| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              |            |

## Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs

Erick Delage CRC in decision making under uncertainty Department of Decision Sciences HEC Montreal

(joint work with Amir Ardestani-Jaafari) (special thanks to Samuel Burer)

July 5th, 2017

| Introduction | Background | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------------------|--------------|------------|
| ●0000000     | 000        | 00000000000                    | 000          | 000        |
|              |            |                                |              | (          |

 A multinational retailing corporation wishes to construct new warehouses



| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              | (          |

#### 1. Choose where to build the new warehouses



| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              |            |
|              |            |                    |              |            |

#### 2. Observe amount of weekly demand



| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              | í.         |
|              |            |                    |              |            |

#### 3. Transport goods to retailers to maximize profits





Facility location-transportation model



How can one account for demand uncertainty?

IntroductionBackgroundCopos(K) for TSRLPApplicationsConclusion00000000000000000000000000000

## ROBUST OPTIMIZATION IS NOW A WELL ESTABLISHED METHODOLOGY





| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 0000000000         | 000          | 000        |
|              |            |                    |              |            |

• Robust Facility location-transportation model:

 $\begin{array}{ll} \underset{I \in \{0,1\}^n, x}{\text{maximize}} & \underset{d \in \mathcal{D}}{\min} h(I, x, d) \\ \text{s. t.} & x_i \leq MI_i \ , \ \forall i, \qquad (Facility \ Size \ constraint) \end{array}$ 

where h(I, x, d) is the optimal value of

 $\max_{Y \ge 0} \qquad \eta \sum_{i} \sum_{j} \sum_{j} Y_{ij} - \left( \overbrace{c^{T}x + K^{T}I}^{transportation&production&cost} \sum_{j} (p_{i} + t_{ij})Y_{ij} \right)$ s. t.  $\sum_{j} Y_{ij} \le x_{i}, \forall i, \qquad (Capacity \ constraint)$  $\sum_{i} Y_{ij} \le d_{j}, \forall j, \quad (Demand \ constraint)$ 

| Introduction | Background | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------------------|--------------|------------|
| 0000000      | 000        | 0000000000                     | 000          | 000        |
|              |            |                                |              |            |

#### OUTLINE

INTRODUCTION

#### BACKGROUND ON TWO-STAGE ROBUST LINEAR PROGRAMS

COPOSITIVE PROGRAMMING REFORMULATIONS

**APPLICATIONS** 

CONCLUSION

| Introduction | Background | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------------------|--------------|------------|
| 0000000      | 000        | 0000000000                     | 000          | 000        |
|              |            |                                |              | í.         |
|              |            |                                |              |            |

#### OUTLINE

#### INTRODUCTION

#### BACKGROUND ON TWO-STAGE ROBUST LINEAR PROGRAMS

COPOSITIVE PROGRAMMING REFORMULATIONS

**APPLICATIONS** 

CONCLUSION

| Introduction | Background       | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------------|--------------------------------|--------------|------------|
| 0000000      | •00 <sup>-</sup> | 00000000000                    | 000          | 000        |
|              |                  |                                |              |            |

## STATIC ROBUST LINEAR PROGRAM

[BEN-TAL & NEMIROVSKI (2000), 1296 CITATIONS !]

Consider the following static problem:

$$\begin{array}{ll} \underset{x \in \mathcal{X}, y}{\text{maximize}} & c^{T}x + f^{T}y & (1a) \\ \text{s. t.} & Ax + By \leq D(x)z \ , \ \forall z \in \mathcal{Z} & (1b) \end{array}$$

where we assume  $n_x + n_y$  decision variables, *J* constraints, and *m* uncertain parameters.

► If  $Z := \{z \in \mathbb{R}^m | z \ge 0, Pz = q\}$  is a non-empty polyhedral set defined by *K* constraints, then

Problem (1) 
$$\equiv \underset{x \in \mathcal{X}, y, \Lambda}{\text{maximize}} c^T x + f^T y$$
  
s. t.  $Ax + By + \Lambda q \leq 0$   
 $D(x) + \Lambda P \geq 0$ ,

where  $\Lambda \in \mathbb{R}^{J \times K}$ .

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              |            |

## TWO-STAGE ROBUST LINEAR PROGRAMS

[BEN-TAL ET AL. (2004), 824 CITATIONS !]

• Consider the following two-stage problem:

 $\begin{array}{ll} (TSRLP) & \underset{x \in \mathcal{X}, y(\cdot)}{\operatorname{maximize}} & \underset{z \in \mathcal{Z}}{\operatorname{min}} c^{T}x + f^{T}y(z) \\ & \text{s. t.} & Ax + By(z) \leq D(x)z \; \forall z \in \mathcal{Z} \end{array}$ 

where  $y : \mathbb{R}^m \to \mathbb{R}^{n_y}$ 

• This problem can also be represented as

(TSRLP) maximize  $\min_{x \in \mathcal{X}} h(x, z)$ 

where

$$h(x,z) := \max_{y} \qquad c^{T}x + f^{T}y$$
  
s. t. 
$$Ax + By \le D(x)z$$

٠

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              |            |
|              |            |                    |              |            |

# COMPLEXITY OF TWO-STAGE ROBUST LINEAR PROGRAMS

- Unfortunately, the two-stage robust linear program is known to be intractable in general [Ben-Tal et al. (2004)].
- Conservative approximation obtained by using affine adjustment functions :

$$y(z) := y + Yz$$

The two-stage robust problem reduces to

 $\begin{array}{ll} (AARC) & \underset{x \in \mathcal{X}, y, Y}{\operatorname{maximize}} & \underset{z \in \mathcal{Z}}{\min} \ c^{T}x + f^{T}(y + Yz) \\ & \text{s. t.} & Ax + B(y + Yz) \leq D(x)z \ \forall z \in \mathcal{Z} \end{array}$ 

 Some exact methods have been proposed but without polynomial time convergence guarantees [Zeng & Zhao (2013)]

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 0000000000         | 000          | 000        |
|              |            |                    |              |            |
|              |            |                    |              |            |

#### OUTLINE

#### INTRODUCTION

#### BACKGROUND ON TWO-STAGE ROBUST LINEAR PROGRAMS

#### COPOSITIVE PROGRAMMING REFORMULATIONS

APPLICATIONS

CONCLUSION

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 0000000000         | 000          | 000        |
|              |            |                    |              |            |

- Assumptions
  - 1.  $\mathcal{Z}$  is a non-empty and bounded polyhedral set
  - 2. The TSRLP problem is bounded above, i.e.

 $\forall x \in \mathcal{X}, \exists z \in \mathcal{Z}, h(x,z) < \infty.$ 

Let our robust optimization problem take the form

$$\underset{x\in\mathcal{X}}{\operatorname{maximize}} \quad \psi(x) \;,$$

where

$$\psi(x) := \min_{z \in \mathcal{Z}} \max_{y} c^{T}x + f^{T}y$$
(2a)  
s. t.  $Ax + By \le D(x)z$  (2b)

► Since (2) is bounded, strong LP duality applies

$$\psi(x) = \min_{z \in \mathcal{Z}, \lambda \ge 0} \qquad c^T x + z^T D(x)^T \lambda - (Ax)^T \lambda$$
$$B^T \lambda = f$$



► The function ψ(x) minimizes a non-convex quadratic function over a polyhedron in the non-negative orthant

$$\psi(x) = \min_{\tilde{z} \ge 0} \qquad c^T x + \tilde{z}^T \tilde{Q}(x) \tilde{z} - \tilde{c}(x)^T \tilde{z}$$
$$\tilde{A} \tilde{z} = \tilde{b},$$

where  $\tilde{z} := \begin{bmatrix} \lambda^T & z^T \end{bmatrix} \in \mathbb{R}^{J+m}$  and where

$$\begin{split} \tilde{Q}(x) &:= \begin{bmatrix} 0 & (1/2)D(x) \\ (1/2)D(x)^T & 0 \end{bmatrix} \quad \tilde{c}(x) &:= \begin{bmatrix} -(1/2)Ax \\ 0 \end{bmatrix} \\ \tilde{A} &:= \begin{bmatrix} B^T & 0 \\ 0 & P \end{bmatrix} \qquad \qquad \tilde{b} &:= \begin{bmatrix} d \\ q \end{bmatrix} \end{split}$$



► The function ψ(x) minimizes a non-convex quadratic function over a polyhedron in the non-negative orthant

$$\psi(x) = \min_{\tilde{z} \ge 0} \qquad c^T x + trace(\tilde{Q}(x)^T \tilde{z} \tilde{z}^T) - \tilde{c}(x)^T \tilde{z}$$
$$\tilde{A} \tilde{z} = \tilde{b}$$
$$\tilde{A} \tilde{z} \tilde{z}^T = \tilde{b} \tilde{z}^T,$$

where  $\tilde{z} := \begin{bmatrix} \lambda^T & z^T \end{bmatrix} \in \mathbb{R}^{J+m}$  and where

$$\begin{split} \tilde{Q}(x) &:= \begin{bmatrix} 0 & (1/2)D(x) \\ (1/2)D(x)^T & 0 \end{bmatrix} \quad \tilde{c}(x) &:= \begin{bmatrix} -(1/2)Ax \\ 0 \end{bmatrix} \\ \tilde{A} &:= \begin{bmatrix} B^T & 0 \\ 0 & P \end{bmatrix} \qquad \qquad \tilde{b} &:= \begin{bmatrix} d \\ q \end{bmatrix} \end{split}$$



► The function ψ(x) has an equivalent convex optimization reformulation (Ž := žž<sup>T</sup>) [Burer (2009)]

$$\psi(x) = \min_{\tilde{Z}, \tilde{z}} \quad c^T x + trace(\tilde{Q}(x)^T \tilde{Z}) - \tilde{c}(x)^T \tilde{z}$$
$$\tilde{A}\tilde{z} = \tilde{b}$$
$$\tilde{A}\tilde{Z} = \tilde{b}\tilde{z}^T$$
$$\begin{bmatrix} \tilde{Z} & \tilde{z} \\ \tilde{z}^T & 1 \end{bmatrix} \in \mathcal{K}_{CP} \& \operatorname{rank}\left(\begin{bmatrix} \tilde{Z} & \tilde{z} \\ \tilde{z}^T & 1 \end{bmatrix}\right) = 1$$

where  $\mathcal{K}_{CP}$  is the cone of completely positive matrices, i.e.

$$\mathcal{K}_{\mathrm{CP}} := \left\{ M \, \middle| \, M = \sum_{k \in K} \tilde{z}_k \tilde{z}_k^T \text{ for some } \{ \tilde{z}_k \}_{k \in K} \subset \mathbb{R}^{J+m+1}_+ \right\}$$

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 0000000000         | 000          | 000        |
|              |            |                    |              |            |

► The function ψ(x) has an equivalent convex optimization reformulation (Ž := žž<sup>T</sup>) [Burer (2009)]

$$\psi(x) = \min_{\tilde{Z}, \tilde{z}} \qquad c^T x + trace(\tilde{Q}(x)^T \tilde{Z}) - \tilde{c}(x)^T \tilde{z}$$
$$\tilde{A}\tilde{z} = \tilde{b}$$
$$\tilde{A}\tilde{Z} = \tilde{b}\tilde{z}^T$$
$$\begin{bmatrix} \tilde{Z} & \tilde{z} \\ \tilde{z}^T & 1 \end{bmatrix} \in \mathcal{K}_{CP}$$

where  $\mathcal{K}_{CP}$  is the cone of completely positive matrices, i.e.

$$\mathcal{K}_{\mathrm{CP}} := \left\{ M \, \middle| \, M = \sum_{k \in K} \tilde{z}_k \tilde{z}_k^T \text{ for some } \{ \tilde{z}_k \}_{k \in K} \subset \mathbb{R}^{J+m+1}_+ \right\}$$

| Introduction Backgi | cound Copos() | K) for TSRLP A | pplications ( | Conclusion |
|---------------------|---------------|----------------|---------------|------------|
| 0000000 000         | 00000         | 0000000        | 00            | 000        |

By conic duality we get

$$\begin{split} \psi(x) &\geq \max_{\tilde{W}, \tilde{w}, \tilde{v}, t} \qquad \tilde{c}(x)^T x + \tilde{b}^T \tilde{w} - t \\ \text{s. t.} \qquad \tilde{v} &= \tilde{c}(x) - (1/2) (\tilde{A}^T \tilde{w} - \tilde{W}^T \tilde{b}) \\ & \left[ \begin{array}{c} \tilde{Q}(x) - (1/2) (\tilde{W}^T \tilde{A} + \tilde{A}^T \tilde{W}) & \tilde{v} \\ \tilde{v}^T & t \end{array} \right] \in \mathcal{K}_{\text{Cop}} \,, \end{split}$$

where  $\mathcal{K}_{Cop}$  is the cone of copositive matrices, i.e.

$$\mathcal{K}_{\operatorname{Cop}} := \left\{ M \, \middle| \, M = M^T, \, z^T M z \ge 0 \,, \, \forall z \in \mathbb{R}^{J+m+1}_+ \right\}$$

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              | (          |

**Theorem 1** [Xu & Burer (2016), Hanasusanto & Kuhn (2016)] If the TSRLP problem has "complete recourse", *i.e.* 

$$\exists y \in \mathbb{R}^{n_y}, By < 0,$$

then the copositive program

$$\begin{array}{ll} (Copos_1) & \underset{x \in \mathcal{X}, \tilde{W}, \tilde{w}, \tilde{v}, t}{\text{maximize}} & c^T x + \tilde{b}^T \tilde{w} - t \\ & \text{s. t.} & \tilde{v} = \tilde{c}(x) - (1/2) (\tilde{A}^T \tilde{w} - \tilde{W}^T \tilde{b}) \\ & \left[ \begin{array}{c} \tilde{Q}(x) - (1/2) (\tilde{W}^T \tilde{A} + \tilde{A}^T \tilde{W}) & \tilde{v} \\ \tilde{v}^T & t \end{array} \right] \in \mathcal{K}_{Cop} \,, \end{array}$$

*provides an exact reformulation of the TSRLP problem. Otherwise, Copos*<sub>1</sub> *only provides a conservative approximation.* 

| Introduction | Background | $Copos(\mathcal{K}) \text{ for TSRLP} \\ 0000000 \bullet 0000$ | Applications | Conclusion |
|--------------|------------|----------------------------------------------------------------|--------------|------------|
| 0000000      | 000        |                                                                | 000          | 000        |
|              |            |                                                                |              |            |

## RELATION TO AARC

**Theorem 2** [Xu & Burer (2016)] When  $\mathcal{K}_{Cop}$  is replaced with  $\mathcal{N} := \mathbb{R}^{J+m+1 \times J+m+1}_+ \subset \mathcal{K}_{Cop}$  the copositive programming reformulation is equivalent to AARC.

- ► Hence, for any cone K such that N ⊂ K ⊂ K<sub>Cop</sub>, Copos<sub>1</sub> with K provides a tighter approximation than AARC
- ► There exists a hierarchy of semidefinite and polyhedral cones {*K<sub>i</sub>*}<sup>∞</sup><sub>i=1</sub>, with *N* ⊆ *K*<sub>1</sub> ⊂ *K*<sub>2</sub> ⊂ ··· ⊂ *K*<sub>Cop</sub>, such that for all *M* ∈ *K*<sub>Cop</sub>, there is a *i*<sup>\*</sup>, *M* ∈ *K<sub>i</sub>*<sup>\*</sup> [Parrilo (2000), Bomze & de Klerk (2002)]
- ► This is valuable for complete recourse problems but what about relatively complete recourse problems ?

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 000000000000       | 000          | 000        |
|              |            |                    |              |            |

HOW TO FIX RELATIVELY COMPLETE RECOURSE

 Assumption : The TSRLP problem has relatively complete recourse, i.e.

$$\forall x \in \mathcal{X} \, \forall z \in \mathcal{Z}, \, \exists y, Ax + By \le D(x)z$$

• This ensures that :

$$h(x,z) = \min_{\lambda} \qquad c^{T}x + z^{T}D(x)^{T}\lambda - (Ax)^{T}\lambda \qquad \in \mathbb{R}$$
  
s. t.  $\lambda \in \mathcal{P} := \{\lambda \mid \lambda \ge 0, B^{T}\lambda = f\}$ 

- Hence, always an optimal solution  $\lambda^*(x, z)$  at a vertex of  $\mathcal{P}$
- Since number of vertices is finite, there exists  $u \in \mathbb{R}^{J}_{+}$ :

$$\psi(x) = \min_{z \in \mathcal{Z}} h(x, z) = \min_{z \in \mathcal{Z}, \lambda \in \mathcal{P}} \quad c^T x + z^T D(x)^T \lambda - (Ax)^T \lambda$$
  
s. t.  $\lambda \le u$ 



► The function ψ(x) minimizes a non-convex quadratic function over a polyhedron in the non-negative orthant

$$\psi(x) = \min_{\bar{y} \ge 0} \qquad c^T x + \bar{y}^T \bar{Q}(x) \bar{y} - \bar{c}(x)^T \bar{y}$$
$$\bar{A} \bar{y} = \bar{b} ,$$

where  $\bar{y} := \begin{bmatrix} \lambda^T & z^T & s^T \end{bmatrix} \in \mathbb{R}^{2J+m}$  and where

$$\bar{Q}(x) := \begin{bmatrix} 0 & (1/2)D(x) & 0\\ (1/2)D(x)^T & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \quad \bar{c}(x) := \begin{bmatrix} -(1/2)Ax \\ 0 \\ 0 \end{bmatrix}$$
$$\bar{A} := \begin{bmatrix} B^T & 0 & 0\\ 0 & P & 0\\ I & 0 & I \end{bmatrix} \qquad \qquad \bar{b} := \begin{bmatrix} d\\ q\\ u \end{bmatrix}.$$

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              |            |

**Theorem 3** [AJ&D (2016b)] If the TSRLP problem has <u>relatively complete recourse</u>, then the copositive program

$$\begin{array}{ll} (Copos_2) & \max_{x \in \mathcal{X}, \bar{W}, \bar{w}, \bar{v}, t} & c^T x + \bar{b}^T \bar{w} - t \\ & \text{s. t.} & \bar{v} = \bar{c}(x) - (1/2)(\bar{A}^T \bar{w} - \bar{W}^T \bar{b}) \\ & \left[ \begin{array}{c} \bar{Q}(x) - (1/2)(\bar{W}^T \bar{A} + \bar{A}^T \bar{W}) & \bar{v} \\ \bar{v}^T & t \end{array} \right] \in \mathcal{K}_{Cop} \,, \end{array}$$

provides an exact reformulation of the TSRLP problem.

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 0000000000         | 000          | 000        |
|              |            |                    |              |            |

#### THE PENALIZED AARC MODEL

**Theorem 4** [A]&D (2016b)] When  $\mathcal{K}_{Cop}$  is replaced with  $\mathcal{N}$  the Copos<sub>2</sub> reformulation is equivalent to applying affine adjustments to:

 $\begin{array}{ll} (TSRLP') & \mbox{maximize} & \mbox{min} \ c^T x + f^T y(z) - u^T \theta(z) \\ & \mbox{s. t.} & Ax + By(z) \leq D(x)z + \theta(z) \ \forall z \in \mathcal{Z} \,. \end{array}$ 

*Moreover, affine (and static) adjustments are always feasible in TSRLP'.* 

- ► *u* can be interpreted as a marginal penalty for violating constraints
- ► TSRLP'  $\equiv$  TSRLP since *u* is such that there always exists an optimal solution triplet with  $\theta(z) := 0$ .
- Method for converting a relatively complete recourse multi-stage linear program into a complete recourse one

| Introduction | Background | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------------------|--------------|------------|
| 0000000      | 000        | 00000000000                    | 000          | 000        |
|              |            |                                |              |            |

### OUTLINE

#### INTRODUCTION

#### BACKGROUND ON TWO-STAGE ROBUST LINEAR PROGRAMS

#### COPOSITIVE PROGRAMMING REFORMULATIONS

APPLICATIONS

CONCLUSION

| Introduction | Background | Copos(K) for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------|--------------|------------|
| 0000000      | 000        | 00000000000        | 000          | 000        |
|              |            |                    |              |            |
|              |            |                    |              |            |

# ROBUST FACILITY LOCATION-TRANSPORTATION PROBLEM

► In AJ&D (2016b), we identify an instance for which

|                     | AARC  | Penalized AARC                   | Exact |
|---------------------|-------|----------------------------------|-------|
|                     | model | (a.k.a. $Copos_2(\mathcal{N})$ ) | model |
| Bound on wc. profit | 0     | 6600                             | 6600  |
| Wc. profit of $x^*$ | 0     | 6600                             | 6600  |

► We recently randomly generated 10 000 problem instances, 5 facilities & 10 customer locations.

| Optimality   | Proportion of instances |                |  |
|--------------|-------------------------|----------------|--|
| gap          | AARC                    | Penalized AARC |  |
| = 0%         | 20.6%                   | 23.8%          |  |
| $\leq 0.1\%$ | 20.9%                   | 27.4%          |  |
| $\leq 1\%$   | 28.4%                   | 56.3%          |  |
| Avg. Gap     | 10.5%                   | 1.6%           |  |
| Max Gap      | 50.0%                   | 13.3%          |  |

| Introduction Bac | ckground ( | Copos(K) for TSRLP | Applications | Conclusion |
|------------------|------------|--------------------|--------------|------------|
| 00000000 000     | 0          | 00000000000        | 000          | 000        |

#### WHAT SIZE PROBLEMS CAN WE SOLVE ? [AJ&D (2017)]

| (TIN)      | Г    | Pena      | Exact          |          |
|------------|------|-----------|----------------|----------|
| (1,L,IN)   | L    | Full form | Row generation | C&CG     |
|            | 10   | -         | 3 241 sec      | 8465 sec |
|            | 30   | -         | 4 563 sec      | -        |
|            | 50   | -         | 8460 sec       | -        |
| (1,50,100) | 70   | -         | 3781 sec       | 7682 sec |
|            | 90   | -         | 1 382 sec      | 7 sec    |
|            | 100  | -         | < 1 sec        | 2 sec    |
|            | Avg. | -         | 3 572 sec      | -        |
|            | 60   | -         | 3781 sec       | 184 sec  |
|            | 180  | -         | 5646 sec       | -        |
| (20.15.20) | 300  | -         | 10567 sec      | -        |
| (20,13,30) | 420  | -         | 4 445 sec      | -        |
|            | 540  | -         | 663 sec        | -        |
|            | 600  | -         | 1 sec          | <1 sec   |
|            | Avg. | -         | 4 184 sec      | -        |

(- stands for more than two days of computation)

| Introduction | Background | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------------------|--------------|------------|
| 00000000     | 000        | 00000000000                    | 000          | 000        |
|              |            |                                |              |            |

## ROBUST MULTI-ITEM NEWSVENDOR

- In AJ&D (2016a): the robust multi-item newsvendor problem with <u>uncorrelated</u> demand can be solved optimally by AARC/*Copos*(*N*) when using budgeted uncertainty set with integer Γ.
- In AJ&D (2016b): if demand is correlated than solution improves using *Copos* with *K* ⊃ *N*:

|                   | AARC  | $Copos(\mathcal{K}_{LP}^4)$ | $Copos(\mathcal{K}^{1}_{SDP})$ | Exact  |
|-------------------|-------|-----------------------------|--------------------------------|--------|
| Wc. profit bound  | 41.83 | 41.83                       | 411.08                         | 825.83 |
| Actual wc. profit | 41.83 | 41.83                       | 664.76                         | 825.83 |

| Introduction Backgroun | d Copos(K) for TSRLP | Applications | Conclusion |
|------------------------|----------------------|--------------|------------|
| 00000000 000           | 00000000000          | 000          | 000        |
|                        |                      |              |            |

## OUTLINE

#### INTRODUCTION

#### BACKGROUND ON TWO-STAGE ROBUST LINEAR PROGRAMS

#### COPOSITIVE PROGRAMMING REFORMULATIONS

**APPLICATIONS** 

CONCLUSION

| Introduction | Background | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------------------|--------------|------------|
| 0000000      | 000        | 00000000000                    | 000          | •00        |
|              |            |                                |              |            |
|              |            |                                |              |            |

## CONCLUSION & OPEN QUESTIONS

- 1. Copositive programming is a useful tool for generating conservative approximations for TSRLP
  - $Copos(\mathcal{K})$  with  $\mathcal{K} \supset \mathcal{N}$  always improves on AARC
  - Although hierarchy of polyhedral cones N ⊂ K<sup>d</sup><sub>LP</sub> ⊂ K<sub>Cop</sub> provide LP reformulations, preliminary results indicate that classical ones perform poorly
  - ► Can *Copos*(*K*) provide intuition on approximate policies ?
  - ► Do *Copos*(*K*) reformulations exist for multi-stage problems?
- 2. Penalized violations transform any two-stage LP with relatively complete recourse in one with complete recourse
  - A useful preprocessing step for AARC when feasibility is a challenge
  - Is it possible to generalize this approach to robust multi-stage non-linear problems?

| Introduction | Background | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------------------|--------------|------------|
| 0000000      | 000        | 00000000000                    | 000          | 000        |
|              |            |                                |              | 1          |
|              |            |                                |              |            |

#### BIBLIOGRAPHY

- A. Ardestani-Jaafari and E. Delage. Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems. Operations Research, 64(2):474-494, 2016a.
- A. Ardestani-Jaafari and E. Delage. Linearized Robust Counterparts of Two-stage Robust Optimization Problem with Applications in Operations Management. Working draft, 2016b.
- A. Ardestani-Jaafari and E. Delage. The Value of Flexibility in Robust LocationTransportation Problems. Transportation Science, 2017.
- A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, Series A, 88(3):411-424, 2000.
- A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain linear programs. Mathematical Programming A, 99(2):351-376, 2004.
- I. M. Bomze and E. de Klerk. Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. Journal of Global Optimization, 24(2):163-185, 2002.
- S. Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming A, 120(2):479-495, 2009.
- G. A. Hanasusanto and D. Kuhn. Conic programming reformulations of two-stage distributionally robust linear programs over Wasserstein balls. Working draft, 2016.
- P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, 2000.
- G. Xu and S. Burer. A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides. Working draft, 2016.
- B. Zeng and L. Zhao. Solving two-stage robust optimization problems using a column-and-constraint generation method. Operations Research Letters, 41(5):457-461, 2013.

| Introduction | Background | $Copos(\mathcal{K})$ for TSRLP | Applications | Conclusion |
|--------------|------------|--------------------------------|--------------|------------|
| 0000000      | 000        | 0000000000                     | 000          | 000        |
|              |            |                                |              |            |

## Questions & Comments ...

# ... Thank you!