1/M
∑
i∈[M ]

(x̄j − x̄i)+ ∀j ∈ [M ] (72b)

∆∈ [0, max
i
x̄i−min

i
x̂i], (72c)

which can be solved using a bisection on ∆.

. Proof of Proposition 12 We start with the case r= 1. First, we show that

distSSD(FX̂ ;FX̄)≥Υ :=

 max
j∈[M ]

1

M

∑
i∈[M ]

(x̄j − x̂i)+− 1

M

∑
i∈[M ]

(x̄j − x̄i)+

+

.
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Namely,
minimize

µ
1/M

∑
i∈[M ]

|µi− x̂i|

subject to 1/M
∑
i∈[M ]

(x̄j −µi)+ ≤ 1/M
∑
i∈[M ]

(x̄j − x̄i)+ ∀j ∈ [M ]

=


minimize

∆
1/M

∑
i∈[M ]

|x̂i + ∆i− x̂i|

subject to 1/M
∑
i∈[M ]

(x̄j − x̂i−∆i)
+ ≤ 1/M

∑
i∈[M ]

(x̄j − x̄i)+ ∀j ∈ [M ]

=


minimize

∆
1/M

∑
i∈[M ]

|∆i|

subject to 1/M
∑
i∈[M ]

(x̄j − x̂i−∆i)
+ ≤ 1/M

∑
i∈[M ]

(x̄j − x̄i)+ ∀j ∈ [M ]

≥


minimize

∆
1/M

∑
i∈[M ]

|∆i|

subject to 1/M
∑
i∈[M ]

(x̄j − x̂i)+− |∆i| ≤ 1/M
∑
i∈[M ]

(x̄j − x̄i)+ ∀j ∈ [M ]

=


minimize

∆
1/M

∑
i∈[M ]

|∆i|

subject to 1/M
∑
i∈[N ]

|∆i| ≥ 1/M
∑
i∈[M ]

(x̄j − x̂i)+− 1/M
∑
i∈[M ]

(x̄j − x̄i)+ ∀j ∈ [M ]

=Υ.

We now show that distSSD(FX̂ ;FX̄)≤Υ by identifying a solution µ that is feasible in problem

(71) and achieves an objective value of Υ. In particular, we set µi := max(B, x̂i) for some B ≥ 0 such

that g(B) := (1/M)
∑

i∈[M ] |max(B, x̂i)− x̂i| = (1/M)
∑

i∈[M ] max(B, x̂i)− x̂i = Υ. This is always

possible since g(B) is continuous and non-decreasing, and returns g(0) = 0 and limB→∞ g(B) =∞.

We are left with showing that constraint (71b) is satisfied. In doing so, we identify to cases. First,

the cases where x̄j <B, then the others. If j is such that x̄j <B, then:

1/M
∑
i∈[M ]

(x̄j−µi)+ = 1/M
∑
i∈[M ]

(x̄j−max(B, x̂i))
+ ≤ 1/M

∑
i∈[M ]

(x̄j−B)+ = 0≤ 1/M
∑
i∈[M ]

(x̄j− x̄i)+.

In the case that x̄j >B,

1/M
∑
i∈[M ]

(x̄j −µi)+ = 1/M
∑

i∈[M ]:x̂i≥B

(x̄j − x̂i)+ + 1/M
∑

i∈[M ]:x̂i<B

(x̄j −B)+

= 1/M
∑

i∈[M ]:x̂i≥B

(x̄j − x̂i)+ + 1/M
∑

i∈[M ]:x̂i<B

(x̄j − x̂i + x̂i−B)

= 1/M
∑
i∈[M ]

(x̄j − x̂i)+− 1/M
∑

i∈[M ]:x̂i<B

(B− x̂i)
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= 1/M
∑
i∈[M ]

(x̄j − x̂i)+−Υ

≤ 1/M
∑
i∈[M ]

(x̄j − x̂i)+− 1

M

∑
i∈[M ]

(x̄j − x̂i)+ +
1

M

∑
i∈[M ]

(x̄j − x̄i)+

= 1/M
∑
i∈[M ]

(x̄j − x̄i)+.

Alternatively, in the case of r =∞, problem (71) reduces to (72), which searches for a solution

of the form µi := x̂i + ∆ to problem (71). Such a solution is optimal for (71) since for any solution

µ to problem (71), one can construct the candidate µ′ := x̂+ ‖x̂−µ‖∞ which is also feasible and

achieves the same objective value. �
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