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A CLASSICAL DISTRIBUTION PROBLEM

I Facility location-transportation model

max.
I∈{0,1}n,x,Y≥0

η

sold product︷ ︸︸ ︷∑
i

∑
j

Yij−


location cost︷ ︸︸ ︷
cTx + KTI +

transportation&production cost︷ ︸︸ ︷∑
i

∑
j

(pi + tij)Yij


s. t.

∑
j

Yij ≤ xi , ∀ i, (Capacity constraint)

∑
i

Yij ≤ dj , ∀ j, (Demand constraint)

xi ≤MIi , ∀ i, (Facility Size constraint)

How can one account for demand uncertainty?
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ROBUST OPTIMIZATION IS NOW A WELL

ESTABLISHED METHODOLOGY
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A CLASSICAL ROBUST DISTRIBUTION PROBLEM
I Robust Facility location-transportation model:

max.
I∈{0,1}n,x

min
d∈D

h(I, x, d)

s. t. xi ≤MIi , ∀ i, (FacilitySize constraint)

where h(I, x, d) is the optimal value of

max
Y≥0

η

sold product︷ ︸︸ ︷∑
i

∑
j
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STATIC ROBUST OPTIMIZATION
I Consider the following static problem:

max.
x∈X ,y

cTx + f Ty (1a)

s. t. Ax + By ≤ Dz ∀z ∈ Z (1b)

where we assume n decision variables, J constraints, and m
uncertain parameters.

I If Z := {z ∈ Rm |Pz ≤ q} is a bounded polyhedral set
defined by K constraints, then

Problem (1) ≡ max.
x∈X ,y,Λ

cTx + f Ty

s. t. Ax + By + Λq ≤ 0
D + ΛP = 0
Λ ≥ 0 ,

where Λ ∈ RJ×K.
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TWO-STAGE ROBUST OPTIMIZATION

I Consider the following two-stage problem:

max.
x∈X

min
z∈Z

h(x, z) (2)

where

h(x, z) := max.
y

cTx + f Ty

s. t. Ax + By ≤ Dz .

I This problem can be represented as

max.
x∈X ,y(·)

min
z∈Z

cTx + f Ty(z)

s. t. Ax + By(z) ≤ Dz ∀z ∈ Z

where y : Rm → Rn′
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COMPLEXITY OF TWO-STAGE ROBUST OPTIMIZATION

I Unfortunately, the two-stage robust optimization problem:

max.
x∈X ,y(·)

min
z∈Z

cTx + f Ty(z)

s. t. Ax + By(z) ≤ Dz ∀z ∈ Z

is known to be intractable in general (see Ben-Tal et al.
2004 for a proof).

I Some exact methods have been proposed but without any
guarantees about convergence time (see Zeng & Zhao
(2013) for a column and constraint generation algorithm)
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AFFINELY ADJUSTABLE ROBUST COUNTERPART

(BEN-TAL ET AL. 2004)
I Only consider affine recourse functions :

y(z) := y + Yz

I The two-stage robust problem reduces to

max.
x∈X ,y,Y

min
z∈Z

cTx + f T(y + Yz) (3a)

s. t. Ax + B(y + Yz) ≤ Dz ∀z ∈ Z , (3b)

I This model can be reformulated as

max.
x∈X ,y,Y,λ,Λ

cTx + f Ty− qTλ (4a)

s. t. YTf + PTλ = 0 (4b)
Ax + By + Λq ≤ 0 (4c)
D− BY + ΛP = 0 (4d)
Λ ≥ 0 , λ ≥ 0 (4e)
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LIFTED AARC (CHEN & ZHANG 2009)
I Consider affine policies on lifted space:

y(b) := y + Y+z+ + Y−z−

where z = z+ − z− and (z+, z−) ∈ Z ′ with

Z ′ := CvxHull
(
{(z+, z−) | ∃ z ∈ Z, z+ = max(0; z), z− = max(0;−z)}

)
I The two-stage robust problem reduces to

max.
x∈X ,y,Y+,Y−

cTx + min
(z+,z−)∈Z′

f T(y + Y+z+ + Y−z−)

s. t. Ax + B(y + Y+z+ + Y−z−) ≤ D(z+ − z−) ∀(z+, z−) ∈ Z ′ .

I We omit to present the reformulation...
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LINEARIZED ROBUST COUNTERPART (LINRC)
Let our robust optimization problem take the form

max.
x∈X

ψ(x) ,

where

ψ(x) := min
z∈Z

max
y

cTx + f Ty (5a)

s. t. Ax + By ≤ Dz (5b)

m

ψ(x) = min
z∈Z,λ≥0

cTx + zTDλ− (Ax)Tλ

BTλ = f
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LINEARIZED ROBUST COUNTERPART (LINRC)

ψ(x) = min
z,λ≥0

cTx + trace(DλzT)− (Ax)Tλ

s. t. Pz ≤ q
BTλ = f

m

ψ(x) = min
z,λ≥0

cTx + trace(DλzT)− (Ax)Tλ

s. t. Pz ≤ q
BTλ = f
PzλT ≤ qλT

BTλzT = fzT
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LINEARIZED ROBUST COUNTERPART (LINRC)

I The following Linearized Robust Counterpart constitute a
tractable conservative approximation to the Two-stage
Robust problem:

max
x∈X

min
z,λ≥0,∆

cTx + trace(D∆)− (Ax)Tλ

s. t. Pz ≤ q
BTλ = f
P∆T ≤ qλT

BT∆ = fzT

I We omit to provide the reformulation...

I ... actually it just so happens that it is exactly equivalent to
the AARC reformulation
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MCCORMICK ENVELOP IMPROVEMENT

(MCE-LINRC)
I Assuming that Z ⊆ [0, 1]m and λ∗i ⊆ [0,ui] ∀i, these can

help:

λizj ≤ uizj ∀i, j
λizj = λi − (1− zj)λi ≥ λi − (1− zj)ui ∀i, j

I The problem becomes (MCE-LinRC):

max
x∈X

min
z,λ≥0,∆

cTx + trace(D∆)− (Ax)Tλ

s. t. Pz ≤ q , BTλ = f
P∆T ≤ qλT , BT∆ = fzT

∆ ≤ uzT

∆ ≥ λem − u(em − z)T

I We omit to provide the reformulation...
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SDP BASED ROBUST COUNTERPART (SDP-LINRC)
I Assuming that Z ⊆ [0, 1]m and λ∗i ⊆ [0,ui] ∀i, SDP can help

tighten the relaxation[
λλT ∆
∆T zzT

]
�
[
λ
z

] [
λT zT ] ⇒

 Λ ∆ λ
∆T Z z
λT zT 1

 � 0

I The problem becomes (SDP-LinRC):

max
x∈X

min
z,λ≥0,∆,Λ,Z

cTx + trace(D∆)− (Ax)Tλ

s. t. Pz ≤ q , BTλ = f
P∆T ≤ qλT , BT∆ = fzT Λ ∆ λ

∆T Z z
λT zT 1

 � 0

trace(Z) ≤ z , trace(Λ) ≤ trace(uλT)

I We omit to provide the reformulation...
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THINGS TO KNOW ABOUT LINRC

1. LinRC is equivalent to AARC.
2. If we replace z = z+ − z− and Z by Z ′, then LinRC is

equivalent to Lifted AARC.
3. LinRC can be improved on using linear/conic valid

inequalities.
I Ex: MCE-LinRC for facility location-transportation problem
I Ex: SDP-RC in Inventory problem

4. Using LinRC, we can find new conditions for optimality of
Lifted AARC.

I Ex: Inventory & newsvendor problems

21 / 37
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ROBUST FACILITY LOCATION-TRANSPORTATION

PROBLEM

max.
I,x

min
z∈Z

h(I, x, z)

s. t. xi ≤MIi, ∀ i, Ii ∈ {0, 1} ∀ i.

where Z captures demand uncertainty and h(I, x, z) is the
achieved net profit defined as

h(I, x, z) = max.
Y

−(cTx + KTI) +
∑

i

∑
j

(η − pi − tij)Yij

s. t.
∑

i

Yij ≤ d̄j + d̂jzj , ∀ j,∑
j

Yij ≤ xi , ∀ i,

Yij ≥ 0 , ∀ i,∀ j.
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MCE-LINRC VS. LIFTED AARC

100 trials, 10 potential points for facilities, 10 customers.
Z(Γ) = {z|‖z‖∞ ≤ 1, ‖z‖1 ≤ Γ}where Γ = 1 to 10.

Lifted AARC MCE-LinRC
A 86% 88%

Max gap 13% 6%
Time (Sec) 3.09 3.72

A: Percentage of trials with optimal solution

24 / 37
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INSPIRATION FOR A PENALTY BASED

APPROXIMATION METHOD

I Using MCE-LinRC is equivalent to adding penalized
excess variables to uncertain constraint in Lifted AARC.

h(I, x, z) := max.
Y,θ

−(cTx + KTI) +
∑

i

∑
j

(η − pi − tij)Yij−
∑

j

ujθj

s. t.
∑

i

Yij ≤ d̄j + d̂jzj+θj , ∀ j

θj ≥ 0 , ∀ j ,

and using a lifted affine decision rule θj := S+
j z+

j + S−j z−j ∀j

25 / 37
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MINIMIZING THE MAX OF SUM OF PIECEWISE LINEAR

CONVEX FUNCTIONS
Many inventory management problems take the form:

min.
x∈X

max
z∈Z

h(x, z) ,

where h(x, z) is piecewise-linear convex function in both x and
z variables.

h(x, z) =
∑

i

max
k

(ci,k(x)Tz + di,k(x)) .

In fact, one can easily express h(x, z) as a second stage problem

h(x, z) := min
y

∑
i

yi

s. t. yi ≥ ci,k(x)Tz + di,k(x) ,∀ i, k

More detail: Gorrissen & den Hertog (2013, EJOR)

27 / 37



INTRODUCTION LINEARIZED ROBUST COUNTERPART FACILITY LOCATION-TRANSPORTATION INVENTORY MANAGEMENT CONCLUSION

MINIMIZING THE MAX OF SUM OF PIECEWISE LINEAR

CONVEX FUNCTIONS
Many inventory management problems take the form:

min.
x∈X

max
z∈Z

h(x, z) ,

where h(x, z) is piecewise-linear convex function in both x and
z variables.

h(x, z) =
∑

i

max
k

(ci,k(x)Tz + di,k(x)) .

In fact, one can easily express h(x, z) as a second stage problem

h(x, z) := min
y

∑
i

yi

s. t. yi ≥ ci,k(x)Tz + di,k(x) ,∀ i, k

More detail: Gorrissen & den Hertog (2013, EJOR)
27 / 37



INTRODUCTION LINEARIZED ROBUST COUNTERPART FACILITY LOCATION-TRANSPORTATION INVENTORY MANAGEMENT CONCLUSION

REVISITING LINRC DERIVATIONS WITH Λ+ := z+λi,k

ψ(x) = max
(z+,z−)∈Z′,λ≥0

∑
i,k

λi,k(ci,k(x)T(z+ − z−) + di,k(x))

s. t.
∑

k

λi,k = 1, ∀ i

which leads to following when using budgeted uncertainty set

ψ(x) ≤ max
z+ ≥ 0, z− ≥ 0,

Λ+ ≥ 0,Λ− ≥ 0, λ ≥ 0

∑
i,k

ci,k(x)T(Λ+
i,k − Λ−i,k) + di,k(x)λi,k

s. t.
∑

k

λi,k = 1, ∀ i

z+ + z− ≤ 1 , eT
m(z+ + z−) = Γ∑

k

Λ+
i,k = z+ ,

∑
k

Λ−i,k = z−, ∀ i

Λ+
i,k + Λ−i,k ≤ λi,k , eT

m(Λ+
i,k + Λ−i,k) = Γλi,k, ∀ i, k28 / 37
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EXAMPLE 1: ROBUST INVENTORY PROBLEM

min
u

max
d∈D

T∑
t=1

ctut + Kt1{ut>0} + max

{
ht(x1 +

∑t
j=1(uj − dj)),

−pt(x1 +
∑t

j=1(uj − dj))

}

I Objective: Minimizing ordering and shortage/holding cost
I Decision variable (ut): Stock ordered at the beginning of

the tth period,
I Uncertainty (dt): Demand during the tth period.
I Uncertainty characterization : dt := d̄t + d̂tz with z ∈ Z(Γ),

the budgeted uncertainty
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SDP-LINRC VS. LIFTED AARC

Comparison of average performance over a set of 1000
randomly generated inventory problem instances with 10
periods.

Method
Γ Interval Lifted AARC SDP-LinRC

3
≤0.0001% (optimal) 52.6% 56.6%
≤1% (near optimal) 90.4% 98.1%

Maximum Gap 4.6% 2.0%

5
≤0.0001% (optimal) 57.3% 63.5%
≤1% (near optimal) 96.6% 99.70%

Maximum Gap 2.6% 1.3%
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ROBUST MULTI-ITEM NEWSVENDOR
I The following robust multi-item newsvendor problem can

be solved optimally using a LinRC model

max.
x∈X

min
ζ∈Z(Γ)

∑
i

(ri−ci)xi−max

{
(ri − si)(xi − d̄i − d̂izi) ,

pi(d̄i + d̂izi − xi)

}
when using the budgeted uncertainty set with integer
budget.

I Proof relies on fact that vertices of relaxed feasible set for
(z+, z−,Λ+,Λ−, λ) are integer hence the linearisation
Λ+

i,k = z+λi,k and Λ−i,k = z−λi,k are exact due to constraints:

λ ∈ [0, 1] , z+ ∈ [0, 1]m , z− ∈ [0, 1]m

Λ+
i,k ≥ 0 , Λ−i,k ≥ 0∑
k

Λ+
i,k = z+ ,

∑
k

Λ−i,k = z−

Λ+
i,k + Λ−i,k ≤ λi,k
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DISTRIBUTION FREE MULTI-ITEM NEWSVENDOR

The following distributionally robust problem can also be
solved optimally using a LinRC

min.
x∈X

max
F∈D

EF

[∑
i

(ri − ci)xi −max

{
(ri − si)(xi − d̄i − d̂izi) ,

pi(d̄i + d̂izi − xi)

}]
,

where

D =

F ∈M

∣∣∣∣∣∣∣∣
PF(z ∈ Z(Γ)) = 1
EF[z] = µ
EF[(z− µ)+] ≤ r+

EF[(µ− z)+] ≤ r−

 .
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CONCLUSION

1. Conservative tractable approximations of two-stage robust
optimization can be obtained using the LinRC approach

I A simple application of LinRC is equivalent to Lifted
AARC

2. LinRC can be improved by using linear/conic valid
inequalities

I Ex: Facility location-transportation problem
(MCE-LinRC≡ Lifted AARC+penalty method)

I Ex: Multi-period inventory problem (SDP-LinRC is tighter)
3. LinRC help identify optimality conditions of Lifted AARC

I Ex: Inventory problem with simplex uncertainty set
I Ex: Multi-item newsvendor problem with budgeted

uncertainty set
I Ex: Distribution free Multi-item newsvendor problem

information limited to budget, mean and first order partial
moment.
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Questions & Comments ...

... Thank you!
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