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A decision maker is often confronted with situations where he has incomplete knowledge

about some of the parameters of the problem that he is addressing: e.g ., market demand,

future cost of merchandise, or quality of the available resources. While a simple approach

that lets these parameters take their most likely values might lead to good solutions, it can

easily lead to unexpected results in general. To avoid unnecessary deceptions, one should

instead modify his decision model so that it accounts for the uncertainty that is present.

At a conceptual level, stochastic programming is an effective approach since it leads to

decisions that directly trades off risk and performance. This is done by requiring that the de-

cision maker formulate a distribution describing the probability that the parameters take any

given value. The framework then offers an exhaustive array of risk measures to choose from

for evaluating the performance of a candidate solution. Unfortunately, while this decision

problem can generally be solved efficiently, the resulting “optimal risk-sensitive solution”

can be misleading in applications where there is ambiguity in the choice of a distribution for

representing the uncertain parameters. This is for instance the case in data-driven problems,

where information about the distribution of parameters is mostly derived from the observa-

tion of historical realizations. After a limited amount of observations, a decision maker is

often unable to fully determine the underlying distribution. This leads to three important

questions for making a stochastic programming approach practical:

1. How accurate is a distribution estimate that is based only on a finite set of samples?

2. Can we account for distribution uncertainty when solving a stochastic program?

3. What is the computational cost associated with taking this uncertainty into account?

This thesis develops new theoretical foundations for a quantitative methodology that provides

answers to these questions and can be used in a wide range of applications.



We first address these questions from a frequentist point of view. In doing so, we initially

derive a new confidence region for the covariance matrix of a random vector given a finite

set of independent and identically distributed samples. Unlike typical confidence regions,

this new one constrains the terms of the matrix jointly with respect to their effect on the

variance of any one dimensional projection of the random vector. The result allows us to

define a “well structured” set of distributions that is guaranteed with high probability to

contain the distribution from which the samples were drawn.

With the objective of accounting for such distribution uncertainty, we analyze the com-

putational difficulty related to solving the distributionally robust form of the stochastic

program. This model suggests making decisions according to the worst distribution in the

uncertainty set. Although the model has been widely studied since Scarf introduced it in

1958, we are the first to use duality theory to show that for cases where the objective is

convex in the decision variables and “piecewise concave” in the parameters, there exists a

polynomial time algorithm that can solve the problem to any level of accuracy. In fact,

we show that, for some of these models, the distributionally robust form of the stochastic

program is much easier to solve than its original form. This analysis leads to a framework

that provides reliable solutions to data-driven problems. Many applications can benefit from

this framework, including both a fleet mix optimization problem and a portfolio selection

problem. In particular, experiments with real stock market data confirm that this approach

accounts more effectively for uncertainty in the future value of financial assets.

In the final part of this work, we choose to adopt a Bayesian approach. In this case,

it is well known that one can choose to represent distribution uncertainty with a hyper-

distribution (i.e., a distribution over distributions). After formulating the distributionally

robust problem in this context, we contrast the robust approach to a percentile criterion

(a.k.a., value-at-risk) which is more natural to consider. A study of Markov decision pro-

cesses leads to interesting new results on the computational difficulties related to solving this

percentile optimization problem. More specifically, we show that while this problem can be

solved efficiently for a class of cost uncertainty, it can also lead to NP-hard problems. After

providing an approximation algorithm for the intractable form, we perform a comparative

study of how the robust and percentile based methods exploit the distribution information

present in a machine replacement problem.


