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2015.

The authors are exclusively responsible for the content of their
research papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possi-
ble thanks to the support of HEC Montréal, Polytechnique
Montréal, McGill University, Université du Québec à Montréal,
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nologies.
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Abstract: This paper presents a new formulation for the risk averse stochastic reservoir management
problem. Using recent advances in robust optimization and stochastic programming, we propose a dynamic,
multi-objective model based on minimization of a multidimensional risk measure associated with floods and
droughts for a hydro-electrical complex. We present our model and then identify approximate solutions using
standard a�ne decision rules commonly found in the literature as well as lifted decision rules. Finally, we
conduct thorough numerical experiments based on a real river system in Western Québec and conclude on
the relative performance of families of decision rules.

Key Words: Stochastic programming, multiple objective programming, OR in energy, risk analysis, robust
optimization.
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1 Introduction

The problem of designing an optimal release schedule for a set of interconnected reservoirs is extremely
challenging. Operators must often make decisions for various dams or other water control structures in
each period of a given time horizon while taking into account the dynamical structure and topology of the
system. It may also be important to consider complex non-linear physical phenomenon such as the e↵ect of
water volumes on outflow or water delays. This generally leads to high dimensional dynamic and non-convex
problems.

Furthermore, operators must deal with various conflicting objectives of varying importance. Hydro-
electrical complexes must namely balance criteria such as recreational and environmental needs with elec-
tricity generation, irrigation and flood control (see [1]). The importance of multi-objective optimization for
stochastic reservoir management problems is namely illustrated in [2, 3, 4].

There is also considerable uncertainty surrounding various factors such as price of electricity, turbine
breakage, inflows and demand. It is virtually impossible to perfectly identify and represent the true multi-
dimensional stochastic process. However, failure to take into account this stochasticity can lead not only to
severely suboptimal solutions, but even disastrous consequences such as floods or droughts. Incorporating
uncertainty also poses serious numerical limitations as this leads to multi-stage stochastic programs which
are generally intractable (see [5]).

This paper addresses these issues by proposing a dynamic multi-reservoir model based on robust opti-
mization. Robust optimization is a rapidly expanding paradigm which has gained in popularity over the years
[6, 7]. By restricting uncertainty to reside within a given parametrized and deterministic convex set, large
stochastic models can be converted into their robust counterparts while maintaining tractability through
conic programming duality.

Unlike methods traditionally used in stochastic reservoir management problems such as stochastic dynamic
programming (SDP) [8, 9, 10, 11], stochastic dual dynamic programming algorithm (SDDP) [12, 3] and
stochastic programs based on scenario trees [13, 14], robust optimization eliminates the need for distributional
assumptions which increases the resilience of the solutions.

The paradigm has been extended to dynamic problems with a�ne decision rules [15] and later extended
by various authors to provide more flexibility and precision [16, 17, 18]. Although these decision rules provide
a conservative approximation of the objective value, they remain tractable and provide rules that can easily
be used in simulations, which is not necessarily the case of SDP, SDDP or tree-based stochastic programs.

Robust optimization models have recently been used for reservoir management problems. The authors
of [19] and [20] namely use this framework to derive operating policies to maximize the expected electric
production for a multi-period and multi-reservoir hydro-electric complex. However, both approaches only
consider stylized and simplified operating constraints.

This paper di↵ers significantly from the previous work in that it considers realistic operating rules and
focuses on a di�cult problem instance without complete recourse where these tight constraints may be
significantly violated under certain inflow scenarios. For this reason, we formulate a novel multi-objective
problem that minimizes the risk of floods at various critical locations on the river.

Contrary to an overwhelming majority of models mentioned previously, we do not assume risk neutrality.
We explicitly consider risk aversion through parametric families of systemic risk measures (see [21]). This
allows us to easily interpret the risk of these natural disasters and perform sensitivity analysis.

Like [20], we evaluate the use of linear and piecewise a�ne decision rules. Our work draws heavily from
both state-of-the art techniques in robust optimization and the work of [18] on stochastic programming. We
conduct extensive numerical experiments based on a real river system to evaluate and compare these di↵erent
policies and also consider a rolling horizon approach embedded in a realistic simulation environment.
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Finally, our approach is extremely flexible, distribution-free, requires very few assumptions and does not
su↵er from the limitations of various competing methods such as SDP and SDDP. Indeed, our method can
consider inflows delays without numerical di�culties, does not require discretization of the stochastic process
and does not require time decomposition.

The rest of the paper is structured as follows. We introduce our model and the multi-objective nature of
the problem in Section 2. Section 3 focuses on the uncertainty surrounding inflows while Section 4 discusses
theoretical foundations from risk measures. Section 5 discusses a�ne and piecewise-a�ne decision rules. We
then present a case study based on a real hydroelectric reservoir management problem in Québec in Section 6
and o↵er concluding remarks in Section 7.

2 Description of the deterministic reservoir

management problem (RMP)

2.1 Basic model

We consider a discrete time horizon of T periods with decisions at each time t 2 T = {1, ..., T}. If we
completely omit all sources of uncertainty, the reservoir management problem we study consists in finding a
feasible solution to the following program:

(Vol. Bounds) vj  Vjt  v̄j 8j 2 J, t 2 T (1)

(Flow cons.) Vjt = vj0 (2)

+
X

⌧t
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Ri+⌧ + ⇠j⌧

1

CA� 8j 2 J, t 2 T

(Flow Bounds) ri  Rit  r̄i, 8i 2 I, t 2 T (3)

(Evac. Curve) Sit  Ci(Vj�(i)t), 8i 2 Ievac, t 2 T (4)

(Var. Bound) |Rit �Rit�1|  �̄i 8i 2 I, t 2 {2, ..., T} (5)

(Spill. Bounds) si  Sit  s̄i 8i 2 I, t 2 T (6)

(Turb. Bounds) q
i
 Qit  q̄i 8i 2 I, t 2 T (7)

(Flow def.) Rit = Qit + Sit 8i 2 I, t 2 T (8)

In this formulation, the decision variables Vt,St, Qt, Rt, respectively represent average volumes (hm3)
during time t, average spillage (non-productive water discharge) (m3/s) over time t, average turbined outflow
(productive water discharge) (m3/s) over time t and average total flow (m3/s) over time t. The sum of the
spillage and the turbined outflow is equal to the total flow.

We distinguish between the spillage and turbined controls which represent real implementable decisions
and the volume and total flow which are analysis variables1 used to enhance model readability (refer to
Table 1).

We let J represent the set of reservoirs; some of which are simply portions of the river with little or
no capacity. The set I represents the water controlling sites. Not all sites have plants that may produce
electricity by letting water flow though turbines. The sets I�(j), I+(j) ⇢ I represent the set of upstream
(incoming) and downstream (outgoing) plants with respect to reservoir j.

For each reservoir j, lower volume bounds (vj) represents a minimum amount of water required namely
for health, environmental and recreational purposes. These bounds are particularly important during the

1We define implementability as the property that decisions at a given time can be realistically controlled by human intervention
and depend only on the available information. On the other hand, analysis variables are completely determined uniquely once
the implementable decisions are fixed. They only serve to track the evolution of the system.
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Table 1: Decision variables

Notation Name Implementable Unit

Vt Volume No (hm3)
St Spillage Yes (m3/s)
Qt Turbined outflow Yes (m3/s)
Rt Total flow No (m3/s)

hot summer months when there are less precipitations and more recreational activities on the water. They
are often enforced through contracts and agreements with local communities. The bounds may be fixed or
variable over the entire year, but it is reasonable to keep them fixed since the time horizon is su�ciently
small.

Upper bounds (v̄j) represent hard maximum levels and are based on the physical capacity of each river
segment or reservoir. Those of reservoirs close to human habitations that display a high likelihood of flooding
are particularly important. These bounds are also critical for large “head” reservoirs, since operators will
lose the capacity to manage the river adequately if the volumes exceed these thresholds.

Flow conservation constraints ensure conservation of water across the system. Since plants are located at
di↵erent distances from one another on heterogeneous terrain, a drop of water takes a di↵erent amount of
time to flow down to the next reservoir depending on the plant from which it was released. This phenomenon
is modelled with the parameter �i�(j)l which represents the fraction of the total water discharged from plant
i�(j) reaching the unique downstream reservoir j after l time steps. �min

i�(j) and �max
i�(j) represent the minimum

and maximum number of days required to transport one hm3 of water from plant i�(j) to the downstream
reservoir. The parameter ⇠jt represents the inflows in reservoir j at time t due to precipitations, snow melt
and natural water flow.

Operators realize the importance of considering these delays and planning several weeks or months ahead,
even in the case of certain inflows. This is an important advantage over stochastic dynamic programming
(SDP) which is one of the most popular frameworks used to solve stochastic reservoir management problem
(see [1]).

The constant � allows conversion ofm3/seconds to hm3/days while vj0 represents the fixed known amount
of water (in hm3) at the beginning of the time horizon in reservoir j. We reasonably neglect evaporation and
other water losses by assuming a relatively cold and humid climate, small water surface area, relatively high
pressure and non-porous soil.

Minimum flow bounds ri represent the smallest quantity of water required to flow down site i to produce
electricity, for environmental purposes, as well as to ensure navigation and recreation. The upper bound r̄i
represents a critical threshold based on historical observations and used for safety and operational purposes.
For instance, operators may prefer to maintain relatively small water flows during the winter season to prevent
ice coming into contact with the installations at high speed and to ensure a smooth ice formation.

Evacuation curves Ci(·) represent the maximal amount of water Ci(v) that can be physically discharged
(spilled) from the evacuator at site i 2 Ievac for a given amount of (average) volume v during any given time
t at the unique upstream reservoir where Ievac ⇢ I represents the set of plants with such constraints. These
functions are typically smooth, increasing, non-linear and non-convex. We choose to approximate them with
a�ne functions as this provides a reasonable approximation while ensuring the linear structure of theses
constraints.

Variation bounds �i are added to ensure that the total flow of water at each plant i stays relatively
constant from one time period to the next. Maintaining a relatively constant water flow is important to
prevent turbine breakage as well as to ensure navigation.
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2.2 Considering floods

Under very wet scenarios and given initial conditions, the tight operational constraints on flows, volumes,
spillage and turbined outflow cannot be respected. Even with perfect foresight, numerical experimentation on
a real river basin reveals that the wait-and-see solution may be infeasible if the initial volumes are su�ciently
high (see Section 6.1). Hence, we modify the constraints of the original problem to allow controlled violations
of volume constraints:

(Vol. Bounds’) vj  Vjt � E+
jt  v̄j 8j 2 J, t 2 T (9)

(Floods) 0  E+
jt 8j 2 J, t 2 T (10)

The overflows/floods E+
jt represent the quantity of water (hm3) exceeding the maximum volume thresholds.

It is reasonably assumed that excess water will remain in the reservoirs and may eventually be released
downstream. It is straightforward to extend this to droughts as well. However, for our particular application,
violating lower volume bounds is highly undesirable and only very limited violations are physically possible.
We therefore omit them in our formulation.

2.3 Multiobjective optimization

We seek a solution that minimizes the occurrence of these floods. This approach is tantamount to numerous
hydro electrical complexes in the presence of nearby riparian human populations and infrastructure as well
as fauna and flora. This leads to a multiobjective problem where we must simultaneously consider floods
over all reservoirs and time periods. These objectives may be conflicting as variations in volumes upstream
may have important cascading e↵ects (pun intended) on downstream reservoirs.

It is also crucial to consider the relative importance of floods as they may have widely varying consequences
depending on the segments of the river where they occur, the time of the year and their magnitude. We
tackle the multi-objective nature of the problem by considering the positive linear combinations of floods
⇤̂ : E !

P
j2J

PT
t=1(

+
jtE

+
jt) with parameters +

jt > 0, 8j, t and E = (E+
11, ..., E

+
|J|T )

> 2 R|J|T .

To reflect the importance of reservoirs located near riparian populations and high risks of floods as well as
those with critical importance, we define the set Jcrit and fix +

jt = W+, 8j 2 Jcrit, t for some large W 2 N.
Since the relative importance of upper volume bounds at each of the reservoirs in J \ Jcrit is similar, we fix
+
jt = +, 8j 2 J \ Jcrit, t. For our specific application, this categorization is clearly defined, but identifying

the relative importance of violations may require using preference assessment tools such as MACBETH ([22]).
We choose + such that the sum of weights is equal to 1 and keep it constant with respect to time since we
consider a small time horizon.

3 Incorporating inflow uncertainty

In most river systems, there is a considerable amount of uncertainty surrounding inflows. This randomness
is one of the main driving forces in the variability of the state of the system. For these reasons, we let
(⌦,F , {Ft},P) be a filtered probability space where ⇠t : ⌦ ! R, 8t 2 {1, ..., T} represents the total inflows

(in m3/s) for the river basin at time t, F is a �-algebra and {Ft} is the natural filtration induced by the
stochastic process {⇠t}t=1,...,T where Ft = �(⇠s, s < t) ⇢ F = FT . The random vector ⇠[t] = (⇠1, ..., ⇠t)>

represents the past inflows up time t and ⇠ ⌘ ⇠[T ].

We denote E the expectation operator and assume that E[⇠t] = µt < 1 and E[(⇠t � µt)2]
1
2 = �t < 1

for all t. These moments are estimated with their corresponding non-parametric sample statistics. For the
random variable ⇠t : ⌦ ! R, we denote ess sup ⇠t = inf{a 2 R : P(⇠t > a) = 0}. We assume ⇣t = ⇠t � µt

is essentially bounded and that the compact and convex set Z⌫ ⇢ RT represents the true support of the
probability measure P⇣ = P � ⇣�1 with fixed parameter 0  ⌫ < 1. More precisely, we assume Z⌫ = {⇣ 2
RT : ⇣t 2 [�min{⌫�t, µt}, ⌫�t], 8t} since ⇠t = ⇣t + µt � 0 with P⇣ a.s. 8t.
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We assume a relatively small river basin where inflows at each reservoir are perfectly correlated. Although
our method can easily consider the case of independent or partially spatially correlated inflows, this would
increase the computational burden and complicate the exposition of the problem. In the case of perfectly
spatially correlated inflows, we can represent ⇠jt, the total water inflow in m3/s from natural precipitations
and spring thaw going in reservoir j at time t as ⇠jt(⇣) = µjt + ⇣t↵jt where ↵jt = µjt(

P
j µjt)�1 is the

expected proportion of the total inflows entering the reservoir at that time.

4 Risk analysis

We formalize the notion of risk associated with the floods over all reservoirs and times through systemic

risk measures. Before formally defining this concept, we define one dimensional risk measures defined on
L1(⌦,F ,P) ⌘ L1, the vector space of essentially bounded real valued random variables. In the context of
flood management, these random variables can be interpreted as floods.

4.1 Measuring flood risk for one reservoir and one time period

Risk measures are functionals ⇢0 : L1 ! R that evaluate the riskiness of uncertain floods scenarios. The
risk of a flood U 2 L1 at a given reservoir and arbitrary time t is “acceptable” under ⇢0 if it lies within the
set {U 2 L1 : ⇢0(U  0)} [23]. For U ,W 2 L1, risk measures minimally respect the following axioms:

U � W ) ⇢0(U) � ⇢0(W) (Monotonicity) (11)

⇢0(U + c) = ⇢0(U) + c, 8c 2 R (Translation invariance) (12)

where the inequality U � W means U(!) � W(!) 8! 2 ⌦. We restrict ourselves to coherent risk measures,
which also respect the two following axioms:

⇢0(�U + (1� �)W)  �⇢0(U) + (1� �)⇢0(W), 8� 2 [0, 1] (Convexity) (13)

⇢0(�U) = �⇢0(U), 8� � 0 (Positive homogeneity) (14)

We consider the popular (one-dimensional) risk measure CVaR [24, 25]. If U ,W 2 L1 are continuous
random variables, then CVaR↵(U) represents the conditional expectation of U given it is greater than the
(1�↵) left quantile VaR↵(U) = inf{u 2 R : P(U  u) � 1�↵} for a given parameter ↵ 2 (0, 1). CVaR↵ is a
coherent risk measure that respects the four basics axioms described previously in 11 - 14 . For a continuous
random variable U , we also have:

lim
↵!1

CVaR↵(U) = E[U ] and lim
↵!0

CVaR↵(U) = ess supU (15)

which correspond to the natural risk neutral approach and to the totally risk averse approach often used
in robust optimization. Both E and ess sup also correspond to coherent risk measures. Furthermore, we
have the relationship E[U ]  CVaR↵(U)  ess supU , 8↵ 2 (0, 1). CVaR therefore represents a very natural
and flexible risk measure and o↵ers the possibility to explore the impact of various risk tolerance and model
conservativeness through sensitivity analysis on the ↵ parameter.

In the case of ⇢0 ⌘ CVaR↵, we can interpret ⇢0(W) = E[W|W > VaR↵(W)], the risk of the flood
W 2 L1, as the average of the worst ↵100% of flood values for some ↵ 2 [0, 1] (see [25]). As observed in
financial applications, CVaR↵ therefore o↵ers the important property of considering all the realizations of
a random variable in the “worst” ↵-tail of the distribution. As ↵ ! 1, we consider more realizations, but
reduce the weight of extremely bad realizations.

The monotonicity of ⇢0 reasonably implies that guaranteed smaller floods are preferred. Positive homo-
geneity implies that for W,U 2 L1, if the risk of W is larger than the risk of U then the risk of �W is
larger than the risk of �U for all � > 0. Translation invariance implies that increasing floods by a given
deterministic amount increases the risk by the same deterministic amount. This makes sense since the risk
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of a future flood known exactly should be treated separately from the risk of an uncertain one. This is
also reflected in real decision making approach of river operators. Finally, the convexity of ⇢0 says that we
prefer diversifying and that the perceived risk of a convex combination of floods is no larger than a convex
combination of the individual flood risks. See [26] for more details on interpreting risk measures.

4.2 Measuring flood risk for a multi-reservoir complex over a fixed time horizon

Although there exists a sizeable literature on multidimensional risk measures (see namely [27, 21]), we chose
to focus on the concept of systemic risk measures introduced by [21]. Following their work, we consider the
vector space L1

O ⌘ L1(⌦,F ,P;RO) of essentially bounded RO valued random vectors which represent floods
over the di↵erent reservoirs of the river system at di↵erent time steps of the planning horizon.

We then define the multidimensional risk measure ⇢ = (⇢0 � ⇤) : L1
O ! R defined as the composition of

the unidimensional risk measure ⇢0 : L1 ! R and the aggregation function ⇤ : L1
O ! L1 for some O 2 N.

We consider systemic risk measures that are convex, positively homogeneous and monotone in the sense that
for U ,W 2 L1

O , Ui � Wi, i = 1, ..., O ) ⇢(U) � ⇢(W).2

If we consider the composition of ⇢0 ⌘ CVaR↵ and ⇤ : U !
P

j2J

PT
t=1(

+
jtUjt), for some U =

vec(U1, ...,UT ) 2 L1
|J|T with Ut 2 L1

|J|, 8t and O = |J |t, which is basically the functional defined in Section 2.3,
then ⇢ = CVaR↵ �⇤ is a systemic risk measure respecting convexity, monotonicity and positive homogeneity.
Indeed, the aggregation function ⇤ is non-decreasing in the sense that Ujt � Wjt, 8j, t ) ⇤(U) � ⇤(W),
for all U ,W 2 L1

O . ⇤ is linear and therefore positively homogeneous and convex. The systemic risk mea-
sure ⇢ = ⇢0 � ⇤ is therefore monotone, convex and positive homogeneous since ⇢0 ⌘ CVaR↵ is a coherent
one-dimensional risk measure.

Given, W 2 L1
O , a random vector of floods at di↵erent periods and locations, ⇢(W) can naturally be

interpreted as the risk associated with W 0
=

P
j2J

PT
t=1 

+
jtWjt 2 L1, the flood at a single aggregated

artificial reservoir which is simply a weighted combination of the di↵erent reservoirs over the entire time
horizon weighted by their relative importance. For the rest of the paper, we fix CVaR↵(

P
j2J

PT
t=1 

+
jtE

+
jt)

as the objective function for a fixed ↵ 2 [0, 1].

4.3 Dynamic risk measures and time consistency

Our optimization model evaluates the systemic risk measure ⇢ at the beginning of the entire horizon once in a
static fashion. This approach may lead to solutions that violate the concept of time-consistency. This notion
is related to Bellman’s principle and can loosely be interpreted as the requirement that optimal decisions
taken at a given time for a fixed horizon should remain optimal when the problem is solved again at any
other latter date (see [28] for more details on dynamic risk measures). Although this issue is important in
a dynamic decision making environment, we omit to address it in our model because there has been little
work on tractable representations of time-consistent stochastic problems using dynamic risk measures except
in simple cases such as serially independent random variables when considering the risk neutral expectation
(see [29]).

5 Stochastic model and choice of decision rules

We consider a dynamic setting were the true realization of the random process is progressively revealed
as time unfolds over the horizon of T days. A sequence of controls X1, ...,Xt must be fixed at each stage
t = 1, ..., T after observing the realized history ⇣[t�1](!) = (⇣1, ..., ⇣t�1)>(!), but before knowing the future
values (⇣t, ..., ⇣T )>(!). At each time t = 1, ..., T , we optimize over the class of bounded functions of the form
Xt : RT ! Rn

t ,
PT�1

t=0 nt = n. Hence, we convert the decision variables of our deterministic model3 into
more flexible functions.

2Convexity, translation invariance and positive homogeneity of systemic risk measures are defined by directly adapting the
corresponding definitions from scalar valued risk measures.

3We can see the decision variables of our deterministic model as constant functions of the uncertainty.
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Real implementable decisions must be non-anticipative such that Xt � ⇣ must be Ft�1 measurable. Once
⇣[t�1](!) is known, they can be implemented to yield the actual decisions Xt(⇣[t�1](!)) 2 Rn

t . We may
interchangeably refer to X as controls or decision rules and use the notation X = (X>

1 , ...,X>
T )>. The

aggregate decision rule Xt = (V>
t ,S>

t , Q>
t ,R>

t , E>
t )> is simply the stacking of each decision at time t. Refer

to Table 1 for identification of implementable decisions.

5.1 A�ne decision rules

In order to obtain an upper bound on the optimal value of our stochastic programming problem, we first
consider decision rules that are a�ne in ⇣. If Kt = {nt�1 +1, ..., nt�1 + nt} represents the indices associated
with decisions at time t � 1 and n0 = 0, we can write the controls in the form:

Xkt(⇣) = X 0
kt +

TX

t0=1

X t0

kt⇣t0 , k 2 Kt

where X 0
kt,X t0

kt 2 R, 8k 2 Kt, t
0 2 {1, ..., T}. In order to ensure that controls that represent real imple-

mentable decisions are non-anticipative, it is su�cient to force X t0

kt = 0, 8k 2 K I
t , t = 1, ..., T, t0 � t where

K I
t ⇢ Kt represents the set of indices associated with real implementable decisions.

The volumes, droughts and floods can also be anticipative, since they represent analysis/auxiliary variables
that are only required for computation (refer to Table 1). Because of the full-dimensionality of Z⌫ and the
additive uncertainty, flow conservation constraints (2) are satisfied by solving a non-homogeneous linear
system of equations in X t0

kt,X 0
kt (see [30] for example).

We reformulate the variation of flow constraints across time by writing :

(Rit �Rit�1)(⇣)  �̄i, 8i, t = 2, ..., T (16)

�(Rit �Rit�1)(⇣)  �̄i, 8i, t = 2, ..., T (17)

where all constraints must hold 8⇣ 2 Z⌫ . As mentioned previously, we consider a�ne approximations of the
real maximum spillage constraints: Ci : v ! C0

i + �Civ with C0
i ,�Ci 2 R for all plants i 2 Ievac. Hence if

j�(i) indicates the unique reservoir upstream of plant i, the following evacuation curve constraints must hold
8⇣ 2 Z⌫ :

Sit(⇣)  C0
i +�CiVj�(i)t(⇣), 8i 2 Ievac, t (18)

For ↵ 2 (0, 1) and random variable X 2 L1, we can write CVaR↵(X) = inft2R{t+ 1
↵E[max{X � t, 0}]}.

We use the definition of [31], but replace 1� ↵ by ↵ so that the CVaR↵ we consider in continuous and non-
increasing in ↵. Hence, we obtain a conservative (upper bound) on CVaR↵(

P
j2J

PT
t=1(

+
jtE

+
jt) by adding

the decision variables ', t 2 R as well as the anticipative decision rule D(⇣) = D0 +
PT

t0=1 Dt0⇣t0 and adding
the constraints:

t+
1

↵
D0  ' (19)

D(⇣) � 0 (20)

D(⇣) �
X

j2J

TX

t=1

(+
jtE

+
jt(⇣))� t (21)

that must hold 8⇣ 2 Z⌫ and set ' as the objective function.4 This modelling approach is namely similar to
that of [31]. This formulation is correct because we consider a�ne decision rules and E[⇣t] = 0, 8t without
loss of generality.

4The approximation bounds the true CVaR from above, because we restrict ourselves to a limited class of decision rules and
(20)–(21) must hold 8⇣ 2 Z⌫ .
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The case ↵ = 0 (ess sup) is handled separately by adding the variable ' and the constraint ' �P
j2J

PT
t=1(

+
jtE

+
jt(⇣)) while the case ↵ = 1 (expected value) is treated by adding ' and ' �

P
j2JPT

t=1(
+
jtE

0+
jt ). In all cases, we use this epigraph form and set ' as the objective value to minimize.

The rest of the constraints are readily obtained from the deterministic problem where we replace deci-
sion variables with their associated a�ne decision rules. Deriving the deterministic equivalent program is
straightforward by using well known methods from robust optimization. For all the inequality constraints
that are meant to hold 8⇣ 2 Z⌫ , we namely use strong linear programming duality, which is possible since
Z⌫ is a non-empty compact polyhedron.

5.2 A�ne decision rules on lifted probability space

In order to obtain a better upper bound on the optimal solution of our risk averse stochastic program, we
consider a special case of the lifted decision rules of [18]. The general idea is to apply a non-linear (bijective
in our case) transformation L

0
: RT ! RrT for some r 2 N to Z⌫ in order to lift each realization of the

random vector ⇣(!) 2 RT onto a higher dimensional space RrT . We then define the retraction operator
R

0
: RrT ! RT such that (R

0 � L0
) = I. We fix our initial controls to be a�ne functions of the new lifted

random variables and impose that the retracted lifted random vector (R
0 �L0

)⇣ be in the original set Z⌫ . We
can then express the robust counterpart directly in terms of these new random variables.

The heart of the problem is then to judiciously define L
0
and the corresponding R

0
in order to maintain

the tractability of the new lifted program while ensuring an e�cient representation of the feasible domain of
the lifted random variables and improving the upper bound on the optimal solution of our program.

Following the approach of [18], we choose to fix L
0
= L � F where L is a non-linear bijective mapping

and F : RT ! RT is a simple bijective linear mapping (F�1 is a T ⇥ T matrix which exists) preserving the
non-anticipativity of decision rules (Fij = 0, 8i > j) and which can be interpreted as a change of basis.

For our particular experiments, we consider F = I and the lower triangular mapping Fij = 1 for i  j

and 0 when i > j 8j = 1, ..., T . In the latter case, we can interpret each Ft⇣ = ⇣
0

t as the cumulated history
from time 1 until t. We present additional details on the linear mapping F in Section 6.3.

The non-linear operator L : RT ! RrT is defined through the partial lifting Lt : R ! Rr as follows:

Ltk(⇣
0
) =

8
><

>:

min{⇣ 0

t , z
t
1} k = 1

max{0,min{⇣ 0

t , z
t
k}� ztk�1} k = 2, ..., r � 1

max{⇣ 0

t � ztk�1, 0} k = r

for all t where zt1 < zt2 < ... < ztr�1 are breakpoints dividing the range of the original ⇣
0

t in r dimensions.
If we consider only one breakpoint (r = 2) and fix zt1 = 0, 8t, then the lifting is equivalent to decomposing
every ⇣

0

t into its negative and positive parts.

Similarly, we define the partial retraction operator Rt : Rr ! R, 8t as follows:

Rt(⇣
00
) =

rX

k=1

⇣
00

tk ⌘ ⇣
0

t = [F ⇣]t = Ft⇣

where Ft is the tth row of F . We notice that Rt is linear and we can represent R as a block angular T ⇥ rT

matrix:

R =

0

BBBBBBBBBB@

1 · · · 1
| {z }

r terms

1 · · · 1
. . .

. . .
1 · · · 1

1

CCCCCCCCCCA
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To derive the robust equivalent of the lifted problem, we need an e�cient representation of the convex
hull of L0(Z⌫). We know that FZ⌫ ✓

⇣

t[lt, ut] where lt = min⇣2Z
⌫

FT
t ⇣ and ut = max⇣2Z

⌫

FT
t ⇣ and

L
⇣

t[lt, ut] =
⇣

t Lt[lt, ut].

For every t, Lt[lt, ut] is a connected non-convex set in Rr defined by the breakpoints zt1, ...z
t
r�1 and we

have conv L
⇣

t[lt, ut] =
⇣

t convLt[lt, ut] since the Cartesian product of convex sets is also convex. The
convex hull of Lt[lt, ut] is the set of convex combinations of the following r+1 a�nely independent points in
Rr:

vt1 =

0

BB@

lt
0
...
0

1

CCA vt2 =

0

BB@

zt1
0
...
0

1

CCA vt3 =

0

BB@

zt1
zt2 � zt1

...
0

1

CCA ... vtr+1 =

0

BB@

zt1
zt2 � zt1

...
ut � ztr�1

1

CCA

If we regroup these points in the following invertible matrix:

Vt =

✓
1 ... 1
vt1 ... vtr+1

◆
2 R(r+1)⇥(r+1)

then we have:

convLt[lt, ut] = {⇣
00

t 2 Rr : (1, ⇣T
00

t )T = Vt�,� 2 Rr+1
+ }

= {⇣
00

t 2 Rr : V �1
t (1, ⇣T

00

t )T � 0}

= {⇣
00

t 2 Rr : bt⇣
00

t � �at}

where at represents the 1st column of V �1
t and bt 2 R(r+1)⇥r is the matrix composed of the last r columns

of V �1
t . We notice that convLt[lt, ut] is a polyhedron and hence so is

⇣

t convLt[lt, ut]. In general, we have:

(L � F )Z⌫ = {⇣
00
2 RrT : 9⇣ 2 Z⌫ , ⇣

00
= (L � F )⇣}

✓ {⇣
00
2 RrT : 9⇣

0
2 [l, u] � FZ⌫ , ⇣

00
= L⇣

0
, }

✓ {⇣
00
2 RrT : 9⇣

0
2 [l, u] � FZ⌫ , ⇣

00
2
⌘

t

convLt[lt, ut]}

⌘ Ẑ
00

⌫

and so (F�1 � R)Ẑ 00
⌫ = {⇣ 2 RT : 9⇣ 00 2 Ẑ 00

⌫ : (F�1 � R)⇣
00
= ⇣} ◆ Z⌫ . We have e↵ectively constructed

an exterior (conservative) convex (polyhedral because of the lifting) of the image of Z⌫ under the lifting

L
0
= L � F and coincidently an exterior approximation of Z⌫ through (F�1 �R)Ẑ 00

⌫ .

If Z⌫ ⇢ Rn is a some hyperectangle, then using F = diag(�1, ...,�n) for �i 6= 0, 8i will guarantee that
FZ⌫ =

⇣

t[lt, ut]. Since
⇣

t Rt⇣
00 2 FZ⌫ when ⇣ 00 is an extreme point of

⇣

t convLt[lt, ut] for any piecewise
linear lifting L, it follows that (F�1 �R)⇣

00

⌫ 2 Z⌫ for all ⇣
00

⌫ 2
⇣

t convLt[lt, ut]. By restricting our new a�ne
decision rules to a certain class of functions, we obtain the initial (unlifted) problem with a�ne decision rules
and so the lifted problem provides an upper bound that is at least as good as the one with the original a�ne
decisions.

However, except for this rare case, we cannot guarantee that the lifting L0 will improve the solution.
Indeed, it may even do worse if the uncertainty set considered is larger than the original one. For instance,
if we consider the symmetric 2-dimensional uncertainty set given by Z⌫ = [�1, 1]2 and use the mapping

F =

✓
1 1
1 0

◆
, then FZ⌫ ⇢ [min⇣2Z F>

1 ⇣,max⇣2Z F>
1 ⇣] ⇥ [min⇣2Z

⌫

F>
2 ⇣,max⇣2Z

⌫

F>
2 ⇣] and the inclusion

is strict since (2,�1)> 62 FZ⌫ , F�1(2,�1)> = (1,�3)> 62 Z⌫ and (2,�1) 62 FZ⌫ , F�1(�2, 1)> =

(�1, 3)> 62 Z⌫ . We also have Z⌫ ⇢ (F�1 �R)Ẑ 00
⌫ regardless of the lifting operator L used (see Figure 1).



10 G–2015–131 Les Cahiers du GERAD

⇣1

⇣2

(-1, 1)

(-1, -1) (1,-1)

(1,1)

(1,-3)

(-1,3)

F

F�1
⇣1

⇣2

(-2,1) (2,1)(0,1)

(0,-1)(-2,-1) (2,-1)

Figure 1: Deficiencies of lifting

6 Case study

6.1 The river system

We apply the risk averse reservoir management problem to the case of the Gatineau river in Québec. This
hydro electrical complex is part of the larger Outaouais river basin and is managed by Hydro-Québec, the
largest hydroelectricity producer in Canada [32]. It is composed of 3 run-of-the river plants and 5 reservoirs,
only 2 of which have significant capacity (see Figure 2).

The Baskatong reservoir is the largest of the larger Outaouais-Gatineau catchment and plays a critical
role in the management of the river. It is used to manage risk of floods during the freshet period as well as
droughts during the summer months. It has been used to control baseflow at the greater Montréal region
several hundreds of kilometres downstream. As such, respect of minimum and maximum water volume
threshold is essential for river operators. We consider a time horizon of 30 days with daily time steps to
reflect the real decision process for decisions such as setting water target releases for this reservoir during the
freshet.

The maximum spillage at facilities Cabonga, Baskatong, Barrire and Rapides-Farmers is bounded by
evacuation curves that reflect the particular structure of the dams and the associated reservoirs. As mentioned
previously, we use a�ne functions to approximate the “real” curves used by Hydro-Québec (see Figure 3).
Our approximations are conservative on most of the feasible domain, since they bound the maximum spillage
from below. Being completely conservative for all feasible volumes would be impossible as this would lead to
a very conservative or even infeasible solution.

Although there are no structures to control water outflow near Maniwaki, there are extremely tight
constraints on maximum and minimum flow at that river segment. These bounds represent critical outflow
level used to control the risk of drought and flood for the neighbouring town and are therefore essential.

The Gatineau represents an excellent case study as it has relatively small productive capacity compared
to the rest of the park. More importantly, the river runs near the small town of Maniwaki which is subject to
high risks of flooding, particularly during the spring freshet. Indeed, the city has su↵ered 4 significant floods
in 1929, 1936, 1947 and 1974.

Even today, there exists a need to mitigate the risk of these natural disasters. As Figure 4 illustrates, it
is possible that we fail to find a solution eliminating all floods even when we have perfect foresight. This is
namely the case when ⇣t = µt + 2�t, 8t. Although this synthetic scenario is wet over the entire month, it
remains plausible because of the strong serial correlation of inflows as well as evidence from past observations.
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Figure 2: Simplified representation of the Gatineau river system
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Figure 3: Evacuation curves



12 G–2015–131 Les Cahiers du GERAD

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

Time

hm
3

 

Synthetic scenario: µt+2σt,  ∀ t

Floods

Student Version of MATLAB

Figure 4: Violations with perfect foresight

In this case, even if we spill as much as possible at Baskatong so that the total flow at Maniwaki downstream
is constantly at its upper bound, the deterministic program cannot prevent the reservoir from filling up and
eventually flooding.

6.2 The inflows

Based on our sample observations, the assumption of perfectly spatially correlated inflows is not unreasonable
for the Gatineau river. As is clear from the Figure 5, water inflows are particularly important during the
months of March through April (freshet) as snow melts. There is a second surge during Fall caused by
greater precipitations and finally there are very little inflows during the winter months. For this reason, we
tested our model on the first 30 days of winter (lowest inflows, lowest variability) and the first 30 days of the
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Figure 5: Sample observations (6 years) for inflows
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spring freshet (highest inflows and highest variability). We estimate the true population mean and standard
deviation by computing the sample mean and sample variance with these 6 years of data.

6.3 Upper bounds on the risk of floods

We begin by presenting the optimal solutions obtained for 4 classes of decision rules: 1) the standard a�ne
(dimension 1 i.e. r = 1), 2) the lifted decision rules with 1 breakpoint at 0 and the identity mapping (r = 2),
3) the lifted decision rules with 2 breakpoints at the 2/6 and 5/6 quantiles of the empirical distribution of
⇣t, 8t and the identity mapping (r = 3), 4) the lifted decision rules with 1 breakpoint at 0 and the lower
triangular mapping Fij = 1 for i  j and 0 when i > j 8j = 1, ..., T (r = 2). We attempted to solve the
model with the same mapping F and r = 3, but ran into numerical issues.

All solutions where obtained by setting ⌫ = 3, which ensured the support contained all historical inflows
from 1999-2004 and provided good quality solutions across all models. We tested our models with varying
values of ⌫ and found that increasing its value above a certain threshold lead to infeasibility issues as all
bounds cannot be simultaneously respected for very large uncertainty sets. As expected, small ⌫’s lead the
model to predict small violations. However, the solutions displayed poor performance when tested on realistic
inflows which did not belong to the uncertainty set. Our sensitivity analysis did not seem to reveal any clear
link between the size of ⌫ and the performance of our models when tested with ⇣ 62 Z⌫ .

The values are displayed in line “Optimal solution” of Table 2 and are good indicators of the CVaR of
the volume of floods (in hm3) at Baskatong predicted by the model and is useful to analyse the graphs of
Section 6.6. Since these solutions are obtained by restricting ourselves to specific family of decision rules,
they represent upper bounds on the optimal value of the “true” problem with general decision rules.

The line “Optimal solution improvement (%)” of Table 2 shows the improvement with respect to the base
a�ne policies for any fixed risk measure. We observe that the optimal solution of the lifted decision rules
strictly improves when considering CVaR↵ for ↵ 2 {0.5, 1} as the number of dimensions rises from 1 to 3 with
the identity mapping. However, the optimal solution is constant with respect to the number of breakpoints
with the identity mapping for the ess sup. The F mapping with dimension 2 o↵ers the best theoretical
bounds for the ess sup (62% improvement compared to the a�ne policies) while the identity mapping with
2 breakpoints o↵ers the largest improvement (88%) for ↵ 2 {0, 0.5}.

In all cases, the computational burden imposed by the lifted decision rules is much greater than the
standard a�ne decision rules. Problems took up to 67 hours to solve with the F mapping and r = 2 while
the same problem took only 68.6 seconds with the standard a�ne rules. Although it is surely beneficial to
reduce the violations because of the potentially dramatic consequences of floods, computing times of several
hours are unacceptable for practical operational purposes.

We explored acceleration techniques based on cutting plane methods as suggested by [30]. However, our
higher dimension uncertainty set made it di�cult to identify and enumerate extreme scenarios explicitly a
priori, even with the standard a�ne decision rules. Dynamic identification of violated inequalities therefore
proved longer than full reformulation through duality.

6.4 Evaluating the policies through simulation

Following [33], the optimal solution of the problem can be useful to derive probabilistic bounds on the risk of
floods and droughts. However, a small optimal value does not in itself guarantee the quality of the solutions
provided by the problem since there are no guarantees when the uncertainty falls outside of the parametrized
support considered in the model. It is imperative to simulate the behaviour of the system with the optimal
decision rules under various scenarios to see how well it would perform di↵erent situations.

For this reason, we perform various tests using di↵erent scenario generators. We consider independent
non-negative truncated normal random variable as well as independent log normal random variable. These
random processes are serially independent. As illustrated by Figure 5, this is not an acceptable hypothesis
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since there exists strong cyclical e↵ects combined with multi-lag autocorrelation. To remedy some of these
problems and use a simulator closer to real observed inflows, we calibrate a SARIMA model on the raw inflow
data [34]. Once again, we fixed a ⌫ = 3 for all our models.

6.5 Comparison with stochastic model based on a simple scenario tree

In order to compare the value of a�ne decision rules, we consider a multi-stage stochastic programming
model based on scenario trees. We consider a simple binary tree with branching occurring roughly each week
over a horizon of 30 days. This implies that an entire week becomes known after each decision is made.
At each branching period t, the tree considers two extreme and opposed scenarios with equal probability:
µt + ⌫�t or µt �min{µt, ⌫�t}. We limit the size of the tree since greater branching factors or more frequent
branching quickly leads to severe numerical di�culties. Each problem took on average 1 second to solve with
the scenario tree.

Since it is reasonable to suppose that inflows are jointly continuous, any of the scenarios considered in
a stochastic tree model have probability 0 of materializing exactly. Using the solutions found by a single
solution of the stochastic tree model in simulation is therefore highly likely to lead to poor quality solutions.
To mitigate this e↵ect, we simulate the use of this model by solving it in a rolling horizon fashion.

We also tested a�ne decision rules in a rolling horizon, but with a shorter lookahead period, namely 1
week. These problems took on average 5 seconds to solve and are therefore comparable to the scenario tree
policies in terms of computing times.

6.6 Simulation results

We evaluate the empirical conditional value at risk of violations of di↵erent constraints at di↵erent levels of
risk ↵0 = 100(1� ↵) with ↵ 2 {0.01, ..., 0.99}. We also show the expected value at ↵0 = 0 and the ess sup at
↵0 = 100.

In all cases, we find that the theoretical upper bound found by solving the stochastic model is loose. Even
if we do not restrict the random variables to lie within the support considered by our model, we find that
the empirical CVaR↵ is usually smaller than the theoretical upper bound.

For sake of space, we present only results for the independent log-normally distributed random variables
for which the sample mean and variance are unbiased estimates of the true parameters. Results for the
normal independent variables and the SARIMA time series are similar in nature.

Increasing the value of ⌫
0
from its standard value changes the shape of the empirical distribution, but the

relative performance of each model stays relatively constant. Moreover, excessively increasing ⌫
0
may lead

to scenarios that are more extreme than natural and that may have limited practical interpretation. The
treatment of rare extreme events is an open question we do not wish to tackle here.

As Figure 6 illustrates, when considering a single reservoir and a fixed decision rule, di↵erent risk measures
may lead to solutions that are empirically dominated by others. For instance, minimizing the ess sup often
leads to higher CVaR↵ for total volume violations at Baskatong for all ↵ 2 [0, 1] than minimizing CVaR0.5

or the expected value. However, solutions that perform well at a given segment often do worse at other river
segments or reservoirs.

Plotting the results for a given reservoir for all risk measures and decision rules does not clearly indicate
superiority of any policy. Indeed, Figure 6 makes it hard to discriminate between decision rules. In particular,
these results do not indicate that lifted decision rules are more performant than the basic a�ne decision rules.
This is surprising as the the theoretical upper bounds computed by lifted decision rules are sizeably smaller
than those returned by the a�ne ones.

This may be due to the fact that the lifted decision rules use the same information and representation of
uncertainty as the standard a�ne controls. Moreover, the empirical CVaR↵ results are chiefly influenced by
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Figure 6: Empirical CVaR↵ of violations with log-normally simulated random variables and ↵ 2 {0, 0.5, 1} 7

a few (< 4) extreme scenarios that fall outside of the support considered by the model. Lifted decision rules
do not seem to provide better coverage than the basic a�ne controls against these extreme events.

However, our results clearly indicate the superiority of the a�ne and lifted decision rules with regards
to the scenario tree model. Indeed, Figure 6 highlights the systematically higher violations at Baskatong,
Maniwaki and Cabonga for all risk measures compared to any decision rules. Even when solved in a rolling
horizon fashion, the scenario tree provide unsatisfactory results.

Although they do not dominate all decision rules for all risk measures and risk levels, the 7 day lookahead
a�ne policies used in rolling horizon provide excellent results. Limited computing ressources and time make
it di�cult to simulate policies considering a longer lookahead horizon, but it is likely that they would yield
even better results.

6.7 Real scenarios results

We evaluate each policy on real historical observed scenarios. We consider the first 6 years 1999-2004 used to
calibrate the model as well as 6 additional out-of-sample years 2008-2013 for validation. Once again, we only
present the important reservoirs and river segments, since the other constraints at other reservoirs are always

7Violations are 0 for Baskatong and Cabonga with the a�ne policies with 7 day lookahead horizon used in a rolling horizon
fashion for all risk measures.
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respected. We focus on the first 30 days of the freshet period since other periods of the year are usually free
of any violations and we always present results for models using an objective of CVaR0.5 since results are
relatively similar for di↵erent choice of ↵.

As Figure 7 illustrates, all types of decision rules violate some of the constraints for one of the 12 scenarios.
A�ne and lifted decision rules only violate constraints on the last 6 out-of-sample years (in red) since they
have higher inflows while the scenario tree violates constraints on the 2 sets of data.

For the model based on the scenario tree, there are no volume violations for any of the reservoirs. However,
there are significant flow violations at Maniwaki. This is not surprising since the average flow computed by
the tree model is always very close to the upper flow bound. By emptying the large upstream reservoir
Baskatong, this policy reduces the risk of having volume violations upstream, but greatly increases the risk
of violating minimum and maximum flow bounds near the city.

On the other hand, a�ne and lifted decision rules provide a generally adequate solution. Although there
are maximum volume violations at the end of the time horizon for very wet years as well as maximum flow
violations at periods of high inflow, these violations are usually more acceptable than those of the tree model.
It is also rather surprising to see that lifted decision rules do not consistently outperform the simple a�ne
decision rules.

We also include the trajectories for the deterministic model used in a rolling horizon fashion as well as
the standard a�ne decision rules with a limited lookahead horizon of 1 week. The deterministic model does
very poorly with regards to flow bound violations at Maniwaki. The limited a�ne model in rolling horizon
takes a similar amount of computing resources as the decision tree, but seems to achieve a better trade-o↵
between violations of volume bounds at Baskatong and flow bounds at Maniwaki.

Although we do not push the volumes towards a desired goals at the end of the time horizon, our solution
never completely empties the reservoirs nor fills them up when physically possible. This is an advantage of
the model since it yields more realistic water release schedules and does not necessarily require taking into
account a future monetary value of water.

7 Conclusion

In conclusion, we propose a novel distribution-free formulation for the risk averse stochastic reservoir man-
agement problem. Our model is extremely flexible, can easily be obtained from an existing deterministic
model and is relatively easy to understand and implement.

Contrary to other popular methods such as stochastic dynamic programming, we can easily incorporate
constraints involving di↵erent time steps, such as flow variation constraints. Our method also allows the
consideration of objective functions such as CVaR that do not permit time decomposition.

As opposed to scenario tree models, we do not require discretization of the underlying stochastic process.
Consequently, it is easier to represent the uncertainty and we do not have to use interpolation or a rolling
horizon optimization to simulate the behaviour of our model, which can yield important computational
advantages.

For the first time to the best of our knowledge, we also formalize the notion of multi-objective risk aversion
for reservoir operations through systemic risk measures, which in our case is simply the composition of the
coherent one-dimensional risk measure CVaR and a strictly increasing linear aggregation function. This
provides a simple parametrization of risk aversion and allows e�cient sensitivity analysis.

Our various numerical experiments confirm the value of using a�ne decision rules to provide good imple-
mentable solutions while maintaining the tractability of the model. Our experiments also suggest that these
decision rules o↵er little optimality loss over more complex piece-wise linear decision rules while providing
extremely important computational savings. A�ne and piece-wise linear decision rules seem to perform
consistently better than decision trees, even when considering a rolling horizon framework.
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Figure 7: Actual values – 12 historical scenarios
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[13] R.E. Gonçalves, E.C. Finardi, E.L. da Silva, Applying di↵erent decomposition schemes using the progressive
hedging algorithm to the operation planning problem of a hydrothermal system, Electric Power Systems Research
83 (1) (2012) 19 – 27.

[14] P.-L. Carpentier, M. Gendreau, F. Bastin, Long-term management of a hydroelectric multireservoir system under
uncertainty using the progressive hedging algorithm, Water Resources Research 49 (2013) 2812–2827.

[15] A. Ben-Tal, E. Goryashko, A. Guslitzer, A. Nemirovski, Adjustable robust solutions of uncertain linear programs,
Mathematical Programming 99 (2004) 351–378.

[16] X. Chen, M. Sim, P. Sun, J. Zhang, A linear decision-based approximation approach to stochastic programming,
Operations Research 56 (2008) 344–357.

[17] J. Goh, M. Sim, Distributionally robust optimization and its tractable approximations, Operations Research 58
(2010) 902–917.

[18] A. Georghiou, W. Wiesemann, D. Kuhn, Generalized decision rule approximations for stochastic programming
via liftings, Mathematical Programming (2014) 1–38.
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