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A CLASSICAL DISTRIBUTION PROBLEM

I A multinational retailing corporation wishes to construct
new warehouses

Warehouse sites 
Retailers
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A CLASSICAL DISTRIBUTION PROBLEM

1. Choose where to build the new warehouses

Warehouse sites 
Retailers
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A CLASSICAL DISTRIBUTION PROBLEM

2. Observe amount of weekly demand

Warehouse sites 
Retailers
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A CLASSICAL DISTRIBUTION PROBLEM

3. Transport goods to retailers to maximize profits

Warehouse sites 
Retailers
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A CLASSICAL DISTRIBUTION PROBLEM

I Facility location-transportation model

maximize
I∈{0,1}n,x,Y≥0

η

sold product︷ ︸︸ ︷∑
i

∑
j

Yij−


location cost︷ ︸︸ ︷
cTx + KTI +

transportation&production cost︷ ︸︸ ︷∑
i

∑
j

(pi + tij)Yij


s. t.

∑
j

Yij ≤ xi , ∀ i, (Capacity constraint)

∑
i

Yij ≤ dj , ∀ j, (Demand constraint)

xi ≤MIi , ∀ i, (Facility Size constraint)

How can one account for demand uncertainty?
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ROBUST OPTIMIZATION IS NOW A WELL

ESTABLISHED METHODOLOGY

Ben-Tal & Nemirovski’s  

« Robust Convex 

Optimization »
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A CLASSICAL ROBUST DISTRIBUTION PROBLEM
I Robust Facility location-transportation model:

maximize
I∈{0,1}n,x

min
d∈D

h(I, x, d)

s. t. xi ≤MIi , ∀ i, (Facility Size constraint)

where h(I, x, d) is the optimal value of

max
Y≥0

η

sold product︷ ︸︸ ︷∑
i

∑
j

Yij−


location cost︷ ︸︸ ︷
cTx + KTI +

transportation&production cost︷ ︸︸ ︷∑
i

∑
j

(pi + tij)Yij


s. t.

∑
j

Yij ≤ xi , ∀ i, (Capacity constraint)

∑
i

Yij ≤ dj , ∀ j, (Demand constraint)
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STATIC ROBUST LINEAR PROGRAM

[BEN-TAL & NEMIROVSKI (2000), 1296 CITATIONS !]

I Consider the following static problem:

maximize
x∈X ,y

cTx + f Ty (1a)

s. t. Ax + By ≤ D(x)z , ∀z ∈ Z (1b)

where we assume nx + ny decision variables, J constraints,
and m uncertain parameters.

I If Z := {z ∈ Rm | z ≥ 0, Pz = q} is a non-empty polyhedral
set defined by K constraints, then

Problem (1) ≡ maximize
x∈X ,y,Λ

cTx + f Ty

s. t. Ax + By + Λq ≤ 0
D(x) + ΛP ≥ 0 ,

where Λ ∈ RJ×K.
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TWO-STAGE ROBUST LINEAR PROGRAMS

[BEN-TAL ET AL. (2004), 824 CITATIONS !]

I Consider the following two-stage problem:

(TSRLP) maximize
x∈X ,y(·)

min
z∈Z

cTx + f Ty(z)

s. t. Ax + By(z) ≤ D(x)z ∀z ∈ Z

where y : Rm → Rny

I This problem can also be represented as

(TSRLP) maximize
x∈X

min
z∈Z

h(x, z)

where

h(x, z) := max
y

cTx + f Ty

s. t. Ax + By ≤ D(x)z .
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COMPLEXITY OF TWO-STAGE ROBUST LINEAR

PROGRAMS
I Unfortunately, the two-stage robust linear program is

known to be intractable in general [Ben-Tal et al. (2004)].

I Conservative approximation obtained by using affine
adjustment functions :

y(z) := y + Yz

The two-stage robust problem reduces to

(AARC) maximize
x∈X ,y,Y

min
z∈Z

cTx + f T(y + Yz)

s. t. Ax + B(y + Yz) ≤ D(x)z ∀z ∈ Z

I Some exact methods have been proposed but without
polynomial time convergence guarantees [Zeng & Zhao (2013)]

13 / 34



Introduction Background Copos(K) for TSRLP Applications Conclusion

OUTLINE

INTRODUCTION

BACKGROUND ON TWO-STAGE ROBUST LINEAR PROGRAMS

COPOSITIVE PROGRAMMING REFORMULATIONS

APPLICATIONS

CONCLUSION

14 / 34



Introduction Background Copos(K) for TSRLP Applications Conclusion

COPOSITIVE PROGRAMMING REFORMULATION I
I Assumptions

1. Z is a non-empty and bounded polyhedral set
2. The TSRLP problem is bounded above, i.e.
∀ x ∈ X , ∃z ∈ Z , h(x, z) <∞.

I Let our robust optimization problem take the form

maximize
x∈X

ψ(x) ,

where

ψ(x) := min
z∈Z

max
y

cTx + f Ty (2a)

s. t. Ax + By ≤ D(x)z (2b)
I Since (2) is bounded, strong LP duality applies

ψ(x) = min
z∈Z,λ≥0

cTx + zTD(x)Tλ− (Ax)Tλ

BTλ = f
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COPOSITIVE PROGRAMMING REFORMULATION I

I The function ψ(x) minimizes a non-convex quadratic
function over a polyhedron in the non-negative orthant

ψ(x) = min
z̃≥0

cTx + z̃TQ̃(x)z̃− c̃(x)Tz̃

Ãz̃ = b̃ ,

where z̃ := [λT zT] ∈ RJ+m and where

Q̃(x) :=

[
0 (1/2)D(x)

(1/2)D(x)T 0

]
c̃(x) :=

[
−(1/2)Ax

0

]
Ã :=

[
BT 0
0 P

]
b̃ :=

[
d
q

]
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COPOSITIVE PROGRAMMING REFORMULATION I

I The function ψ(x) minimizes a non-convex quadratic
function over a polyhedron in the non-negative orthant

ψ(x) = min
z̃≥0

cTx + trace(Q̃(x)Tz̃z̃T)− c̃(x)Tz̃

Ãz̃ = b̃
Ãz̃z̃T = b̃z̃T ,

where z̃ := [λT zT] ∈ RJ+m and where

Q̃(x) :=

[
0 (1/2)D(x)

(1/2)D(x)T 0

]
c̃(x) :=

[
−(1/2)Ax

0

]
Ã :=

[
BT 0
0 P

]
b̃ :=

[
d
q

]
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COPOSITIVE PROGRAMMING REFORMULATION I
I The function ψ(x) has an equivalent convex optimization

reformulation (Z̃ := z̃z̃T) [Burer (2009)]

ψ(x) = min
Z̃,z̃

cTx + trace(Q̃(x)TZ̃)− c̃(x)Tz̃

Ãz̃ = b̃
ÃZ̃ = b̃z̃T[

Z̃ z̃
z̃T 1

]
∈ KCP & rank

([
Z̃ z̃
z̃T 1

])
= 1

where KCP is the cone of completely positive matrices, i.e.

KCP :=

{
M

∣∣∣∣∣M =
∑
k∈K

z̃kz̃T
k for some {z̃k}k∈K ⊂ RJ+m+1

+

}
.
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COPOSITIVE PROGRAMMING REFORMULATION I
I The function ψ(x) has an equivalent convex optimization

reformulation (Z̃ := z̃z̃T) [Burer (2009)]
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Z̃,z̃

cTx + trace(Q̃(x)TZ̃)− c̃(x)Tz̃

Ãz̃ = b̃
ÃZ̃ = b̃z̃T[

Z̃ z̃
z̃T 1

]
∈ KCP & rank

([
Z̃ z̃
z̃T 1

])
= 1

where KCP is the cone of completely positive matrices, i.e.
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k∈K
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}
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COPOSITIVE PROGRAMMING REFORMULATION I

I By conic duality we get

ψ(x) ≥ max
W̃,w̃,ṽ,t

c̃(x)Tx + b̃Tw̃− t

s. t. ṽ = c̃(x)− (1/2)(ÃTw̃− W̃Tb̃)[
Q̃(x)− (1/2)(W̃TÃ + ÃTW̃) ṽ

ṽT t

]
∈ KCop ,

where KCop is the cone of copositive matrices, i.e.

KCop :=
{

M
∣∣∣M = MT, zTMz ≥ 0 , ∀ z ∈ RJ+m+1

+

}
.
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COPOSITIVE PROGRAMMING REFORMULATION I

Theorem 1 [Xu & Burer (2016), Hanasusanto & Kuhn (2016)]
If the TSRLP problem has “complete recourse”, i.e.

∃ y ∈ Rny , By < 0 ,

then the copositive program

(Copos1) maximize
x∈X ,W̃,w̃,ṽ,t

cTx + b̃Tw̃− t

s. t. ṽ = c̃(x)− (1/2)(ÃTw̃− W̃Tb̃)[
Q̃(x)− (1/2)(W̃TÃ + ÃTW̃) ṽ

ṽT t

]
∈ KCop ,

provides an exact reformulation of the TSRLP problem. Otherwise,
Copos1 only provides a conservative approximation.
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RELATION TO AARC

Theorem 2 [Xu & Burer (2016)]
When KCop is replaced with N := RJ+m+1×J+m+1

+ ⊂ KCop the
copositive programming reformulation is equivalent to AARC.

I Hence, for any cone K such that N ⊂ K ⊂ KCop, Copos1
with K provides a tighter approximation than AARC

I There exists a hierarchy of semidefinite and polyhedral
cones {Ki}∞i=1, with N ⊆ K1 ⊂ K2 ⊂ · · · ⊂ KCop, such that
for all M ∈ KCop, there is a i∗, M ∈ Ki∗

[Parrilo (2000), Bomze & de Klerk (2002)]

I This is valuable for complete recourse problems but what
about relatively complete recourse problems ?
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HOW TO FIX RELATIVELY COMPLETE RECOURSE
I Assumption : The TSRLP problem has relatively complete

recourse, i.e.

∀ x ∈ X ∀ z ∈ Z, ∃y,Ax + By ≤ D(x)z

I This ensures that :

h(x, z) = min
λ

cTx + zTD(x)Tλ− (Ax)Tλ ∈ R

s. t. λ ∈ P := {λ |λ ≥ 0, BTλ = f}

I Hence, always an optimal solution λ∗(x, z) at a vertex of P
I Since number of vertices is finite, there exists u ∈ RJ

+:

ψ(x) = min
z∈Z

h(x, z) = min
z∈Z,λ∈P

cTx + zTD(x)Tλ− (Ax)Tλ

s. t. λ ≤ u
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COPOSITIVE PROGRAMMING REFORMULATION II
I The function ψ(x) minimizes a non-convex quadratic

function over a polyhedron in the non-negative orthant

ψ(x) = min
ȳ≥0

cTx + ȳTQ̄(x)ȳ− c̄(x)Tȳ

Āȳ = b̄ ,

where ȳ := [λT zT sT] ∈ R2J+m and where

Q̄(x) :=

 0 (1/2)D(x) 0
(1/2)D(x)T 0 0

0 0 0

 c̄(x) :=

 −(1/2)Ax
0
0


Ā :=

 BT 0 0
0 P 0
I 0 I

 b̄ :=

 d
q
u

 .
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COPOSITIVE PROGRAMMING REFORMULATION II

Theorem 3 [AJ&D (2016b)]
If the TSRLP problem has relatively complete recourse, then the
copositive program

(Copos2) max
x∈X ,W̄,w̄,v̄,t

cTx + b̄Tw̄− t

s. t. v̄ = c̄(x)− (1/2)(ĀTw̄− W̄Tb̄)[
Q̄(x)− (1/2)(W̄TĀ + ĀTW̄) v̄

v̄T t

]
∈ KCop ,

provides an exact reformulation of the TSRLP problem.
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THE PENALIZED AARC MODEL

Theorem 4 [AJ&D (2016b)]
When KCop is replaced with N the Copos2 reformulation is equivalent
to applying affine adjustments to:

(TSRLP′) maximize
x∈X ,y(·),θ(·)

min
z∈Z

cTx + f Ty(z)− uTθ(z)

s. t. Ax + By(z) ≤ D(x)z + θ(z) ∀z ∈ Z .

Moreover, affine (and static) adjustments are always feasible in
TSRLP’.

I u can be interpreted as a marginal penalty for violating
constraints

I TSRLP’ ≡ TSRLP since u is such that there always exists an
optimal solution triplet with θ(z) := 0.

I Method for converting a relatively complete recourse
multi-stage linear program into a complete recourse one
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ROBUST FACILITY LOCATION-TRANSPORTATION

PROBLEM
I In AJ&D (2016b), we identify an instance for which

AARC Penalized AARC Exact
model (a.k.a. Copos2(N )) model

Bound on w.-c. profit 0 6600 6600
W.-c. profit of x∗ 0 6600 6600

I We recently randomly generated 10 000 problem instances,
5 facilities & 10 customer locations.

Optimality Proportion of instances
gap AARC Penalized AARC

= 0% 20.6% 23.8%
≤ 0.1% 20.9% 27.4%
≤ 1% 28.4% 56.3%

Avg. Gap 10.5% 1.6%
Max Gap 50.0% 13.3%
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WHAT SIZE PROBLEMS CAN WE SOLVE ? [AJ&D (2017)]

(T,L,N) Γ
Penalized AARC Exact

Full form Row generation C&CG

(1,50,100)

10 - 3 241 sec 8 465 sec
30 - 4 563 sec -
50 - 8 460 sec -
70 - 3 781 sec 7 682 sec
90 - 1 382 sec 7 sec

100 - < 1 sec 2 sec
Avg. - 3 572 sec -

(20,15,30)

60 - 3 781 sec 184 sec
180 - 5 646 sec -
300 - 10 567 sec -
420 - 4 445 sec -
540 - 663 sec -
600 - 1 sec <1 sec

Avg. - 4 184 sec -

(− stands for more than two days of computation)
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ROBUST MULTI-ITEM NEWSVENDOR

I In AJ&D (2016a): the robust multi-item newsvendor
problem with uncorrelated demand can be solved
optimally by AARC/Copos(N ) when using budgeted
uncertainty set with integer Γ.

I In AJ&D (2016b): if demand is correlated than solution
improves using Copos with K ⊃ N :

AARC Copos(K4
LP) Copos(K1

SDP) Exact
W.-c. profit bound 41.83 41.83 411.08 825.83
Actual w.-c. profit 41.83 41.83 664.76 825.83
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CONCLUSION & OPEN QUESTIONS

1. Copositive programming is a useful tool for generating
conservative approximations for TSRLP

I Copos(K) with K ⊃ N always improves on AARC
I Although hierarchy of polyhedral cones N ⊂ Kd

LP ⊂ KCop
provide LP reformulations, preliminary results indicate
that classical ones perform poorly

I Can Copos(K) provide intuition on approximate policies ?
I Do Copos(K) reformulations exist for multi-stage problems?

2. Penalized violations transform any two-stage LP with
relatively complete recourse in one with complete recourse

I A useful preprocessing step for AARC when feasibility is a
challenge

I Is it possible to generalize this approach to robust
multi-stage non-linear problems?
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Questions & Comments ...

... Thank you!
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