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Introduction

The Portfolio Selection Problem
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An individual meets with his financial advisor to tell him he
wishes to invest in a given industrial sector, country, etc.
Since uncertain factors affect performance, a “good” portfolio
is one where the risks of losses are best justified by the
potential gains
How can one trade-off optimally the risks and the returns
taking into account his own perception of what is a serious
risk?
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Introduction

Von Neumann-Morgenstern Expected Utility

If the investor agrees with the following axioms:
1 Completeness : He can order any two gambles
2 Transitivity : H1 � H2 � H3 ⇒ H1 � H3

3 Continuity : If H1 � H2 � H3 then there is a p such that
H2 ∼ pH1 + (1− p)H3

4 Independence : If H1 � H2 then
pH1 + (1− p)H3 � pH2 + (1− p)H3 for all p and H3

then the preference he expresses between any two gambles must be
representable by an expected utility measure:

H1 � H2 ⇔ E [u(H1)] ≥ E [u(H2)]
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Introduction

Expected Utility Framework

When applying the expected utility framework to a decision
problem:

maximize
x∈X

E [u(h(x , ξ))] ,

where x = decisions, ξ = uncertain parameters, h(x , ξ) = profit,

it is assumed that we know:
The distribution of the random vector ξ
A utility function that matches investor’s attitude to risk
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Introduction

Difficulties encountered in practice

Difficulties of developing an accurate probabilistic model:
Need to collect enough observations
Need to consult with experts of the field of practice
Need to make simplifying assumptions
Unforeseen events (e.g., economic crisis) might occur

Difficulties of developing an accurate utility function:
Need to compare a large number of gambles
Need to accept structural properties
Perception might be biased
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Introduction

Modern Robust Optimization Framework

Generally attributed to Ben-Tal & Nemirovski (1998), this
framework implements a worst-case approach to dealing with model
ambiguity.

max.
x∈X

{h(x , y)}y∈Y → max.
x∈X

inf
y∈Y

h(x , y)

Success of the robust optimization relies in part on applying duality
to combine inner and outer problems

max.
x∈X

min
y :Ay≤b

yTx ≡ max.
x∈X

min
y

max
λ≥0

yTx + λT (Ay − b)

≡ max.
x∈X

max
λ≥0

min
y

yTx + λT (Ay − b)

≡ max.
x∈X ,λ≥0

−bTλ s.t. x + ATλ = 0
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Introduction

Robust Expected Utility

In this talk, we investigate how to address model ambiguity in the
expected utility framework using robust optimization

Distributionally robust optimization

maximize
x∈X

inf
F∈D

EF [u(h(x , ξ))]

Preference robust optimization

maximize
x∈X

“ inf
u∈U

EF [u(h(x , ξ))] ”
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Introduction

Outline

1 Introduction

2 Distributionally Robust Optimization

3 Preference Robust Optimization

4 Conclusion
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Distributionally Robust Optimization
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Distributionally Robust Optimization

Dealing with model ambiguity: Ellsberg Paradox

Consider an urn with 30 blue balls and 60 other balls that are either
red or green (you don’t know how many are red or green).

Experiment 1: Choose among the following two gambles
Gamble A: If you draw a blue ball, then you win 100$
Gamble B: If you draw a red ball, then you win 100$

Experiment 2: Choose among the following two gambles
Gamble C: If you draw blue or green ball, then you win 100$
Gamble D: If you draw red or green ball, then you win 100$

If you clearly prefer Gamble A & D, then you are averse to model
ambiguity
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Distributionally Robust Optimization

Distributionally Robust Optimization

Let’s consider that the choice of F is ambiguous
Use available information to define D, such that F ∈ D

Distributionally Robust Optimization values the lowest
performing possible stochastic model

(DRO) maximize
x∈X

inf
F∈D

EF [u(h(x , ξ))]

Important milestones:
1958: H. Scarf introduces DRO
1989: I. Gilboa et al. introduces maxmin expected utility
2007: I. Popescu solves µ-Σ portfolio prob.
2010: Bertsimas et al. solves linear µ-Σ prob.
2010: Goh et al. develops library for Matlab
2010: Delage et al. solves concave-convexe S-µ̃-Σ̃max prob.
2014: Wiesemann et al. solves or approximates conic prob.
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Distributionally Robust Optimization

A Classic Reduction I

Let’s make three assumptions about E [u(h(x , ξ))].
1 The profit function is concave in x and convex in ξ

In portfolio optimization, h(x , ξ) = ξTx
2 The utility function is piecewise linear concave :

u(y) = min1≤k≤K aky + bk
3 The information about F is captured by

D(γ) =

F

∣∣∣∣∣∣
P(ξ ∈ S) = 1
‖E [ξ]− µ̂‖2

Σ̂−1/2 ≤ γ1
E [(ξ − µ̂)(ξ − µ̂)T] � (1 + γ2)Σ̂


12 E. Delage Model Ambiguity in the Expected Utility Framework



Distributionally Robust Optimization

A Classic Reduction II

The DRO problem with D(γ) is equivalent to

max.
x∈X

inf
F

EF [u(h(x , ξ))]

s.t. PF (ξ ∈ S) = 1
‖EF [ξ]− µ̂‖2

Σ̂−1/2 ≤ γ1
EF [(ξ − µ̂)(ξ − µ̂)T] � (1 + γ2)Σ̂

For portfolio selection, if S = polyhedron or ellipsoid, then
DRO equivalent to semi-definite program.
E.g., when S = Rm, constraint (?) can be replaced by[

Q (q + akC2yk)/2
(q + akC2yk)T/2 akc

T
1 x + bk − r

]
� 0 , ∀ k
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)
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Distributionally Robust Optimization
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Distributionally Robust Optimization

Distributionally Robust Portfolio Optimization

Let’s consider the case of portfolio optimization:

max.
x∈X

min
F∈D

EF [u(ξTx)] ,

where xi is how much is invested in stock i with future return ξi .

Does the robust solution perform better than solution of expected
utility problem with fixed F̂?

D = D(γ) vs. D = {F̂}
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Distributionally Robust Optimization

Experiments in Portfolio Optimization

30 stocks tracked over years 1992-2007 using Yahoo! Finance
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Distributionally Robust Optimization

Wealth Evolution for 300 Experiments
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10% and 90% percentiles are indicated periodically.

79% of time, the DRO outperformed the classical approach
67% improvement on average using DRO with D(γ)
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Distributionally Robust Optimization

Other applications

Territory partitioning for multi-vehicle routing problem with J.
G. Carlsson Details

Fleet mix optimization problem with S. Arroyo and Y. Ye
Details

Quadratic knapsack problem with J. Cheng and A. Lisser
Multi-item newsvendor problem with A. Ardestani-Jaafari
Many others in scheduling, environmental policies, smart grid
management, etc.
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Preference Robust Optimization

Outline

1 Introduction

2 Distributionally Robust Optimization

3 Preference Robust Optimization

4 Conclusion
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Preference Robust Optimization

How does One Assesses Risk Tolerance ?

Here are two questions from a survey proposed by [Grable &
Lytton, Financial Services Review (1999)].

You have just finished saving for a “once-in-a-lifetime”
vacation. Three weeks before you plan to leave, you lose your
job. You would:

1 Cancel the vacation
2 Take a much more modest vacation
3 Go as scheduled, reasoning that you need the time to prepare

for a job search
4 Extend your vacation, because this might be your last chance

to go first-class
You are on a TV game show and can choose one of the
following. Which would you take?

1 $1,000 in cash
2 A 50% chance at winning $ 5000
3 A 25% chance at winning $ 10,000
4 A 5% chance at winning $100,000
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Preference Robust Optimization

Common Utility Function Estimation Techniques I

Parametric approach:
One assumes that the function has a specific parametric form

Negative exponential utility (CARA)
Power utility (CRRA)
HARA (incr/decreasing absolute/relative risk aversion)

u(y) =
1− η
η

(
ay

1− η
+ b

)η
Ask enough questions to identify the parameters

Why it might fail ?
Investor must commit to global structure
Ignores how confident we are in the final choice of parameters
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Preference Robust Optimization

Common Utility Function Estimation Techniques II

Non-parametric approach:
Identify the certainty equivalents of a list of lotteries. By
answering:

What is the smallest amount ci of money you would take
instead of playing a lottery Li ?

Find a piecewise linear utility function that satisfies these
certainty equivalents

E [u(Li )] = u(ci ) ∀i

Why it might fail ?
Expresses risk neutrality between breakpoints
Ignores how confident we are in the final choice of u(·)
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Preference Robust Optimization

Applying the Robust Optimization Framework

Information can be used to characterize a set U of plausible utility
functions. I.e., any u(·) such that:

Global info:
Risk aversion : u(·) is concave
Prudence : u′(·) is convex
S-shaped : u(·) convex-concave

Local info :
E [u(Wk)] ≥ E [u(Yk)] ∀k

Unfortunately, a direct application of RO is meaningless

maximize
x∈X

inf
u∈U

E [u(h(x , ξ))] = −∞

Even if we force u(0) = 0 u(1) = 1, model promotes risk neutrality.
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Preference Robust Optimization

Ambiguity about the Certainty Equivalent

Given a decision x , we can start by defining an interval
[CE−(h(x , ξ)),CE+(h(x , ξ))] of plausible minimum certain
return that decision maker would prefer to random profit
h(x , ξ)

[                      ] 
CE-(h(x, )) CE+(h(x, )) Cash amount 
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Preference Robust Optimization

Robust Certainty Equivalent Approach

Theorem
Identifying the decision that maximizes the lowest perceived CE

max.
x∈X

CE−(h(x , ξ)) , a.k.a. max.
x∈X

inf
u∈U

CEu(h(x , ξ)) ,

can be done efficiently.

Proof:
Objective is quasiconcave and reduces to

max.
x ,t

t s.t. CEu(h(x , ξ)) ≥ t ∀ u ∈ U

or equiv. max
t

t s.t. max
x∈X

inf
u∈U

E [u(h(x , ξ))]− u(t) ≥ 0

Infimum over u ∈ U can be reduced to finite dimensional
program so that duality can be applied details
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Preference Robust Optimization

A Tool for Interacting with Investors
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Preference Robust Optimization

Numerical experiments

Obtained from Yahoo! Finance historical stock returns for 350
companies from 1993 to 2011
Ran extensive amount of trials using last 50 weekly returns to
decide investment among 10 assets for next week
In each experiment, the investor has an unknown risk averse
utility function and compares up to 80 pairs of gambles
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Preference Robust Optimization

Experimental Results

Function Portfolio’s true CE value (in perc. point)
optimized 5 questions 20 questions 80 questions
Exponential -0.05 -0.12 -0.13
Fitted PWL -0.60 -0.11 0.05
Worst-case -0.14 -0.08 0.06

Worst-case prudent -0.13 -0.05 0.08
True «−u

′′(y)y
u′(y) = 20

y » 0.12 0.12 0.12

Observations:
Using wrong utility function can mislead the choice of portfolio
Robust approach makes good use of available preference info
Quality of portfolio is improved as more information is provided
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Preference Robust Optimization

Accounting for elicitation errors

Since “to err is human”, we should account for mislabelling of
the compared lotteries
Hence, that for some rand perception noise ε, we have that

E [u(Wk)] + εk ≥ E [u(Yk)]

In that case, one could consider u(·) plausible as long as
∃δ ≥ 0 such that

∑
k δk ≤ Γ and that

E [u(Wk)] + δk ≥ E [u(Yk)] ∀ k

This can easily be incorporated to the model
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Conclusion

Conclusion & Future Work

There is some wisdom in accounting for ambiguity about the
expected utility model

Disregarding it can be misleading

Accounting for distribution ambiguity or ambiguity in risk
preferences isn’t computationally demanding

It remains to further study whether both ambiguities can be
accounted for jointly (see Haskell et al. 2014)

Studying the sensitivity of optimal solution with respect to
modelled ambiguity can be helpful

Value of stochastic modelling
Guidance for risk tolerance assessment
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Conclusion

Questions & Comments ...

... Thank you!
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Dealing with model ambiguity: Ellsberg Paradox

Consider an urn with 30 blue balls and 60 other balls that are either
red or green (you don’t know how many are red or green).

Experiment 1: Choose among the following two gambles
Gamble A: If you draw a blue ball, then you win 100$
Gamble B: If you draw a red ball, then you win 100$

Experiment 2: Choose among the following two gambles
Gamble C: If you draw blue or green ball, then you win 100$
Gamble D: If you draw red or green ball, then you win 100$

If you clearly prefer Gamble A & D, then you are averse to model
ambiguity
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Distributionally Robust Partitioning

Outline

5 Distributionally Robust Partitioning

6 Value of Stochastic Modelling in Fleet Composition

7 Robust Certainty Equivalent
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Distributionally Robust Partitioning

Multi-Vehicle Routing on a Planar Region

Divide a planar region into K subregions, each serviced by a
different vehicle, so that the total workload be most evenly
distributed among the fleet
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Distributionally Robust Partitioning

Multi-Vehicle Routing on a Planar Region

Divide a planar region into K subregions, each serviced by a
different vehicle, so that the total workload be most evenly
distributed among the fleet
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Distributionally Robust Partitioning

Multi-Vehicle Routing on a Planar Region

Divide a planar region into K subregions, each serviced by a
different vehicle, so that the total workload be most evenly
distributed among the fleet
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Distributionally Robust Partitioning

Distributionally Robust Partitioning

Given D, we partition so that the largest workload over the
worst distribution of demand points is as small as possible

min.
{R1,R2,...,RK}

sup
F∈D

{
max

i
E[TSP({ξ1, ξ2, ..., ξN} ∩ Ri )]

}
,

A side product is to characterize for any partition what is a
worst-case distribution of demand locations
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Distributionally Robust Partitioning

Distributionally Robust Partitioning

We simulated three partition schemes on a set of randomly
generated parcel delivery problems where the territory needed to be
divided into two regions and the demand is drawn from a mixture
of truncated Gaussian distribution
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Distributionally Robust Partitioning

Border Patrol Workload Partitioning

Robust partitions of the USA-Mexico border obtained using our
branch & bound algorithm.

Back to DRO applications
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Value of Stochastic Modelling in Fleet Composition
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Value of Stochastic Modelling in Fleet Composition

The Robustness of the Deterministic Solution

If we are risk neutral we might not even need distribution
information

Theorem
The solution of

maximize
x∈X

E[h(x , µ)]

is optimal with respect to

maximize
x∈X

inf
F∈D(µ,Ψ)

EF [h(x , ξ)] ,

for any set of convex functions Ψ with

D(µ,Ψ) =

{
F

∣∣∣∣ E[ξ] = µ
E[ψ(ξ)] ≤ 0 , ∀ψ ∈ Ψ

}
.
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Value of Stochastic Modelling in Fleet Composition

The Value of Stochastic Modelling

Consider the situation:
1 We know of a set D such that F ∈ D
2 We have a candidate solution x1 in mind
3 Is it worth developing a stochastic model: D → F?

(a) If yes, then develop a model & solve it
(b) Otherwise, implement x1

The Value of Stochastic Modelling (VSM) gives an optimistic
estimate of the value of obtaining perfect information about F .

VSM(x1) := sup
F∈D

{
max
x2

EF [h(x2, ξ)]− EF [h(x1, ξ)]

}

Theorem
Unfortunately, evaluating VSM(x1) exactly is NP-hard in general.
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Value of Stochastic Modelling in Fleet Composition

Bounding the Value of Stochastic Modelling

Theorem
If S ⊆ {ξ | ‖ξ‖1 ≤ ρ}, an upper bound can be evaluated in
O(d3.5 + d TDCP) using:

UB(x1, ȳ1) := min
s,q

s + µTq

s.t. s ≥ α(ρe i )− ρeT
i q , ∀ i ∈ {1, ..., d}

s ≥ α(−ρe i ) + ρeT
i q , ∀ i ∈ {1, ..., d} ,

where α(ξ) = maxx2 h(x2, ξ)− h(x1, ξ; ȳ1).
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Value of Stochastic Modelling in Fleet Composition

Are Airlines Adventurous in their Fleet Acquisition?

Fleet composition is a difficult decision problem:
Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
e.g., passenger demand, fuel prices, etc.

Yet, most airline companies sign these contracts based on a
single scenario of what the future may be.

Are airlines companies being neglectful?
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Value of Stochastic Modelling in Fleet Composition

Mathematical formulation for Fleet Mix Problem

The fleet composition problem is a stochastic mixed integer LP

max.
x

E [− oTx︸︷︷︸
ownership cost

+ h(x , p̃, c̃ , L̃)︸ ︷︷ ︸
future profits

] ,

with h(x , p̃, c̃ , L̃) :=

max
z≥0,y≥0,w

∑
k

(
∑
i

flight profit︷ ︸︸ ︷
p̃ki w

k
i −

rental cost︷ ︸︸ ︷
c̃k(zk − xk)+ +

lease revenue︷ ︸︸ ︷
L̃k(xk − zk)+ )

s.t. wk
i ∈ {0, 1} , ∀ k, ∀ i &

∑
k

wk
i = 1 , ∀ i } Cover

yk
g∈in(v) +

∑
i∈arr(v)

wk
i = yk

g∈out(v) +
∑

i∈dep(v)

wk
i , ∀ k, ∀ v } Balance

zk =
∑

v∈{v |time(v)=0}

(yk
g∈in(v) +

∑
i∈arr(v)

wk
i ) , ∀k } Count
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Value of Stochastic Modelling in Fleet Composition

Experiments in Fleet Mix Optimization

We experimented with three test cases :

1 3 types of aircraft, 84 flights, σp̃i/µp̃i ∈ [4%, 53%]

2 4 types of aircraft, 240 flights, σp̃i/µp̃i ∈ [2%, 20%]

3 13 types of aircraft, 535 flights, σp̃i/µp̃i ∈ [2%, 58%]

Results:
Test CPU Time DRO sub-optimality
cases DRO SP with F̂ Under F̂ ∀ F ∈ D
#1 0.6 s 3 min 0.001% < 6%
#2 1 s 14 min 0.001% < 1%
#3 5 s 21 h 0.003% < 7%

Conclusions:

It’s wasteful to invest more than 7% of profits in extra info

Back to DRO applications
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Robust Certainty Equivalent

Outline

5 Distributionally Robust Partitioning
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Robust Certainty Equivalent

Constructing the Worst-case Utility I

Define S = {y1, y2, ..., yN} contains support of Wk and Yk ,
and t.
Define the values αi := u(yi )

y1 y2 y3 y4
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Robust Certainty Equivalent

Constructing the Worst-case Utility II

Once all (yi , u(yi )) are fixed, identify the worst-case utility
value for u(h(x , ξ)).

(y1,α1)

β1

y1 y2 y3 y4

(y2,α2)

(y3,α3)
(y4,α4)

( , ))
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Robust Certainty Equivalent

Constructing the Worst-case Utility II

Once all (yi , u(yi )) are fixed, identify the worst-case utility
value for u(h(x , ξ)).

(y1,α1)

β1
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v
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Robust Certainty Equivalent

LP reformulation of infu∈U E [u(h(x , ξ))]− u(t)

We wish to find an x s.t. the following finite dimensional LP has a
positive optimal value:

min.
α,β,v ,w

∑
i

pi (vih(x , ξi ) + wi )− αt

s.t. viyi + wi ≥ αj ∀ i , j (Risk aversion at h(x , ξi ))∑
j

P(Wk = yj)αj ≥
∑
j

P(Yk = yj)αj ∀ k (Local pref’s)

αj+1 ≤ αj + βj(yj+1 − yj) ∀ j (Risk aversion at yj ’s)
αj−1 ≤ αj + βj(yj−1 − yj) ∀ j
v ≥ 0, β ≥ 0 (Monotonicity)

After taking the dual of this LP, we can join the maximization with
x ∈ X

Back to talk
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