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Abstract

We consider fair resource allocation in sequential decision-making environments modeled as weakly
coupled Markov decision processes, where resource constraints couple the action spaces of N sub-Markov
decision processes (sub-MDPs) that would otherwise operate independently. We adopt a fairness definition
using the generalized Gini function instead of the traditional utilitarian (total-sum) objective. After intro-
ducing a general but computationally prohibitive solution scheme based on linear programming, we focus
on the homogeneous case where all sub-MDPs are identical. For this case, we show for the first time that
the problem reduces to optimizing the utilitarian objective over the class of “permutation invariant” poli-
cies. This result is particularly useful as we can exploit Whittle index policies in the restless bandits setting
while, for the more general setting, we introduce a count-proportion-based deep reinforcement learning
approach. Finally, we validate our theoretical findings with comprehensive experiments, confirming the
effectiveness of our proposed method in achieving fairness.

1 Introduction
Machine learning (ML) algorithms play a significant role in automated decision-making processes, influencing our
daily lives. Mitigating biases within the ML pipeline is crucial to ensure fairness and generate reliable outcomes
(Caton and Haas, 2024). Extensive research has been conducted to enhance fairness across various applications, such
as providing job matching services (van den Broek et al., 2020; Raghavan et al., 2020), assigning credit scores and
loans (Kozodoi et al., 2022), and delivering healthcare services (Farnadi et al., 2021; Chen et al., 2023).

However, most real-world decision processes are sequential in nature and past decisions may have an impact on
equity. For example, if people are unfairly denied credit or job opportunities early in their careers, it can have long-
term consequences for their financial well-being and opportunities for advancement (Liu et al., 2018). In addition,
the impact of decisions can accumulate, which may lead to large disparities over time and can actually exacerbate
unfairness (Creager et al., 2020; D’Amour et al., 2020).

Another motivating example for this work is taxi dispatching: when certain areas are consistently prioritized over
others, it can lead to long-term disparities in service accessibility. This may lead to long waiting times for passengers in
certain neighborhoods, while taxis run empty and seek passengers in other areas (Liu et al., 2021). Thus, to ensure that
individuals are not treated unfairly based on past decisions or changing circumstances, we should extend the current
definitions of fairness to consider the impact of feedback effects (Ghalme et al., 2022a).

Fairness is a complex and multi-faceted concept, and there are many different ways in which it can be opera-
tionalized and measured. We resort to the generalized Gini social welfare function (GGF) (Weymark, 1981), which
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covers various fairness measures as special cases. The long-term impacts of fair decision dynamics have recently been
approached using Markov decision processes (MDPs) (Wen et al., 2021; Puranik et al., 2022; Ghalme et al., 2022b).
By studying fairness in MDPs, we can better understand how such considerations can be incorporated into decision-
making processes, how they may affect the outcomes of those processes, and how to develop approaches to promote
fairness in a wider range of settings.

To the best of our knowledge, we are the first to incorporate fairness considerations in the form of the GGF objec-
tive within weakly coupled Markov decision processes (WCMDPs) (Hawkins, 2003; Adelman and Mersereau, 2008),
which can also be considered as multi-action multi-resource restless multi-arm bandits. This model captures the com-
plex interactions among coupled MDPs over time and allows the applicability of our work to various applications in
scheduling (Saure et al., 2012; El Shar and Jiang, 2024), application screening (Gast et al., 2024), budget allocation
(Boutilier and Lu, 2016), inventory (El Shar and Jiang, 2024), and restless multi-arm bandits (RMABs) (Hawkins,
2003; Zhang, 2022).

Contributions Our contributions are as follows. Theoretically, we reformulate the WCMDP problem with the
GGF objective as a linear programming (LP) problem, and show that, under symmetry, it reduces to maximizing the
average expected total discounted rewards, called the utilitarian approach. Methodologically, we propose a state count
approach to further simplify the problem, and introduce a count proportion-based deep reinforcement learning (RL)
method that can solve the reduced problem efficiently and can scale to larger cases by assigning resources propor-
tionally to the number of stakeholders. Experimentally, we design various experiments to show the GGF-optimality,
flexibility, scalability and efficiency of the proposed deep RL approach. We benchmark our approach against the Whit-
tle index policy on machine replacement applications modeled as RMABs (Akbarzadeh and Mahajan, 2019), showing
the effectiveness of our method in achieving fair outcomes under different settings.

There are two studies closely related to our work. The first work by Gast et al. (2024) considers symmetry sim-
plification and count aggregation MDPs. They focus on solving a LP model repeatedly with a total-sum objective to
obtain asymptotic optimal solutions when the number of coupled MDPs is very large, whereas we explicitly address
the fairness aspect and exploit a state count representation to design scalable deep RL approaches. The second re-
lated work by Siddique et al. (2020) integrates the fair Gini multi-objective RL to treat every user equitably. This fair
optimization problem is later extended to the decentralized cooperative multi-agent RL by Zimmer et al. (2021), and
further refined to incorporate preferential treatment with human feedback by Siddique et al. (2023) and Yu et al. (2023).
In contrast, our work demonstrates that the WCMDP with the GGF objective and identical coupled MDPs reduces to a
much simpler utilitarian problem, which allows us to exploit its structure to develop efficient and scalable algorithms.
A more comprehensive literature review on fairness in MDPs, RL, and RMABs, is provided in Appendix A to clearly
position our work.

2 Background
We review infinite-horizon WCMDPs and introduce the GGF for encoding fairness. We then define the fair optimiza-
tion problem and provide an exact solution scheme based on linear programming.

Notation Let [N ] := {1, . . . , N} for any integer N . For any vector v ∈ RN , the n-th element is denoted as vn
and the average value as v̄ = 1

N

∑N
n=1 vn. An indicator function I{x ∈ A} equals 1 if x ∈ A and 0 otherwise. For any

set X , ∆(X) represents the set of all probability distributions over X . We let SN be the set of all N ! permutations of
the indices in [N ] and GN be the set of all permutation operators so that Q ∈ GN if and only if there exists a σ ∈ SN
such that Qv(n) = vσ(n) for all n ∈ [N ] when v ∈ RN .

2.1 The Weakly Coupled MDP
We consider N MDPs indexed by n ∈ N := [N ] interacting in discrete-time over an infinite horizon t ∈ T :=
{0, 1, . . . ,∞}. The n-th MDP Mn, also referred as sub-MDP, is defined by a tuple (Sn,An, pn, rn, µn, γ), where
Sn is a finite set of states with cardinality S, and An is a finite set of actions with cardinality A. The transition
probability function is defined as pn(s

′
n|sn, an) = P(st+1,n = s′n|st,n = sn, at,n = an), which represents the

probability of reaching state s′n ∈ Sn after performing action an ∈ An in state sn ∈ Sn at time t. The reward
function rn(sn, an) denotes the immediate real-valued reward obtained by executing action an in state sn. Although
the transition probabilities and the reward function may vary with the sub-MDP n, we assume that they are stationary
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across all time steps for simplicity. The initial state distribution is represented by µn ∈ ∆(Sn), and the discount factor,
common to all sub-MDPs, is denoted by γ ∈ [0, 1).

An infinite-horizon WCMDPM(N) consists of N sub-MDPs, where each sub-MDP is independent of the others
in terms of state transitions and rewards. They are linked to each other solely through a set of K constraints on their
actions at each time step. Formally, the WCMDP is defined by a tuple (S(N),A(N), p(N), r, µ(N), γ), where the state
space S(N) is the Cartesian product of individual state spaces, and the action space A(N) is a subset of the Cartesian
product of action spaces, defined as A(N) := {(a1, . . . , aN ) |

∑N
n=1 dk,n(an) ≤ bk,∀k ∈ K, an ∈ An,∀n ∈ N},

where K := [K] is the index set of constraints, dk,n(an) ∈ R+ represents the consumption of the k-th resource
consumption by the n-th MDP when action an is taken, and bk ∈ R+ the available resource of type k.1 We define an
idle action that consumes no resources for any resource k to ensure that the feasible action space is non-empty.

The state transitions of the sub-MDPs are independent, so the system transits from state s to state s′ for a given
feasible action a at time t with probability p(N)(s′|s,a) =

∏N
n=1 pn(s

′
n|sn, an) =

∏N
n=1 P(st+1,n = s′n|st,n =

sn, at,n = an). After choosing an action a ∈ A(N) in the state s ∈ S(N), the decision maker receives rewards
defined as r(s,a) = (r1(s1, a1), . . . , rN (sN , aN )) with each component representing the reward associated with the
respective sub-MDP Mn. We employ a vector form for the rewards to offer the flexibility for formulating fairness
objectives on individual expected total discounted rewards in later sections.

We consider stationary Markovian policy π : S(N)×A(N) → [0, 1], with notation π(s,a) capturing the probability
of performing action a in state s. The initial state s0 is sampled from the distribution µ(N). Using the discounted-
reward criteria, the state-value function V π

n specific to the n-th sub-MDPMn, starting from an arbitrary initial state
s0 under policy π, is defined as V π

n (s0) := Eπ [
∑∞

t=0 γ
trn(st,n, at,n)|s0] , where at ∼ π(st, ·). The joint state-value

vector-valued function V π(s0) : S(N) → RN is defined as the column vector of expected total discounted rewards
for all sub-MDPs under policy π, i.e., V π(s0) := (V π

1 (s0), V
π
2 (s0), . . . , V

π
N (s0))

⊤. We define V π
0 as the expected

vectorial state-value under initial distribution µ(N), i.e.,
V π
0 := E[V π(s0)|s0 ∼ µ(N)]. (1)

2.2 The Generalized Gini Function
The vector V π

0 represents expected utilities for users. A social welfare function aggregates these utilities into a scalar,
measuring fairness in utility distribution with respect to a maximization objective.

Social welfare functions can vary depending on the values of a society, such as α-fairness (Mo and Walrand, 2000)
or max-min fairness (Bistritz et al., 2020). Following Siddique et al. (2020), we require a fair solution to meet three
properties: efficiency, impartiality, and equity. This motivates the use of the GGF from economics (Weymark, 1981),
which satisfies these properties. For N users, the GGF is defined as GGFw[v] := minσ∈SN

∑N
n=1 wnvσ(n), where v ∈

RN , w ∈ ∆(N ) is non-increasing in n, i.e., w1 ≥ w2 ≥ · · · ≥ wN . Intuitively, since GGFw[v] =
∑N

n=1 wnvσ∗(n)

with σ∗ as the minimizer, which reorders the terms of v from lowest to largest, it computes the weighted sum of v
assigning larger weights to its lowest components.

As discussed in Siddique et al. (2020), the GGF can reduce to special cases by setting the weights to specific
values, including the maxmin egalitarian approach (w1 → 1, w2 → 0, . . . , wN → 0) (Rawls, 1971), regularized
maxmin egalitarian (w1 → 1, w2 → ϵ, . . . , wN → ϵ), leximin notion of fairness (wk/wk+1 → ∞) (Rawls, 1971;
Moulin, 1991), and the utilitarian approach formally defined below for the later use in reducing the GGF problem.

Definition 2.1 (Utilitarian Approach). The utilitarian approach within the GGF framework is obtained by setting equal
weights for all individuals, i.e., w1/N := 1/N so that GGFw1/N

[v] = minσ∈SN
∑N

n=1
1
N vσ(n) =

1
N

∑N
n=1 vn = v̄.

The utilitarian approach maximizes the average utilities over all individuals but does not guarantee fairness in utility
distribution, as some users may be disadvantaged to increase overall utility. The GGF offers flexibility by encoding
various fairness criteria in a structured way. Moreover, GGFw[v] is concave in v, which has nice properties for
problem reformulation.

2.3 The GGF-WCMDP Problem
By combining the GGF and the vectored values from the WCMDP in (1), the goal of the GGF-WCMDP problem
(2) is defined as finding a stationary policy π that maximizes the GGF of the expected total discounted rewards, i.e.,

1Actually, bk ≤
∑N

n=1 maxan∈An dk,n(an), w.l.o.g.
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max
π

GGFw [V π
0 ] that is equivalent to

max
π

min
σ∈SN

w⊤
σ Eπ

[ ∞∑
t=0

γtr(st,at)

∣∣∣∣s0 ∼ µ(N)

]
. (2)

We note that Lemma 3.1 in (Siddique et al., 2020) establishes the optimality of stationary Markov policies for any
multi-objective discounted infinite-horizon MDP under the GGF criterion. The optimal policy for the GGF-WCMDP
problem (2) can be computed by solving the following LP model with the GGF objective (GGF-LP):

max
λ,ν,q

N∑
i=1

λi +

N∑
j=1

νj (3a)

s.t. λi + νj ≤ wi

∑
s∈S(N)

∑
a∈A(N)

rj(s,a)q(s,a), ∀i, j∈ N , (3b)

∑
a∈A(N)

q(s,a)− γ
∑

s′∈S(N)

∑
a∈A(N)

q(s′,a)p(N)(s|s′,a) = µ(N)(s), ∀s ∈ S(N), (3c)

q(s,a) ≥ 0, ∀s ∈ S(N), ∀a ∈ A(N). (3d)
See Appendix D.1 for details on obtaining model (3) that exploits the dual linear programming formulation for

solving discounted MDPs. Here, q(s,a) represents the total discounted visitation frequency for state-action pair (s,a),
starting from s0.

The dual form separates dynamics from rewards, with the expected discounted reward for sub-MDP n given by∑
s∈S(N)

∑
a∈A(N) rn(s,a)q(s,a). The one-to-one mapping between the solution q(s,a) and an optimal policy

π(s,a) is π(s,a) = q(s,a)/
∑

a∈A(N) q(s,a).
Scalability is a critical challenge in obtaining exact solutions as the state and action spaces grow exponentially

with respect to the number of sub-MDPs, making the problem intractable. We thus explore approaches that exploit
symmetric problem structures, apply count-based state aggregation, and use RL-based approximation methods, to
address this scalability issue, which will be discussed next.

3 Utilitarian Reduction under Symmetric Sub-MDPs
In Section 3.1, we will formally define the concept of symmetric WCMDPs (definition 3.1) and prove that an optimal
policy of the GGF-WCMDP problem can be obtained by solving the utilitarian WCMDP using “permutation invariant”
policies. This enables the use of Whittle index policies in the RMAB setting while, for the more general setting, Section
3.2 proposes a count aggregation MDP reformulation that will be solved using deep RL in Section 4.

3.1 GGF-WCMDP Problem Reduction
We start with formally defining the conditions for a WCMDP to be considered symmetric.

Definition 3.1 (Symmetric WCMDP). A WCMDP is symmetric if
1. (Identical Sub-MDPs) Each sub-MDP is identical, i.e., Sn = S, An = A, pn = p, rn = r, µn = µ, for all

n ∈ N , and for some (S,A, p, r, µ, γ) tuple.

2. (Symmetric resource consumption) For any k ∈ K, the number of resources consumed is the same for each
sub-MDP, i.e., dk,n(an) = dk(an) for all n ∈ N , and for some dk(·).

3. (Permutation-Invariant Initial Distribution) For any permutation operator Q ∈ GN , the probability of selecting
the permuted initial state Qs̄0 is equal to that of selecting s̄0, i.e., µ(N)(s̄0) = µ(N)(Qs̄0),∀s̄0 ∈ S(N),∀Q ∈
GN .

The conditions of symmetric WCMDP identify a class of WCMDPs that is invariant under any choice of indexing
for the sub-MDPs. This gives rise to the notion of “permutation invariant” policies (see definition 1 in Cai et al. (2021))
and the question of whether this class of policies is optimal for symmetric WCMDPs.

Definition 3.2 (Permutation Invariant Policy). A Markov stationary policy π is said to be permutation invariant if the
probability of selecting action a in state s is equal to that of selecting the permuted action Qa in the permuted state
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Qs, for all Q ∈ GN . Formally, this can be expressed as π(s,a) = π(Qs, Qa), for all Q ∈ GN , s ∈ S(N) and
a ∈ A(N).

This symmetry ensures that the expected state-value function, when averaged over all trajectories, is identical for
each sub-MDP, leading to a uniform state-value representation. From this observation, and applying Theorem 6.9.1
from (Puterman, 2005), we construct a permutation-invariant policy from any policy, resulting in uniform state-value
(Lemma 3.3).

Lemma 3.3 (Uniform State-Value Representation). If a WCMDP is symmetric, then for any policy π, there exists a cor-
responding permutation invariant policy π̄ such that the vector of expected total discounted rewards for all sub-MDPs
under π̄ is equal to the average of the expected total discounted rewards for each sub-MDP, i.e., V π̄

0 = 1
N

∑N
n=1 V

π
0,n1.

The proof is detailed in Appendix B.3. Furthermore, one can use the above lemma to show that the optimal policy
for the GGF-WCMDP problem (2) under symmetry can be recovered from solving the problem with equal weights,
i.e., the utilitarian approach. Our main result is presented in the following theorem. See Appendix B.4 for a detailed
proof.

Theorem 3.4 (Utilitarian Reduction). For a symmetric WCMDP, let Π∗
1/N,PI be the set of optimal policies for the

utilitarian approach that is permutation invariant, then Π∗
1/N,PI is necessarily non-empty and all π∗

1/N,PI ∈ Π∗
1/N,PI

satisfies

GGFw[V
π∗
1/N,PI

0 ] = max
π

GGFw [V π
0 ] ,∀w ∈ ∆(N).

This theorem simplifies solving the GGF-WCMDP problem by reducing it to an equivalent utilitarian problem,
showing that at least one permutation-invariant policy is optimal for the original GGF-WCMDP problem and the
utilitarian reduction. Therefore, we can restrict the search for optimal policies to this specific class of permutation-
invariant policies. The utilitarian approach does not compromise the GGF optimality and allows us to leverage more
efficient and scalable techniques to solve the GGF-WCMDP problem (Eq. 2), such as the Whittle index policies for
RMABs, as demonstrated in the experimental section.

3.2 The Count Aggregation MDP
Assuming symmetry across all N sub-MDPs and using a permutation-invariant policy within a utilitarian framework
allows us to simplify the global MDP by aggregating the sub-MDPs based on their state counts and tracking the number
of actions taken in each state. Since each sub-MDP follows the same transition probabilities and reward structure, we
can represent the entire system more compactly.

Motivated by the symmetry simplification representation in Gast et al. (2024) for the utilitarian objective, we
consider an aggregation ϕ = (f, gs), where f : S(N) → NS maps state s to a count representation x with xs denoting
the number of sub-MDPs in the s-th state. Similarly, gs : A(N) → NS×A maps action a to a count representation
u, where us,a indicates the number of MDPs at s-th state that performs a-th action. We can formulate the count
aggregation MDP (definition 3.5). The details on obtaining the exact form are in Appendix C.

Definition 3.5 (Count Aggregation MDP). The count aggregation MDPMϕ derived from a WCMDP (S(N),A(N),

p(N), r, µ(N), γ) consists of the elements (S(N)
f ,A(N)

gs , p
(N)
ϕ , r̄ϕ, µ

(N)
f , γ).

Both representations lead to the same optimization problem as established in Gast et al. (2024) when the objective
is utilitarian. Using the count representation, the mean expected total discounted reward V̄

π1/N

0 for a WCMDPM(N)

with permutation invariant distribution µ(N) and equal weights w1/N (Theorem 3.4) is then equivalent to the expected
total discounted mean reward V̄

πϕ

0 for the count aggregation MDPMϕ given the policy πϕ : S(N)
f → ∆(A(N)

gs ) under

aggregation mapping with initial distribution µ
(N)
f , i.e., V̄

π1/N

0 = 1
N

∑N
n=1 V

π1/N

0,n = 1
S

∑S
s=1 V

πϕ

0,s = V̄
πϕ

0 . The
objective in Eq. 2 is therefore reformulated as max

πϕ

V̄
πϕ

0 , i.e.,

max
πϕ

1

S
Eπϕ

[ ∞∑
t=0

γtr̄ϕ(xt,ut)

∣∣∣∣x0 ∼ µ
(N)
f

]
. (4)

A LP method is provided to solve the count aggregation MDP in Appendix D.2.

5



4 Count-Proportion-Based DRL

We now consider the situation where the transition dynamics p
(N)
ϕ are unknown and the learner computes the (sub-

)optimal policy through trial-and-error interactions with the environment. In Section 4.1, we introduce a count-
proportion-based deep RL (CP-DRL) approach. This method incorporates a stochastic policy neural network with
fixed-sized inputs and outputs, designed for optimizing resource allocation among stakeholders under constraints with
count representation. In Section 4.2, we detail the priority based sampling procedure used to generate count actions.

4.1 Stochastic Policy Neural Network

One key property of the count aggregation MDP is that the dimensions of state space S(N)
f and action space A(N)

gs are
constant and irrespective of the number of sub-MDPs. To further simplify the analysis and eliminate the influence of
N , we define the count state proportion as x̄ = x/N and the resource proportion constraint for each resource k as
b̄k = bk/(N maxa∈A dk(a)) ∈ [0, 1].

This converts the states into a probability distribution, allowing generalization when dealing with a large number of
agents. The stochastic policy network in Figure 1 is designed to handle the reduced count aggregation MDP problem
(4) by transforming the tuple (x̄, b̄) into a priority score matrix U and a resource-to-use proportion vector p̃, which are
then used to generate count actions u via a sampling procedure (discussed in Section 4.2).

Figure 1: CP-based stochastic policy neural network.

The policy network features fixed-size inputs and outputs, enabling scalability in large-scale systems without re-
quiring structural modifications when adjusting the number of resources or machines. The input consists of a fixed-size
vector of size S +K, combining the count state proportion x̄ ∈ [0, 1]S and the resource proportion b̄ ∈ [0, 1]K . The
policy network processes these inputs to produce outputs of size S × A +K, which include a matrix U ∈ (0, 1]S×A

representing the priority scores for selecting count actions and a vector p̃ ∈ [0, 1]K representing the proportion of
resource usage relative to the total available resources b̄.

The advantages of adding additional resource proportion nodes p̃ to the output layer are twofold. First, it reduces
the computational effort required to ensure that the resource-to-use does not exceed b̄. Instead, the resource constraint
is satisfied by restricting the resource-to-use proportions p̃ to be element-wise proportional to b̄. Second, since the
optimal policy may not always use all available resources, we incorporate the additional nodes to capture the complex
relationships between different states for more effective strategies to allocate resources.

4.2 Priority-based Sampling Procedure
Priority-based sampling presents a challenge since legal actions depend on state and resource constraints. To address
this, a masking mechanism prevents the selection of invalid actions. Each element up

s,a ∈ U represents the priority
score of taking the a-th action in the s-th state. When the state count xs is zero, it implies the absence of sub-MDPs
in this state, and the corresponding priority score is masked to zero. Legal priorities are thus defined for states with
non-zero counts, i.e., up

s,a = 0 if xs = 0 for all s ∈ [S], a ∈ [A].
Since the selected state-action pairs must also satisfy multi-resource constraints, we introduced a forbidden set F ,

which specifies the state-action pairs that are excluded from the sampling process. The complete procedure is outlined
in Algorithm 1. The advantage of this approach is that the number of steps does not grow exponentially with the
number of sub-MDPs. In the experiments, after obtaining the count action u, a model simulator is used to generate
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rewards and the next state as described in Algorithm 2 in Appendix E. The simulated outcomes are used for executing
policy gradient updates and estimating state values.

Algorithm 1 Count Action Sampling Based on Priority Scores

Input: Count state x, priority score matrix U , resource limitations b, resource-to-use proportion p̃, resource con-
sumption function d(a)
Initialize: b̃← b · p̃, u← 0S×A, F ← ∅
Apply masking to U and update the forbidden set by F ← F ∪ {(s, a) | up

s,a = 0 for s ∈ [S] and a ∈ [A]}.
while |F| < S ×A do

Sample a state-action index pair (s, a) /∈ F with the probability proportional to U
if dk(a) ≤ b̃k for all k then

Update us,a ← us,a + 1, xs ← xs − 1

Update b̃k ← b̃k − dk(a) for all k
if xs = 0 then

Add all actions for the s-th state to forbidden set: F ← F ∪ {(s, a) | ∀a ∈ [A]}
end if

else
Add (s, a) to forbidden set F ← F ∪ {(s, a)}.

end if
end while
Return: Count action matrix u

One critical advantage of using CP-DRL is its scalability. More specifically, the approach is designed to handle
variable sizes of stakeholders N and resources K while preserving the number of aggregated count states constant for
a given WCMDP. By normalizing inputs to fixed-size proportions, the network can seamlessly adapt to different scales,
making it highly adaptable. Moreover, the fixed-size inputs allow flexibility that the neural network is trained once and
used in multiple tasks with various numbers of stakeholders and resource limitations.

5 Experimental Results
We apply our methods to the machine replacement problem (Delage and Mannor, 2010; Akbarzadeh and Mahajan,
2019), providing a scalable framework for evaluating the CP-DRL approach as problem size and complexity increase.
We focus on a single resource (K = 1) and binary action (A = 2) for each machine, allowing validation against
the Whittle index policy for RMABs (Whittle, 1988). We applied various DRL algorithms, including Soft Actor
Critic (SAC), Advantage Actor Critic (A2C), and Proximal Policy Optimization (PPO). Among these, PPO algorithm
(Schulman et al., 2017) consistently delivers the most stable and high-quality performance. We thus choose PPO as
the main algorithm for our CP-DRL approach (see Section 4). Our code is provided on Github2.

Machine Replacement Problem The problem consists of N identical machines following Markovian deteri-
oration rules with S states representing aging stages. The state space S(N) is a Cartesian product. At each decision
stage, actions a are applied to all machines under the resource constraint, with action an representing operation (pas-
sive action 0) or replace (active action 1). Resource consumption dn(an) is 1 for replacements and 0 for operation, with
up to b replacements per time step. Costs range from 0 to 1, transformed to fit the reward representation by multiplying
by -1 and adding 1. Machines degrade if not replaced and remain in state S until replaced. Refer to Appendix F.1 for
cost structures and the transition probabilities. We choose the operational and replacement costs across two presets to
capture different scenarios (see Appendix F.2 for details): i) Exponential-RCCC and ii) Quadratic-RCCC.

The goal is to find a fair policy that maximizes the GGF score over expected total discounted mean rewards with
count aggregation MDP. In cases like electricity or telecommunication networks, where equipment is regionally dis-
tributed, a fair policy guarantees an equitable operation and replacement, thereby preventing frequent failures in specific
areas that lead to unsatisfactory and unfair results for certain customers.

Experimental Setup We designed a series of experiments to test the GGF-optimality, flexibility, scalability, and
efficiency of our CP-DRL algorithm. We compare against optimal solutions (OPT) from the GGF-LP model (3) for

2https://anonymous.4open.science/r/GGF-WCMDP
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small instances solved with Gurobi 10.0.3, the Whittle index policy (WIP) for RMABs, and a random (RDM) agent
that selects actions randomly at each time step and averages the results over 10 independent runs.

GGF weights decay exponentially with a factor of 2, defined as wn = 1/2n, and normalized to sum to 1. We use a
uniform distribution µ(N) over S(N) and set the discount factor γ = 0.95. We use Monte Carlo simulations to evaluate
policies over M trajectories truncated at time length T . We choose M = 1,000 and T = 300 across all experiments.
Hyperparameters for the CP-DRL algorithm are in Appendix F.3.

Experiment 1 (GGF-Optimality) We obtain optimal solutions using the OPT model for instances where
N ∈ {3, 4, 5}, with each machine having S = 3 states. We select indexable instances to apply the WIP method
for comparison. Note that, the WIP method is particularly effective in this case as it solves the equivalent utilitarian
problem (as demonstrated in the utilitarian reduction result in Section 3.1). In most scenarios with small instances,
WIP performs near-GGF-optimal since resources are assigned impartially, making it challenging for CP-DRL to con-
sistently outperform WIP. As shown in Figure 2, the CP-DRL algorithm converges toward or slightly below the OPT
values across the scenarios for the Exponential-RCCC case. WIP performs better than the random agent but does not
reach the OPT values, especially as the number of machines increases. CP-DRL either outperforms or has an equivalent
performance as WIP but consistantly outperforms the random policy.

(a) N=3 (b) N=4 (c) N=5

Figure 2: (Colored) Learning curves for different numbers of machines (N from 3 to 5). Experimental results for
the Exponential-RCCC scenario are shown with y-axes starting at 7 for zoom-in. Red dashed lines represent the OPT
values, green dashed lines show the WIP performance, blue lines depict CP-DRL learning curves over 800 episodes,
and orange lines show the RDM performance. Shaded areas indicate the standard deviation across 5 runs.

Experiment 2 (Flexibility) The fixed-size input-output design allows CP-DRL to leverage multi-task training
(MT) with varying machine numbers and resources. We refer to this multi-task extension as CP-DRL(MT). We trained
the CP-DRL(MT) with N ∈ {2, 3, 4, 5}, randomly switching configurations at the end of each episode over 2000
training episodes. CP-DRL(MT) was evaluated separately, and GGF values for WIP and RDM policies were obtained
from 1000 Monte Carlo runs. The numbers following the plus-minus sign (±) represent the variance across 5 exper-
iments with different random seeds in Table 1 and 2. Variances for WIP and RDM are minimal and omitted, with
bold font indicating the best GGF scores at each row excluding optimal values. As shown in Table 1, CP-DRL(MT)
consistently achieves scores very close to the OPT values as the number of machines increases from 2 to 4. For the
5-machine case, CP-DRL(MT) shows slightly better performance than the single-task CP-DRL. In Table 2, the single-
and multi-task CP-DRL agents show slight variations in performance across different machine numbers. For N = 5,
CP-DRL achieves the best GGF score, slightly outperforming WIP.

Table 1: GGF Scores (Exponential-RCCC).

N OPT WIP CP-DRL CP-DRL(MT) RDM
2 14.19 14.07 14.12± 0.01 14.11 ± 0.01 9.67
3 14.08 13.75 13.95± 0.02 13.89 ± 0.14 10.13
4 13.94 13.27 13.64± 0.05 13.59 ± 0.10 9.74
5 13.77 12.47 12.96± 0.01 13.28 ± 0.03 8.95

Table 2: GGF Scores (Quadratic-RCCC).

N OPT WIP CP-DRL CP-DRL(MT) RDM
2 16.17 16.17 16.14± 0.00 16.14 ± 0.00 10.15
3 16.10 16.09 16.05± 0.00 16.05 ± 0.00 11.83
4 16.01 16.01 15.94± 0.00 15.94 ± 0.00 12.17
5 15.91 15.86 15.87± 0.02 15.86 ± 0.02 11.98

Experiment 3 (Scalability) We assess CP-DRL scalability by increasing the number of machines while keeping
the resource proportion at 0.1 for Exponential-RCCC instances. We refer to this scaled extension as CP-DRL(SC).
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Machine numbers vary from 10 to 100 to evaluate CP-DRL performance as the problem size grows. We also use CP-
DRL(SC), trained on 10 machines with 1 unit of resource, and scale it to tasks with 20 to 100 machines. Figure 3(a)
shows CP-DRL and CP-DRL(SC) consistently achieve higher GGF values than WIP as machine numbers increase. CP-
DRL(SC) delivers results comparable to separately trained CP-DRL, reducing training time while maintaining similar
performance. Both WIP and CP-DRL show linear growth in time consumption per episode as machine numbers scale
up.

(a) GGF values for the number of
machines N ∈ [10, 100].

(b) Time per episode in seconds
with a resource ratio b/N = 0.1.

(c) Time per episode in seconds
with a resource ratio b/N = 0.5.

Figure 3: (Colored) Scalability and Time Efficiency of CP-DRL. Subfigures (a) and (b) show the scalability of
CP-DRL with a fixed resource ratio of 0.1. Subfigure (a) presents GGF values across different machine counts, with
intervals representing standard deviation over 5 runs. Subfigure (b) and (c) depicts time per episode in seconds for a
fixed resource ratio of 0.1 and 0.5, respectively. In all time plots, the green line represents WIP during MC evaluation,
the blue line shows CP-DRL during training, and the orange line represents CP-DRL during MC evaluation.

Experiment 4 (Efficiency) In the GGF-LP model (3), the number of constraints grows exponentially with the
number of machines N as N2+SN , and the variables increase by 2N +(N +1) ·SN . Using the Count dual LP model
(18) reduces the model size, but constraints still grow as

(
N+S−1
S−1

)
and variables increase by

(
N+S−1
S−1

)
· A. These

growth patterns create computational challenges as problem size increases. Detailed time analysis for GGF-LP and
Count dual LP models with N from 2 to 7 is provided in Appendix F.4. In addition to the time per episode for a fixed
ratio of 0.1 in Figure 3a, we analyze performance with a 0.5 ratio (Figure 3c) and varying machine proportions, keeping
the number of machines fixed at 10. We evaluate CP-DRL over machine proportions from 0.1 to 0.9. The results show
that time per episode increases linearly with machine count, while the training and evaluation times remain relatively
stable. This indicates that the sampling procedure for legal actions is the primary bottleneck. Meanwhile, the resource
ratio has minimal impact on computing times.

6 Conclusion
We incorporate the fairness consideration in terms of the generalized Gini function within the weakly coupled Markov
decision processes, and define the GGF-WCMDP optimization problem. First, we present an exact method based on
linear programming for solving it. We then derive an equivalent problem based on a utilitarian reduction when the
WCMDP is symmetric, and show that the set of optimal permutation invariant policy for the utilitarian objective is also
optimal for the original GGF-WCMDP problem. We further leverage this result by utilizing a count state represen-
tation and introduce a count-proportion-based deep RL approach to devise more efficient and scalable solutions. Our
empirical results show that the proposed method using PPO as the RL algorithm consistently achieves high-quality
GGF solutions. Moreover, the flexibility provided by the count-proportion approach offers possibilities for scaling up
to more complex tasks and context where Whittle index policies are unavailable due to the violation of the indexibility
property by the sub-MDPs.
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A Related Work
Fairness-aware learning is increasingly integrated into the decision-making ecosystem to accommodate minority inter-
ests. However, naively imposing fairness constraints can actually exacerbate inequity (Wen et al., 2021) if the feedback
effects of the decisions are ignored. Many real-world fairness applications are not one-time static decisions (Zhao
and Gordon, 2019) and can thus be better modeled with sequential decision problems, which still remain relatively
under-studied.

Fairness with dynamics There are a few studies investigating fairness-aware sequential decision making. For
instance, Liu et al. (2018) consider one-step delayed feedback effects, Creager et al. (2020) propose causal modeling
of dynamical systems to address fairness, and Zhang et al. (2019) construct a user participation dynamics model where
individuals respond to perceived decisions by leaving the system uniformly at random. These studies extend the
fairness definition in temporally extended decision-making settings, but do not take feedback and learning into account
that the system may fail to adapt to changing conditions. Alamdari et al. (2023) address this gap by introducing multi-
stakeholder fairness as non-Markovian sequential decision-making and developing a Q-learning based algorithm with
counterfactual experiences to enhance sample-efficient fair policy learning.

Fairness in Markov decision processes Zhang et al. (2020) consider how algorithmic decisions impact the evo-
lution of feature space of the underlying population modeled as Markov decision processes (MDP) but is limited to
binary decisions. Ghalme et al. (2022b) study a fair resource allocation problem in the average MDP setting and pro-
poses an approximate algorithm to compute the policy with sample complexity bounds. However, their definition of
fairness is restricted to the minimum visitation frequency across all states, potentially resulting in an unbalanced re-
wards among users. Wen et al. (2021) develop fair decision-making policies in discounted MDPs, but the performance
guarantees are achieved only under a loose condition. In contrast, our work takes into account a more comprehensive
definition of fairness. Segal et al. (2023) investigate the impact of societal bias dynamics on long-term fairness and the
interplay between utility and fairness under various optimization parameters. Additionally, Hassanzadeh et al. (2023)
address a fair resource allocation problem similar to our work but in continuous state and action space. They define
fairness to the agents considering all their allocations over the horizon under the Nash Social Welfare objective in
hindsight.

Fairness in reinforcement learning Jabbari et al. (2017) initiate the meritocratic fairness notion from the multi-
arm bandits setting to the reinforcement learning (RL) setting. Later, fairness consideration has been integrated in
reinforcement learning to achieve fair solutions in different domains, including a fair vaccine allocation policy that
equalizes outcomes in the population (Atwood et al., 2019), balancing between fairness and accuracy for interactive
user recommendation (Liu et al., 2020; Ge et al., 2022), and fair IoT that continuously monitors the human state and
changes in the environment to adapt its behavior accordingly (Elmalaki, 2021). However, most work focuses on the
impartiality aspect of fairness. Jiang and Lu (2019) investigate multi-agent RL where fairness is defined over agents and
encoded with a different welfare function, but the focus is on learning decentralized policies in a distributed way. We
refer readers to two literature review papers by Gajane et al. (2022) and Reuel and Ma (2024) on fairness considerations
in RL, which provide comprehensive insights into current trends, challenges, and methodologies in the field.

Fairness in restless multi-arm bandits A line of work closely related to ours focuses on fairness in restless
multi-arm bandits (RMABs). Li and Varakantham (2022a) first introduce the consideration of fairness in restless
bandits by proposing an algorithm that ensures a minimum number of selections for each arm. Subsequent studies
have explored similar individual fairness constraints, which aim to distribute resources equitably among arms but in
a probabilistic manner. For instance, Herlihy et al. (2023) introduce a method that imposes a strictly positive lower
bound on the probability of each arm being pulled at each timestep. Li and Varakantham (2022b, 2023) investigate
fairness by always probabilistically favoring arms that yield higher long-term cumulative rewards. Additionally, Sood
et al. (2024) propose an approach where each arm receives pulls in proportion to its merit, which is determined by its
stationary reward distribution. Our work differs from these approaches by explicitly aiming to prevent disparity and
ensure a more balanced reward distribution among all arms through the generalized Gini welfare objective. The only
work that considers the Gini index objective is by Verma et al. (2024), which develops a decision-focused learning
pipeline to solve equitable RMABs. In contrast, our work applies to a more general setting on weakly coupled MDPs,
and does not rely on the Whittle indexability of the coupled MDPs.

13



B Proofs of Section 3
We start this section with some preliminary results regarding 1) the effect of replacing a policy with one with permuted
indices on the value function of a symmetric WCMDP (Section B.1); and 2) a well known result due to Puterman
(2005) on the equivalency between stationary policies and occupancy measures (Section B.2). This is followed with
the proof of Lemma 3.3 and our main Theorem 3.4 in sections B.3 and B.4 respectively.

B.1 Value Function under Permuted Policy for Symmetric WCMDP
Lemma B.1. If a weakly coupled WCMDP is symmetric (definition 3.1), then for any policy π and permutation oper-
ator Q, we have V π

0 = QV πQ

0 , where the permuted policy πQ(s,a) := π(Qs, Qa) for all (s,a) pairs.

This lemma implies an important equivalency in symmetric weakly coupled MDPs with identical sub-MDPs. If
we permute the states and actions of a policy, the permuted version of the resulting value function is equivalent to the
original value function.

Proof: We can first show that for all t,

PπQ

(st = s,at = a|s0 = s̄0) = Pπ(st = Qs,at = Qa|s0 = Qs̄0).

This can be done inductively. Starting at t = 0, we have that:

PπQ

(s0 = s,a0 = a|s0 = s̄0) = πQ(s,a)I{s = s̄0}
= π(Qs, Qa)I{Qs = Qs̄0}
= Pπ(s0 = Qs,a0 = Qa|s0 = Qs̄0).

Next, assuming that PπQ
(st = s,at = a|s0 = s̄0) = Pπ(st = Qs,at = Qa|s0 = Qs̄0), we can show that it is also

the case for t+ 1:
PπQ

(st+1 = s′,at+1 = a′|s0 = s̄0)

= πQ(s′,a′)
∑
s,a

P(st+1 = s′|st = s,at = a)PπQ

(st = s,at = a|s0 = s̄0)

= π(Qs′, Qa′)
∑
s,a

p(N)(s′|s,a)Pπ(st = Qs,at = Qa|s0 = Qs̄0)

= π(Qs′, Qa′)
∑
s,a

p(N)(Qs′|Qs, Qa)Pπ(st = Qs,at = Qa|s0 = Qs̄0)

= Pπ(st+1 = Qs′,at+1 = Qa′|s0 = Qs̄0),

where we used the fact that the sub-MDPs are identical so that p(N)(s′|s,a) = p(N)(Qs′|Qs, Qa).
We now have that,

V πQ

0 =
∑
s,a

∑
s̄0

µ(N)(s̄0)

∞∑
t=0

γtPπQ

(st = s,at = a|s0 = s̄0)r(s,a)

=
∑
s,a

∑
s̄0

µ(N)(s̄0)

∞∑
t=0

γtPπ(st = Qs,at = Qa|s0 = Qs̄0)r(s,a)

=
∑
s,a

∑
s̄0

µ(N)(Qs̄0)

∞∑
t=0

γtPπ(st = Qs,at = Qa|s0 = Qs̄0)r(s,a)

=
∑
s,a

∑
s̄0

µ(N)(Qs̄0)

∞∑
t=0

γtPπ(st = Qs,at = Qa|s0 = Qs̄0)Q
−1r(Qs, Qa)

= Q−1

(∑
s,a

∑
s̄0

µ(N)(Qs̄0)

∞∑
t=0

γtPπ(st = Qs,at = Qa|s0 = Qs̄0)r(Qs, Qa)

)

= Q−1

∑
s′,a′

∑
s̄′0

µ(N)(s̄′0)

∞∑
t=0

γtPπ(st = s′,at = a′|s0 = s̄′0)r(s
′,a′)

 = Q−1V π
0 ,
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where we first use the relation between PπQ
and π, then exploit the permutation invariance of µ(N). We then exploit

the permutation invariance Qr(s,a) = r(Qs, Qa), and reindex the summations using s′ := Qs, a′ := Qa, and
s̄′0 := Qs̄0. □

B.2 Mapping between stationary policies and occupancy measures
We present results of Theorem 6.9.1 in Puterman (2005) to support Lemma 3.3. A detailed proof is provided in the
book.

Lemma B.2. (Theorem 6.9.1 of Puterman (2005)) Let Π denote the set of stationary stochastic Markov policies and
X the set of occupancy measures. There exists a bijection h : Π → X such that for any policy π, h(π) uniquely
corresponds to its occupancy measure qπ . Specifically, there is a one-to-one mapping between policies and occupancy
measures satisfying:

1. For any policy π ∈ Π, the occupancy measure qπ : S(N) ×A(N) → R is defined as

qπ(s,a) :=
∑

s̄0∈S(N)

µ(N)(s̄0)

∞∑
t=0

γtPπ (st = s,at = a|s0 = s̄0) , (5)

for all a ∈ A(N) and s ∈ S(N).

2. For any occupancy measure q(s,a) : S(N) ×A(N) → R, the policy πq is constructed as

πq(s,a) :=
q(s,a)∑

a′∈A(N)

q (s,a′)
, (6)

for all a ∈ A(N) and s ∈ S(N).

It follows that π = πqπ .

Now, we show that the value function can be represented using occupancy measures.

Lemma B.3. For any policy π ∈ Π, and the occupancy measure qπ defined by (5), the expected total discounted
rewards under the policy π can be expressed as:

V π
0 =

∑
s∈S(N)

∑
a∈A(N)

qπ(s,a)r(s,a). (7)

Proof. Expanding the expected total discounted rewards V π
0 (as defined by Equation 1), we have:

V π
0 =

∑
s̄0∈S(N)

µ(N)(s̄0)
∑

s∈S(N)

∑
a∈A(N)

∞∑
t=0

Pπ (st = s,at = a|s0 = s̄0) γ
tr(s,a).

Rearranging the terms:

V π
0 =

∑
s∈S(N)

∑
a∈A(N)

 ∑
s̄0∈S(N)

µ(N)(s̄0)

∞∑
t=0

γtPπ (st = s,at = a|s0 = s̄0)

 r(s,a).

By replacing the term in parentheses as the occupancy measure qπ(s,a) in equation 5:

V π
0 =

∑
s∈S(N)

∑
a∈A(N)

qπ(s,a)r(s,a).

This completes the proof. □

B.3 Proof of Lemma 3.3
Lemma 3.3 (Uniform State-Value Representation) If a WCMDP is symmetric (definition 3.1), then for any policy π,
there exists a corresponding permutation invariant policy π̄ such that the vector of expected total discounted rewards
for all sub-MDPs under π̄ is equal to the average of the expected total discounted rewards for each sub-MDP, i.e.,

V π̄
0 =

1

N

N∑
n=1

V π
0,n1.
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Proof by construction. We first construct, for any fixed Q, the permuted policy πQ(s,a) := π(Qs, Qa) and
characterize its occupancy measure qπQ as

qπQ(s,a) :=
∑

s̄0∈S(N)

µ(N)(s̄0)

∞∑
t=0

γtPπQ

(st = s,at = a|s0 = s̄0) . (8)

Next, we construct a new measure q̄ obtained by averaging all permuted occupancy measures qπQ for Q ∈ GN on all
(s,a) pairs as

q̄(s,a) :=
1

N !

∑
Q

qπQ(s,a). (9)

One can confirm that q̄ is an occupancy measure, i.e., q̄ ∈ X , since each qQπ ∈ X and X is convex. Indeed, the
convexity of X easily follows from that the fact that it contains any measure that it is the set of measures that satisfy
constraints 3c and 3d.

From Lemma B.2, a stationary policy π̄ can be constructed such that its occupancy measure matches q̄(s,a).
Namely,

qπ̄(s,a) :=
∑

s̄0∈S(N)

µ(s̄0)

∞∑
t=0

γtPπ̄ (st = s,at = a|s0 = s̄0) = q̄(s,a),∀s,a.

We can then derive the following steps:

V π̄
0 =

∑
s∈S(N)

∑
a∈A(N)

qπ̄(s,a)r(s,a) (By Lemma B.3)

=
∑

s∈S(N)

∑
a∈A(N)

q̄(s,a)r(s,a) (By Lemma B.2)

=
1

N !

∑
Q∈GN

∑
s∈S(N)

∑
a∈A(N)

qπQ(s,a)r(s,a) (By construction in equation 9)

=
1

N !

∑
Q∈GN

V πQ

0 (By Lemma B.3)

=
1

N !

∑
Q∈GN

Q−1V π
0 (By Lemma B.1)

=
1

N !

∑
Q∈GN

Q−1

V π
0,1

· · ·
V π
0,N

 (Vector form)

=
1

N !

(N − 1)!
∑N

n=1 V
π
0,n

· · ·
(N − 1)!

∑N
n=1 V

π
0,n

 (Property of permutation group)

=
1

N !
(N − 1)!

N∑
n=1

V π
0,n1

=
1

N

N∑
n=1

V π
0,n1.

We complete this proof by demonstrating that π̄ is permutation invariant. Namely, for all Q ∈ GN , we can show
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that:
π̄(Qs, Qa) ∝ 1

N !

∑
Q′∈GN

qπQ′ (Qs, Qa)

=
1

N !

∑
Q′∈GN

qπ(Q
′Qs, Q′Qa)

=
1

N !

∑
Q′′∈GN

qπ(Q
′′s, Q′′a)

=
1

N !

∑
Q′′∈GN

qπQ′′ (s,a)

∝ π̄(s,a),

□

B.4 Proof of Theorem 3.4
We start with a simple lemma.

Lemma B.4. For any w and any v ∈ RN , we have that GGF1/N [v] ≥ GGFw[v].

Proof. This simply follows from:

GGF1/N [v] =
1

N
1⊤v =

 1

N !

∑
Q∈GN

Qw

⊤

v ≥ min
Q∈GN

(Qw)⊤v = GGFw[v].

□
Theorem 3.4 (Utilitarian Reduction) For a symmetric WCMDP (definition 3.1), let Π∗

1/N,PI be the set of optimal
policies for the utilitarian approach (definition 2.1) that is permutation invariant, then Π∗

1/N,PI is necessarily non-
empty and all π∗

1/N,PI ∈ Π∗
1/N,PI satisfies

GGFw[V
π∗
1/N,PI

0 ] = max
π

GGFw [V π
0 ] , ∀w ∈ ∆(N).

Proof. Let us denote an optimal policy to the special case of the GGF-WCMDP problem (2) with equal weights as
π∗
1/N :

π∗
1/N ∈ argmax

π
GGF1/N [V π

0 ] . (10)

Based on Lemma 3.3, we can construct a permutation invariant policy π̄∗
1/N satisfying

V̄
π∗
1/N

0 1 = V
π̄∗
1/N

0 , (11)
then with equation (11) and the fact that any weight vector w must sum to 1, we have that

GGF1/N

[
V

π∗
1/N

0

]
= V̄

π∗
1/N

0 = GGFw

[
1

N

N∑
n=1

V
π∗
1/N

0,n 1

]
= GGFw

[
V

π̄∗
1/N

0

]
, ∀w.

Further, given any w, let us denote with π∗
w any optimal policy to the GGF problem with w weights. One can

establish that:

GGFw[V
π∗
w

0 ] ≥ GGFw

[
V

π̄∗
1/N

0

]
= GGF1/N

[
V

π∗
1/N

0

]
≥ GGF1/N

[
V

π∗
w

0

]
. (12)

Considering that the largest optimal value for the GGF problem is achieved when weights are equal (see Lemma
B.4):

GGF1/N [V π
0 ] ≥ GGFw[V π

0 ],∀π, ∀w ∈ ∆(N).

The inequalities in (12) should therefore all reach equality:

GGFw[V
π∗
w

0 ] = GGFw

[
V

π̄∗
1/N

0

]
= GGF1/N

[
V

π∗
1/N

0

]
.

17



This implies that the bar optimal policy constructed from any optimal policy to the utilitarian approach remains optimal
for any weights in the GGF optimization problem. Furthermore, it implies that there exists at least one permutation
invariant policy that is optimal for the utilitarian approach.

Now, let us take any optimal permutation invariant policy π∗
1/N,PI to the utilitarian problem. The arguments above

can straightforwardly be reused to get the conclusion that π̄∗
1/N,PI have the same properties as the originally constructed

π̄. Namely, for all w,

GGFw[V
π∗
w

0 ] = GGFw

[
V

π̄∗
1/N,PI

0

]
= GGF1/N

[
V

π∗
1/N

0

]
, ∀w ∈ ∆(N).

Looking more closely at π̄∗
1/N,PI, we observe that for any s and a:

π̄∗
1/N,PI(s,a) ∝

1

N !

∑
Q′∈GN

q
π∗,Q′
1/N,PI

(s,a)

=
1

N !

∑
Q′∈GN

qπ∗
1/N,PI

(s,a)

= qπ∗
1/N,PI

(s,a)

∝ π∗
1/N,PI(s,a).

Hence, we have that π̄∗
1/N,PI = π∗

1/N,PI. This thus implies that the permutation invariant π∗
1/N,PI already satisfied these

properties, i.e.,

GGFw[V
π∗
w

0 ] = GGFw

[
V

π∗
1/N,PI

0

]
= GGF1/N

[
V

π∗
1/N

0

]
, ∀w ∈ ∆(N).

□

C Count Aggregation MDP
The exact form of the count aggregation MDP is obtained as follows.

Feasible Action The set of feasible actions in state x is defined as
A(N)

gs (x) := {u |
∑
s∈S

∑
a∈A

dk(a)us,a ≤ bk,∀k ∈ K ;
∑
a∈A

us,a = xs,∀s ∈ S}.

Reward Function The average reward for all users is defined as

r̄ϕ(x,u) =
1

N

∑
s∈S

∑
a∈A

us,a · r(s, a).

Transition Probability The transition probability p
(N)
ϕ (x′|x,u) is the probability that the number of MDP in

each state passes from x to x′ given the action counts u. We define the pre-image f−1(x′) as the set containing all
elements s′ ∈ S(N) that maps to x′, then p

(N)
ϕ (x′|x,u) =

∑
s′∈f−1(x′) p

(N)(s′|f−1(x), g−1
s (u)).

Given the equivalence of transitions within the pre-image set, for arbitrary state-action pair (s,a) ∈ ϕ−1(x,u), the
probability of transitioning from x to x′ under action u is the sum of the probabilities of all the individual transitions
in the original space that correspond to this count aggregation transition. By using the transition probability in the
product space, we obtain

p
(N)
ϕ (x′|x,u) =

∑
s′∈f−1(x′)

p(N)(s′|s,a) =
∑

s′∈f−1(x′)

N∏
n=1

pn(s
′
n|sn, an), (13)

for any (s,a) such that x = f(s) and u = gs(a).
Initial distribution By using a state count representation for symmetric weakly coupled MDPs, we know that

1⊤x = N , so the cardinality of the set can be obtained through multinomial expansion that (s1 + s2 + · · ·+ sN )S =∑
x1+x2+···+xS=N

N !
x1!x2!···xS !s

x1
1 sx2

2 · · · s
xS
N . Intuitively, the term sx1

1 sx2
2 · · · s

xS
N can represent distributing N identi-

cal objects (in this case, sub-MDPs) into S distinct categories (corresponding to different states). Thus, for each state
count x, the number of distinct ways to distribute N sub-MDPs into S states such that the counts match x is given by
the multinomial coefficient |f−1(x)| = N !

x1!x2!···xS ! . Given the initial distribution µ(N) is permutation invariant, the
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probability of starting from state x in the initial distribution is

µ
(N)
f (x) =

∑
s∈f−1(x)

µ(N)(s) = |f−1(x)| · µ(N)(s̄) =
N !

x1!x2! · · ·xS !
· µ(N)(s̄),∀x, (14)

for any s̄ such that f(s̄) = x.

D Exact Approaches based on Linear Programming

D.1 Optimal Solutions to the GGF-WCMDP problem
First, we recall the dual linear programming (LP) methods to solve the MDP with discounted rewards when the tran-
sition and reward functions are known. The formulation is based on the Bellman equation for optimal policy, and is
derived in section 6.9.1 in detail by Puterman (2005).

The dual linear programming formulation for addressing the multi-objective joint MDP can be naturally extended
to the context of vector optimization:

v-max
∑

s∈S(N)

∑
a∈A(N)

r(s,a)q(s,a)

s.t.
∑

a∈A(N)

q(s,a)− γ
∑

s′∈S(N)

∑
a∈A(N)

q(s′,a)p(N)(s|s′,a) = µ(N)(s), ∀s ∈ S(N)

q(s,a) ≥ 0 ∀s ∈ S(N),∀a ∈ A(N)

, (15)

where any µ(N)(s) > 0 can be chosen, but we normalize the weights such that
∑

s∈S(N)

µ(N)(s) = 1 can be interpreted

as the probability of starting in a given state s.
We can now formally formulate the fair optimization problem by combining the GGF operator (Section 2.2) and

the scalarizing function on the reward vector in (15):

max GGFw[v]
s.t. v =

∑
s∈S(N)

∑
a∈A(N)

r(s,a)q(s,a)∑
a∈A(N)

q(s,a)− γ
∑

s′∈S(N)

∑
a∈A(N)

q(s′,a)p(N)(s|s′,a) = µ(N)(s), ∀s ∈ S(N)

q(s,a) ≥ 0 ∀s ∈ S(N),∀a ∈ A(N)

. (16)

By adding a permutation matrix Q to replace the permutation applied to the index set, GGFw[v] is equivalently
represented as

GGFw[v] = inf
Q:Q≥0,

∑
i Qij=1,∀j,

∑
j Qij=1,∀i

∑
ij

wiQijvj . (17)

This reformulation relies on w1 ≥ w2 ≥ · · · ≥ wN to confirm that at the infimum we have min
σ

N∑
n=1

wnvσ(n). Indeed,

if w1 is not assigned to the lowest element of v, then one can get a lower value by transferring the assignment mass
from where it is assigned to that element to improve the solution. This form is obtained through LP duality on (17):

sup
ν,λ:λi+νj≤wivj ,∀i,j

N∑
i=1

λi +

N∑
j=1

νj ,

which leads to

max
ν,λ,q

N∑
i=1

λi +
N∑
j=1

νj

s.t. λi + νj ≤ wivj ∀i, j = 1, . . . , N

.

Dual variable vectors are denoted by λ and ν. Combining the constraints in (16), we can get the complete dual LP
model with the GGF objective (GGF-LP) in (3).
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D.2 Solving Count Aggregation MDP by the Dual LP Model
Since the exact model for the count aggregation MDPMϕ is obtained (Appendix C), a dual linear programming model
is formulated following section 6.9.1 of Puterman (2005), but with count aggregation representation to solve (4):

max
∑

x∈S(N)
f

∑
u∈A(N)

gs

r̄ϕ(x,u)qϕ(x,u)

s.t.
∑

u∈A(N)
gs

qϕ(x,u)− γ
∑

x′∈S(N)
f

∑
u∈A(N)

gs

qϕ(x
′,u)p

(N)
ϕ (x|x′,u) = µ

(N)
f (x), ∀x ∈ S(N)

f

qϕ(x,u) ≥ 0 ∀x ∈ S(N)
f ,∀u ∈ A(N)

gs

(18)

By choosing the initial distribution as µ(N)
f , the optimal solution qϕ(x,u),∀x,u is equivalent to the optimal solution

to the corresponding weakly coupled MDP under the transformation ϕ.

E Model simulator
In the learning setting, the deep RL agent interacts with a simulated environment through a model simulator (Algorithm
2), which leads to the next states x′ and the average reward r̄ϕ across all coupled MDPs.

Algorithm 2 Simulation of Transition Dynamics

Input: count state x, count action u, transition probability p(s′|s, a) and reward function r(s, a).
Initialize: next state x′ ← 0, average reward r̄ϕ ← 0
for s = 1, . . . , S do

for a = 1, . . . , A do
while us,a > 0 do

Sample the next state index s′ ∈ [S] according to the probability distribution p(·|s, a)
x′
s′ ← x′

s′ + 1
r̄ϕ ← r̄ϕ + 1

N · r(s, a)
us,a ← us,a − 1

end while
end for

end for
Return: next state x′, average reward r̄ϕ

F Experimental Design

F.1 Parameter setting
This section details the construction of the components used to generate the test instances based on Akbarzadeh and
Mahajan (2019), including cost function, transition matrix, and reset probability. This experiment uses a synthetic data
generator implemented on our own that considers a system with S states and binary actions (A = 2). There are two
possible actions: operate (passive action 0) or replace (active action 1). After generating the cost matrix of the size
S(N) · A(N) ·N , we normalize the costs to the range [0, 1] by dividing each entry by the maximum cost over all state
action pairs. This ensures that the discounted return always falls within the range [0, 1

1−γ ].
Cost function The cost function c(s) for s ∈ [S] can be defined in five ways, each representing a different cost

structure associated with each state:

• Linear: In this case, the cost function c(s) = s− 1 increases linearly with the state, which means higher states
(worse conditions) incur higher costs.

• Quadratic: The cost function c(s) = (s−1)2 applies a more severe penalty for higher states compared to linear
cost function.

• Exponential: The cost function c(s) = es−1 imposes exponentially increasing costs.
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• Ratio of the Replacement Cost Constant (RCCC): The cost function 1.5(S − 1)2 is constant and based on a
ratio of 1.5 to the maximum quadratic cost.

• Random: The cost function c(s) is generated randomly within a specified range of [0,1].

Transition function The transition matrix for the deterioration action is constructed as follows. Once the
machine reaches the S-th state, it remains in that state indefinitely until being reset by an active action with a probability
of 1. For the s-th state s ∈ [S − 1], the probability of remaining in the same state at the next step is given by a model
parameter pm ∈ [0, 1], and the probability to the s+ 1-th state is denoted by 1− pm.

Reset probability When a replacement occurs, there is a probability ps that the machine successfully resets to
the first state, and a corresponding probability 1 − ps of failing to be repaired and following the deterioration rule. In
our experiments, we only consider a pure reset to the first state with probability 1.

F.2 Chosen Cost Structures
We consider two cost models to reflect real-world maintenance and operation dynamics:

(i) Exponential-RCCC: In this scenario, operational costs increase exponentially with age, and exceed replacement
costs in the worst state to encourage replacements. This scenario fits the operational dynamics of transportation
fleets, such as drone batteries, where operational inefficiencies grow rapidly and can lead to significant damage
to the drones.

(ii) Quadratic-RCCC: In contrast to scenario ii), operational costs increase quadratically with machine age, while
replacement costs remain constant and always higher than operational costs. This setup is typical for high-valued
machinery, where the cost of replacement can be significant compared to operational expenses.

F.3 Hyperparameters
In our experimental setup, we chose PPO algorithm to implement the count-proportion based architecture. The hidden
layers are fully connected and the Tanh activation function is used. There are two layers, with each layer consisting of
64 units. The learning rates for the actor is set to 5× 10−4 and the critic is set to 3× 10−4.

F.4 Additional Results on LP Solving Times
The results in Tables 3 and 4 provide details on solving the GGF-LP model and the Count dual LP model on the
Quadratic-RCCC instances as the number of machines N increases from 2 to 7. The state size is set to S = 3, the
action size to A = 2, and the resource to b = 1. The first block of the tables shows the number of constraints and
variables. The second block provides the model solving times, with the standard deviations listed in parentheses. The
results are based on 5 runs. Notice that the LP solve time inludes pre-solve, the wallclock time, and post-solve times.
The wallclock time is listed separately to highlight the difference from the pure LP Solve time, but not included in the
total time calculation.

21



Table 3: Statistics for GGF-LP Model (3).

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7
# Constraints 13 36 97 268 765 2236
# Variables 31 114 413 1468 5115 17510

Data Build (s) 0.0019
(0.00)

0.0085
(0.00)

0.1076
(0.01)

1.3698
(0.05)

17.7180
(0.52)

320.0141
(16.85)

LP Build (s) 0.0028
(0.00)

0.0185
(0.01)

0.1449
(0.01)

1.4673
(0.08)

20.7464
(4.00)

392.0150
(33.97)

LP Solve (s) 0.0187
(0.02)

0.0212
(0.00)

0.1846
(0.06)

1.2914
(0.09)

13.0377
(0.63)

138.1272
(2.33)

Wallclock Solve∗ (s) 0.0026
(0.00)

0.0018
(0.00)

0.0115
(0.00)

0.0493
(0.00)

0.7849
(0.16)

13.3167
(0.19)

LP Extract (s) 0.0022
(0.00)

0.0019
(0.00)

0.0044
(0.00)

0.0158
(0.00)

0.0711
(0.01)

0.2828
(0.03)

Total Time (s) 0.0256
(0.03)

0.0500
(0.01)

0.4416
(0.06)

4.1443
(0.07)

51.5732
(3.87)

864.4391
(56.75)

∗Wall clock solve time is included in the LP Solve time.

Table 4: Statistics for Count dual LP Model (D.2).

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7
# Constraints 6 10 15 21 28 36
# Variables 24 40 60 84 112 144

Data Build (s) 0.0035
(0.00)

0.0134
(0.00)

0.1306
(0.01)

1.4401
(0.01)

17.4080
(0.40)

204.4550
(4.49)

LP Build (s) 0.0018
(0.00)

0.0031
(0.00)

0.0056
(0.01)

0.0081
(0.00)

0.0297
(0.01)

0.0501
(0.01)

LP Solve (s) 0.0375
(0.02)

0.0362
(0.02)

0.0466
(0.00)

0.0386
(0.01)

0.0745
(0.01)

0.1634
(0.06)

Wallclock Solve∗ (s) 0.0034
(0.00)

0.0053
(0.00)

0.0031
(0.00)

0.0026
(0.00)

0.0034
(0.00)

0.0105
(0.00)

LP Extract (s) 0.0053
(0.00)

0.0025
(0.00)

0.0687
(0.00)

0.0026
(0.00)

0.0051
(0.00)

0.0209
(0.00)

Total Time (s) 0.0481
(0.02)

0.0552
(0.02)

0.2515
(0.13)

1.4894
(0.01)

17.5173
(0.42)

204.6893
(4.44)

∗Wall clock solve time is included in the LP Solve time.
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