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as well as the Fonds de recherche du Québec – Nature et tech-
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Abstract: Robust optimization (RO) is a powerful mean to handle optimization problems where there
is a set of parameters that are uncertain. The effectiveness of the method is especially noticeable when
these parameters are only known to lie inside some uncertainty region. Unfortunately, there are important
computational considerations that have prevented the methodology from being fully adopted in fields of
practice where the cost function that needs to be robustified is nonlinear with respect to such parameters.
In this paper, we propose a new robust optimization formulation that circumvent the computational burden
in problems where the cost decomposes as the sum of convex costs for each decision variable. This is done
by exploiting the fact that in this formulation the worst-case cost function can be expressed as a convex
combination between a nominal and an upper-bound cost function. One can still control the conservatism
of the robust solution by adjusting how many terms of the total cost function can simultaneously reach
their respective most pessimistic value. In order to demonstrate the potential of our “practicable robust
counterpart” formulation, we present how it can be employed on the robust optimization of packet routing
on a telecommunication network with congestion. In such problems, an important source of uncertainty stems
from the queueing delay, which is perhaps best approximated by a nonlinear convex function using the theory
of M/M/1 queueing systems. Computational results on a large number of problem instances of realistic size
confirm that it is possible to identify robust solutions that significantly outperform a deterministic approach
in terms of both the amount of congestion and the risks of excess congestion. Moreover, our proposed method
also improves significantly the quality of solutions that are obtained compared to an approximation scheme
that is naively based on linearizing the delay function.

Key Words: Robust optimization, nonlinear uncertainty, queuing delay, convex combination, budget uncer-
tainty
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1 Introduction

There is no doubt that most optimization problems that are encountered in modern practice are to some
extent affected by the imperfect knowledge of the parameters that define them. While stochastic programming

efficiently allows to account for such uncertainty when one can commit to a distribution that captures it well,

such a distribution can often be unavailable. This is potentially the main argument that motivated the recent

surge in interest for robust optimization (RO) models which only require one to identify an uncertainty set

known to contain the unknown realization of the parameters (see Ben-Tal et al. (2009) and Bertsimas et al.
(2011) for some seminal work on this topic). Another popular argument that promoters of the robust

optimization framework have emphasized is the fact that these models benefit from having solutions that

are more tractable than there stochastic programming version. This is for example the case for many linear

programming and mixed integer linear programming models (see for instance Gabrel et al. (2014) and Ben-
Tal et al. (2009)).

Unfortunately, in recent years, the scientific community has been confronted to real computational chal-

lenges when attempting to apply the RO framework to optimization problems involving functions that are

non-concave in the uncertain parameters. This difficulty can be observed for instance in facility location

problems where theoretician struggle at improving the efficiency of exact and approximate solution methods
(see Zeng and Zhao (2013) and Ardestani-Jaafari and Delage (2014) respectively). From a broader perspec-

tive, similar issues arise the moment that one wishes to account for the fact that decisions might not be

implemented exactly as prescribed (see Ben-Tal and den Hertog (2011) for recent progress in context of conic

quadratic problems). Although some significant progress have been made in the development of tractable

solution methods for problems with non-concave objective functions, it appears that such methods must be
identified on a case by case basis (see the tractable special cases identified in Ben-Tal et al. (2012)). Overall,

these difficulties have prevented, or at least severely retarded, the adoption of the methodology in a number

of fields of practice.

In this paper, we will overcome most of the computational challenges described above by proposing a

new way of formulating robust optimization problems in situations where the function that needs to be
“robustified” decomposes as the sum of convex costs for each decision variable. Specifically, the robust

optimization model we are interested in takes the form:

min
x∈X

max
ξ∈Uξ

n
∑

i=1

hi(xi, ξ), (1)

where X ⊆ R
n is a convex set of feasible decision vectors, ξ ∈ R

m is a vector of uncertain parameters, and

Uξ ⊆ R
m is an arbitrary closed uncertainty set known to contain the true realization of ξ and “centered” at

some nominal version ξ̂ of the parameters. Compared to the classical robust optimization framework, we do

not make any assumption about how hi(xi, ξ) behaves in terms of ξ and about the geometry of Uξ, but instead

assume that one is able for each term of the sum to formulate a convex function f+
i (·) that provides a uniform

upper bound for the cost that might be incurred through this term, i.e. f+
i (xi) ≥ maxξ∈Uξ

hi(xi, ξ)∀xi ∈ R.

Since solving problem (1) exactly is known to be generally intractable, we propose to reformulate the
robust optimization problem using the following formulation:

min
x∈X

max
α∈Uα

n
∑

i=1

sup
fi:Di(fi)≤αi

fi(xi), (2)

where Di(fi) is a measure of how much fi(·) “deviates” from the nominal cost function hi(·, ξ̂)
1, and where

Uα ⊆ R
n
+ is a convex set of permissible joint deviations for the different terms of the summation. Intuitively,

our hope is that in many situations it is possible to approximate closely the worst-case analysis of such

a robust optimization problem by making the model focus on how much each cost function hi(·, ξ) might
diverge from its nominal form and on controlling, with the use of Uα, whether large deviations can occur

simultaneously over different cost terms. Note that one can easily define each member of the pair (D,Uα)
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such that problem (2) necessarily provides a solution that is guaranteed to achieve an actual objective value

that is smaller than the value that is optimized.

While many definitions are possible for Di(fi), our proposed definition will compare the size of the
deviation of fi(·) relatively to the upper bound f+

i (·). This will conveniently allow problem (2) to reduce to a

convex optimization problem which structure is nearly more complex than the problem where ξ is well-known.

In particular, it will take the form of what will be referred as the Practicable Robust Counterpart (PRC)

formulation:

(PRC) minimize
x∈X

max
α∈Uα

n
∑

i=1

αif
+
i (xi) + (1− αi)hi(xi, ξ̂) . (3)

One might recognize here that α ∈ Uα ⊆ [0, 1]
n
can be interpreted as a parameter that identifies which convex

combination of hi(·, ξ̂) and f+
i (·) captures the cost of xi in the worst-case total cost. Moreover, the most

important advantage of this formulation will be that if Uα has a favorable representation, then problem (3)

can be reformulated as a convex optimization problem of reasonable size. In order to allow some control over

how conservative the robust solution obtained with problem (2) is, Uα will take the shape of the budgeted

uncertainty set popularized in Bertsimas and Sim (2004). Effectively, this uncertainty set will allow us to
control how many functions fi(xi) simultaneously take on their most pessimistic realizations f+

i (xi).

In order to demonstrate the potential of the PRC formulation, we briefly present how it might be employed

on the robust optimization of packet routing on a telecommunication network with congestion. Namely, while

delays of packets that travel on different links of such networks are typically modeled using M/M/1 queuing

system, there are strong empirical evidence indicating that a number of factors cause the realized transmission
time to often suffer substantial deviations from these theoretical estimates (see Eijl (2002) as portrayed in

Figure 1). In this context, RO has the potential to help Internet Service Providers (ISPs) to provide the

requested Quality of Service (QoS) to incoming traffic. To the best of our knowledge, our application of robust

optimization to this family of problems is both the first to account for the nonlinear effect of perturbations
on link delays and the first with a computational complexity that is invariant to the number of trajectories

that packets are allowed to take. We exploit both of these strengths to produce a numerical experiment that

illustrates, in an exhaustive set of realistic network management conditions, what type of trade-off can be

achieved between the amount of total congestion that is expected versus the amount that is at risk of being
achieved under less favorable conditions.

Overall, we believe the contribution of this article to be three-fold:

1. To the best of our knowledge, we propose for the first time the use of robust optimization problem (3)

to address parameter uncertainty in an optimization problem where the objective function decomposes
as a sum of functions over each decision variable. We expect such a model to be especially powerful

in practice when information about each function is limited to a series of historical measurements (see

Remark 1).

2. We discuss for the first time how problem (3) can be used to approximate intractable instances of
robust optimization problems that take the shape of problem (1). In particular, we show how it is

always possible to design Uα in order for our novel PRC formulation to provide a conservative solution,

and in some case with careful engineering even provide an exact solution. Furthermore, we describe a

simple procedure that can be used to calibrate the robust optimization model based on historical data.

3. Using the PRC formulation, we identify for the first time robust packet routing strategies that capture

transmission delay uncertainty in a nonlinear fashion.

The remainder of the article is organized as follows. In Section 2 we look at the state-of-the-art literature

on general RO and on RO application for the Telecom domain. We then present in Section 3 our PRC
formulation, while in Section 4 we discuss a case of study application for a robust congestion minimization

problem in telecommunication networks. Two illustrative examples for this application are presented in

Section 5. Finally, Section 6 contains a discussion on computational results obtained by experimenting with

both our PRC formulation and an approximation method based on a first-order Taylor expansion of the total

cost function. Conclusions and final remarks are given in Section 7.
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Remark 1 It is worth observing that problem (2) is a model that is also interesting in its own right in

many practical situations where one has access to historical data about each terms of the cost function, i.e.

historical pairs (xi, fi(xi)) and yet cannot identify (or does not wish to assume there exists) relevant observable
primitives that can explain the relation between xi and fi(xi). Take for instance the case presented in Figure 1

presenting historical observations of the relation between the percentage of utilization of a communication

link that participates to the world wide web and the queuing delay that is incurred by packets traversing it.

Based on this graph, the most transparent way of defining uncertainty about queuing delays might simply
be to assume that the delay function deviates from the mean curve (expressed by the series of diamonds) by

up to some amount that should reasonably not extend beyond the 99th percentile curve (or actually a convex

approximation of it). Furthermore, we would not expect the delay curves for all links on a routing path to

be at their respective 99th percentile concurrently.

Figure 1: Delay measurements of C. Van Eijl Eijl (2002). The figure, which is taken from Hijazi et al. (2013),
was originally published in Eijl (2002). With kind permission from Springer Science and Business Media.

2 Related work

Already in the fifties in the preliminary work of Dantzig (1955), and some years later in the study presented
in Soyster (1973), Robust Optimization (RO) was identified as a powerful modeling approach to explicitly

handle data uncertainty. Driven by work like Ben-Tal and Nemirovski (2000) that demonstrated how small

data perturbation could seriously affect the quality of optimal solution, a comprehensive literature on RO

emerged in the late 1990s and early 2000s and shaped its founding principles: see for instance El Ghaoui and

Lebret (1997), Ben-Tal et al. (1998), Ben-Tal and Nemirovski (1998, 1999, 2000, 2002, 2003), and Bertsimas
and Sim (2003, 2004) to name a few.

To be more specific, the robust version of a problem where all parameters are considered to be known

(a.k.a the nominal problem) is technically referred as the robust counterpart. In particular, consider a convex

optimization problem

(Nominal) minimize
x∈X

h(x, ξ̂) ,

where h(x, ξ) captures a total cost function that is parameterized with ξ ∈ R
m, while x and X are as

before. When the parameters of this problem are considered to be uncertain, the robust counterpart can be
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formulated as follows:

(RC) minimize
x∈X

max
ξ∈Uξ

h(x, ξ) ,

which can also be presented as

minimize
t,x∈X

t

subject to t ≥ h(x, ξ) , ∀ ξ ∈ Uξ ,

where t captures a guaranteed bound on total cost. In other words, the RC formulation seeks a solution that

has the lowest guaranteed total-cost under any realization of the parameters.

It is generally considered that the complexity of the RC formulation depends (i) on the structure of the

nominal problem, with more complexity arising when passing form a linear program, to a conic program or
even general convex optimization problem; and (ii) on the structure of the uncertainty region, with polyhedral

(see in particular the budgeted uncertainty set presented in Bertsimas and Sim (2004)) and ellipsoidal regions

being the most commonly used (c.f. Ben-Tal et al. (2009) and reference therein for an exhaustive overview).

Yet, most tractable formulations that are currently discussed in the literature assume that the uncertain
parameters are linearly involved in the objective function of the nominal problem.

When attempting to survey applications of RO in nonlinear contexts, one might identify the following

relevant piece of work. In Li et al. (2011), the authors deal with convex and non-convex quadratic problems

with interval uncertainty sets, while ellipsoidal uncertainty regions are considered in Takeda et al. (2010).
In Hsiung et al. (2008), the authors tackle a geometric program where they exploit a piece-wise linear

approximation of the nonlinear constraints in order to derive a tractable approximation. One can also find

some work in Bertsimas et al. (2010) on “black-box” optimization methods that are adapted to RO problems

where only the value and gradient of the objective function are available. Note that this particular method
can get stuck with a solution that has arbitrarily poor worst-case performance simply because it is unable

to reach beyond a locally optimal worst-case scenario. More recently, a compelling general framework was

proposed in Ben-Tal et al. (2012) that can be used to construct tractable reformulations for a wide range

of robust nonlinear optimization problems. This framework is however mostly limited to cost functions that

are concave with respect to the uncertain parameters although some interesting truly non-linear special cases
could also be addressed. To the best of our knowledge, there is at this time no known way of employing any

of these recent development to address general cost function that decompose as in problem (1).

In telecommunication networks, there are different types of problems that can be affected by data uncer-
tainty, such as routing, network design and capacity assignment, to name the most important. Uncertainty

impacts different factors in those problems, for instance, traffic, delay, jitter or energy consumption. Only

traffic uncertainty, however, has been largely explored in the robust or stochastic optimization literature,

where one can find different methods to address it. First, the well-known cardinality-constrained approach

of Bertsimas and Sim (2003) was implemented in Addis et al. (2013) and Addis et al. (2014) to model traffic
variations on the network links in a multi period network design context related to energy-awareness. A

variant of this approach is found in Coudert et al. (2013) where the uncertainty relates to the amount of

traffic that is considered redundant.

A second strategy to model traffic uncertainty is the “hose-model” according to which only the overall
quantity of traffic generated by (or destined to) a node is known, but the traffic requirements of a single traffic

demand may vary while respecting a constraint on the total outbound (or inbound) traffic. The hose-model

leads toward a polyhedral uncertainty structure. Telecommunication problems that deal with this approach

are Mulyana and Killat (2005), Ben-Ameur and Kerivin (2005), Altın et al. (2007), and Altin et al. (2012),
all working on different versions of routing optimization.

When we deal with network design or capacity assignment, the type of routing that is considered in the

procedure can have a great impact on the overall robustness of the designed network. On that respect, static

or dynamic routing have been taken into account as subproblems of network design or capacity assignment.
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In static routing, a single routing realization must respect the capacity constraints for all the traffic matrices

belonging to the uncertainty space whereas in dynamic routing there must be at least a feasible routing

solution for each possible traffic matrix. Static routing produces more conservative solutions while dynamic
routing allows to further optimize the installation costs. However, dynamic routing is way more complex

to implement Mattia (2013). The new concept of “affine routing” has then been introduced in the network

design or capacity assignment literature to add flexibility to static routing without getting to the complexity

of dynamic routing. Notable literature in this area are Ouorou (2011, 2013), Poss and Raack (2013).

To the best of our knowledge, the only work dealing with uncertain nonlinear functions, namely uncertain

queueing delay function in the Telecommunications literature, is presented in Hijazi et al. (2013). The authors

propose a robust counterpart for a nonlinear network design problem with hard constraints on the maximum
delay experienced by each traffic demand on its routing path. Link queuing delay is approximated by the

well known delay function for M/M/1 systems:

delayl(xl) :=
1

cl − xl

, (4)

where the delay on link l is asymptotic to infinite when flow value xl approaches the link capacity cl. Delay
uncertainty is modeled by adding to delayl(xl) an uncertain parameter al which varies into a close symmetric

interval. Note that, even though the introduction of al pushes the model to keep a certain delay margin for

each demand, it fails to catch the nonlinear nature of delay variability: when utilization approaches 100%,

queuing delay is naturally expected to suffer higher deviation. Differently from what is done in Hijazi et al.
(2013), we model delay uncertainty by adopting a perspective that specifically grasp the nonlinearities of

traffic variability: we address delay function uncertainty by approximating delay deviation as the convex

combination between an upper bound and a nominal queuing delay function.

3 A practicable robust counterpart formulation

Let us recall the general optimization problem (1):

min
x∈X

max
ξ∈Uξ

n
∑

i=1

hi(xi, ξ),

where each cost function hi(xi, ξ) is convex in xi and possibly non-concave in the perturbation ξ, which

deviates within the uncertainty region Uξ known to contain some nominal version of the parameters ξ̂. While

one might easily establish that this is a convex optimization problem in x, it is important to realize that it
still is an intractable problem to solve in general as shown in the following proposition which proof is deferred

to Appendix A.

Proposition 3.1 Evaluating the optimal value of the inner problem of problem (1) is NP-hard even when Uξ

is a polyhedron.

By the equivalence of optimization and validity problems (see Grötschel et al. (1981)), for the epigraph

reformulation of problem (1), this negative result indicates that it is very unlikely that a general tractable

method exists for solving problem (1). We are therefore reduced to deriving efficient approximation schemes

or heuristics for this problem.

The idea behind the PRC formulation relies on replacing problem (1) with problem (2) with Uα ⊆ [0, 1]n

and the deviation measure defined as follows.

Definition 3.1 Given some set Uξ ⊂ R
n describing the joint uncertainty about each term hi(xi, ξ) of the total

cost function and some nominal version ξ̂ ∈ Uξ of the uncertain vector ξ, for some term i of the total cost

expression, let the upper semi-deviation of the cost function fi : R → R compared to the nominal cost function

be defined as
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Di(fi) := inf{α ∈ R |αf+
i (x) + (1− α)f̂i(x) ≥ fi(x) , ∀x ∈ R} ,

where f+
i (x) := maxξ∈Uξ

hi(xi, ξ) and f̂i(x) := hi(xi, ξ̂).

The main reason for using a robust optimization formulation in the form of problem (2) instead of

problem (1) is that although the former might be less accurate, it is amenable to be solved exactly and

effectively by off the shelf optimization software. We also establish below that the choice of Uα gives enough

flexibility to provide conservative approximations of the robust nonlinear optimization problem and possibly
in some cases an exact solution. We finally present a natural polyhedral form for Uα and propose a procedure

for calibrating this set based on historical data which we believe should be very useful in practice.

3.1 Computational complexity of the PRC formulation

Perhaps the most important characteristic of a “practicable” optimization framework is the potential of

applying it to problems that are of size encountered in practice. The following reformulation of problem (2)

plays a critical role in achieving this objective.

Proposition 3.2 Given that there exists some α in the relative interior of Uα, problem (2) is equivalent to

the PRC formulation (3) and to the following finite convex optimization problem:

minimize
x∈X ,y,z

∑

i

yi + δ∗(z|Uα) (5a)

subject to yi ≥ f̂i(xi) , ∀ i (5b)

yi + zi ≥ f+
i (xi) , ∀ i , (5c)

where y ∈ R
n, z ∈ R

n, and δ∗(z|Uα) is the conjugate function of the indicator function for the set Uα, i.e.

δ∗(z|Uα) := sup
α∈Uα

∑

i

αizi .

One might realize that the equivalent reformulation presented above is amenable to convex optimization

tools as long as one can represent the conjugate function δ∗(v|Uα) in a tractable form. As shown in Ben-Tal

et al. (2012) (see Table 1), this is known to be the case for many natural convex uncertainty sets one might

think of. In particular, when Uα is a polyhedron, i.e. {α ∈ R
n|Bα ≤ b} with B ∈ R

p×n and b ∈ R
p, the

problem further reduces to

minimize
x∈X ,y,z,u

∑

i

yi + bTu (6a)

subject to yi ≥ f̂i(xi) , ∀ i (6b)

yi + zi ≥ f+
i (xi) , ∀ i (6c)

BTu = z (6d)

u ≥ 0 , (6e)

where u ∈ R
p. Next, we present a short proof of this result.

Proof of Proposition 3.2: Our first step will be to show that problem (2) is equivalent to problem (3). We

will then employ Fenchel duality similarly as was done in Ben-Tal et al. (2012) to get a reduction of the
problem that resembles to problem (5) and apply a clever replacement of variable to make the problem

amenable for convex optimization tools.
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Step 1: Let us consider the operation supfi:Di(fi)≤αi
fi(xi) for some fixed values of xi and αi. Given our

definition of Di(·), we must have that the supremum is attained at fi(x) = αif
+
i (x) + (1 − αi)f̂i(x). It is

therefore the case that our problem reduces to

min
x∈X

max
α∈Uα

n
∑

i=1

αif
+
i (xi) + (1− αi)f̂i(xi).

Note that now the objective that needs to be robustified is convex in x, since Uα ⊆ [0, 1]n, and linear in the

uncertain parameters α.

Step 2: We can apply Theorem 2 of Ben-Tal et al. (2012) to generate an equivalent reformulation of the

PRC formulation that takes the form:

min
x∈X

min
z∈Rn

δ∗(z|Uα)− f∗(z, x),

where δ∗(z|Uα) is the conjugate of the support function defined in the theorem and f∗(z, x) is the partial
concave conjugate dual of

f(x, α) :=

n
∑

i=1

αif
+
i (xi) + (1− αi)f̂i(xi)− δ(α|[0, 1]n) ,

where δ(α|[0, 1]n) is the indicator function that returns 0 if α ∈ [0, 1]n and infinity otherwise, and where

we made explicit what is the domain that needs to be considered in terms of α in order for f(x, α) to be

convex in x. We can confirm that Fenchel duality guarantees strict duality since we assumed that the relative

interior of Uα was not empty and Uα ⊆ [0, 1]n. Next, one can actually get a closed form reformulation for
f∗(v, x) using Lagrangian duality:

f∗(z, x) = inf
α

zTα−

(

n
∑

i=1

αif
+
i (xi) + (1− αi)f̂i(xi)

)

+ δ(α|[0, 1]n)

= inf
α

sup
λ,λ′

zTα−

(

n
∑

i=1

αif
+
i (xi) + (1− αi)f̂i(xi)

)

− λ′Tα− λT (1− α)

= sup

{

−

(

∑

i

f̂i(x) + λi

)
∣

∣

∣

∣

∣

λ ≥ 0, λi ≥ f+
i (xi)− f̂i(xi)− zi

}

.

Hence, we obtain the reformulation

minimize
x,z,λ

∑

i

f̂i(xi) + λi + δ∗(z|Uα)

subject to λi ≥ f+
i (xi)− f̂i(xi)− zi , ∀ i

λ ≥ 0

x ∈ X .

Step 3: Note that because of the first constraint in the reformulation above, it is not clear anymore whether

this is indeed a convex optimization problem. Fortunately, a clever change of variable brings back this

property: i.e. yi = λi + f̂i(xi).

minimize
x,y,z

∑

i

yi + δ∗(z|Uα)

subject to yi ≥ f+
i (xi)− zi , ∀ i

yi ≥ f̂i(xi) , ∀ i

x ∈ X .

This completes our proof.
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In what follows, we provide theoretical validation regarding the quality of the solution that might be

obtained through such a tractable approximation problem.

3.2 Descriptive power of the PRC formulation

A second valuable property for a practical robust optimization framework would be its descriptive power. In
other words, how well can a formulation like problem (2) allow us to approach the solution of problem (1).

In this regard, while we can certainly not provide a recipe for constructing Uα so that problem (2) generally

provides solutions that are exactly optimal, we can actually confirm that by designing Uα carefully, one is at

least able to obtain a conservative approximation of this exact solution, and in some case for a “well crafted”
choice of Uα even retrieve an optimal solution.

Proposition 3.3 Let

Ûα := Co({α ∈ [0, 1]n|∃ξ ∈ Uξ, αi = Di(hi(·, ξ))}) ,

where Co(S) refers to the convex hull of S, then problem (2) with Di(·) as defined in Definition 3.1 and Ûα

(or equivalently the PRC formulation (3)) returns a feasible solution that is guaranteed to achieve a worst-case

total cost that is lower than the approximate optimal value obtained from its objective function.

Proof of Proposition 3.3: One can see that by the definition of Ûα, when it is used, the condition

∀ ξ ∈ Uξ , ∃α ∈ Ûα,Di(hi(·, ξ)) ≤ αi ∀ i

is satisfied. Hence,

max
ξ∈Uξ

∑

i

hi(xi, ξ) ≤ max
ξ∈Uξ

∑

i

sup
fi:Di(fi)≤Di(hi(·,ξ))

fi(xi) ≤ max
α∈Ûα

∑

i

sup
fi:Di(fi)≤αi

fi(xi) .

In some sense, Ûα provides the tightest conservative approximation that problem (2) can achieve with a

convex uncertainty set. In practice however, we expect that it might be impossible to characterize Ûα with

a tractable representation and might need to settle with some Uα of simpler form that respects

Ûα ⊆ Uα ⊆ [0, 1]n

in order to minimize an upper bound on worst-case cost that is a little less tight yet more tractable

max
ξ∈Uξ

∑

i

hi(xi, ξ) ≤ max
α∈Ûα

∑

i

sup
fi:Di(fi)≤αi

fi(xi) ≤ max
α∈Uα

∑

i

sup
fi:Di(fi)≤αi

fi(xi) .

Alternatively, while most approximation schemes developed for robust optimization are concerned with
obtaining solutions that embody the principle of conservativeness, we believe that from a modeling standpoint

it is also valuable to confirm that it is theoretically possible to obtain the true optimal solution by solving

a well constructed approximation model. The following result confirms this property in some fairly general

circumstances for the PRC formulation (3). We refer the readers to Appendix B for a complete proof.

Proposition 3.4 Let the following four conditions be satisfied:

1. The sets X and Uξ are compact and each term hi(xi, ξ) is bounded above over the Cartesian product

X × Uξ.

2. For all ξ ∈ Uξ, the functions hi(xi, ξ) are differentiable and strictly convex in xi.

3. For all x ∈ X , hi(xi, ξ) is upper semi-continuous in ξ.

4. For all x ∈ X ,
df

+

i
(xi)

dxi
≥ dhi(xi,ξ)

dxi
≥ df̂i(xi)

dxi
for all ξ ∈ Uξ and all i.
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Then, there exists a polyhedral set Uα ⊆ [0, 1]n such that problem (2) with Di(·) as defined in Definition 3.1

(or equivalently the PRC formulation (3)) returns an optimal solution for problem (1).

This result confirms that the approximation scheme that is proposed is well motivated. In simple words,
it states that if problem (1) satisfies the mild conditions 1 to 4 (see Section 4.3 for a practical example where

these are met), then it is theoretically possible to identify a set Uα under which the approximate solution

returned by the PRC formulation ends up being the actual optimal solution of problem (1). Unfortunately,

the proof does not provide a recipe for designing such a Uα.

3.3 Employing a budgeted uncertainty set for Uα

The results presented above indicate that the choice of Uα plays a critical role in the quality of the solution

that is obtained from the PRC formulation. To this end, we now propose a version of Uα which is inspired
from the budgeted uncertainty set introduced in Bertsimas and Sim (2003).

Definition 3.2 Given some Γ ≥ 0 capturing the total number of terms of the total cost function
∑

i hi(xi, ξ)

that could stray away from their respective nominal version hi(xi, ξ̂), the “budgeted uncertainty set” takes the

form:

Uα(Γ) :=

{

α ∈ [0, 1]n

∣

∣

∣

∣

∣

n
∑

i=1

αi ≤ Γ

}

.

Indeed, the budgeted uncertainty set Uα(Γ) has the potential to capture the fact that each term of

the cost function is not expected to reach their respective worst-case value simultaneously. This intuition

might be especially fruitful in situations where each term of the cost function involves mutually exclusive
subsets of perturbation parameters considered independent from each other. For example, in the case where

fi(xi, ξ) =
∑

i hi(xi, ξi) with independent ξi’s. The use of a budgeted uncertainty set also gains much of its

practical relevance from the ease with which one can adjust the budget Γ in order to study in a particular

problem instance the inherent tradeoff that needs to be made between total cost under the nominal problem
and total cost under potential worst-case scenarios, a.k.a. the “price of robustness”. This feature will be

demonstrated empirically in Section 6.

It follows naturally from our results about computational efficiency that using Uα(Γ) allows the PRC for-

mulation (3) to reduce to a convex optimization problem of relatively small size. The following reformulation

can easily be obtained by applying Proposition 3.2 and in particular by exploiting the structure presented in
problem (6). The details can be found in Appendix C.

Corollary 3.1 Problem (2) with D defined as in Definition 3.1 (or equivalently the PRC formulation (3)) and

with Uα = Uα(Γ) reduces to the following convex optimization problem:

minimize
x,y,u

∑

i

yi + Γu (7a)

subject to yi ≥ f̂i(xi) , ∀ i (7b)

yi + u ≥ f+
i (xi) , ∀ i (7c)

x ∈ X , (7d)

where u ∈ R.

Given that in practice, information about ξ might be based on historical data, we conclude this section

by describing a procedure that can be followed to calibrate Γ based on such data in order for the robust
solution that is obtained using problem (7) to have interesting statistical properties.

Proposition 3.5 Let {ξk}Kk=1 be a set of independently and identically distributed random vector based on

distribution F and let, for each k, Γk :=
∑

iDi(hi(·, ξ
k)) capture the total deviation observed over the terms

of the total cost under realization ξk. Then, one can consider that
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1. For any K ≥ 1, with probability larger than 1− ǫ

∀x ∈ X , P

(

∑

i

hi(xi, ξ) ≤ sup
α∈Uα(Γ̄)

∑

i

αif
+
i (xi) + (1− αi)f̂i(xi)

)

≥ 1− β ,

with β = 1
ǫ(K+1) , when Γ̄ is set to be equal to maxk Γ

k.

2. For K large enough, with probability larger than 1− ǫ

∀x ∈ X , P

(

∑

i

hi(xi, ξ) ≤ sup
α∈Uα(Γ̄)

∑

i

αif
+
i (xi) + (1− αi)f̂i(xi)

)

≥ 1− β ,

when Γ̄ is set to be equal to the ⌈K(1−β)+Φ−1(1− ǫ/2)
√

Kβ(1− β)⌉-th term in the ordered list (from

smallest to largest) of Γk’s, with Φ−1(·) the inverse function of the cumulative density function of a

standard normal distribution.

In particular, this proposition implies that there are simple ways of choosing Γ in order to obtain a robust

solution that has only β chances of incurring a cost that is larger than the optimal value of problem (7). Hence,

one can see the optimal solution of this problem as an approximate solution to the problem of minimizing

the “value at risk” of the total cost:

minimize
s∈R,x∈X

s

subject to PF

(

∑

i

hi(xi, ξ) ≤ s

)

≥ 1− β ,

without making any assumption about the distribution of ξ beside that it is the same distribution that

generated each sample of the historical data set.

Proof of Proposition 3.5: In both cases, we will demonstrate that the probability PF (
∑

i Di(hi(·, ξ)) ≤

Γ̄) ≥ 1 − β. Given that this is true, the rest follows simply since given any x ∈ X and any ξ that satisfies
∑

i Di(hi(·, ξ)) ≤ Γ̄, the pair (x, ξ) will also satisfy

∑

i

hi(xi, ξ) ≤ max
α∈Uα(Γ̄)

∑

i

sup
fi:Di(fi)≤αi

fi(xi) = sup
α∈Uα(Γ̄)

∑

i

αif
+
i (xi) + (1 − αi)f̂i(xi) .

In Case 1, the result follows from Corollary 1 in Calafiore and Campi (2005) since Γ̄ ∈ R can be seen as

the optimal solution of

minimize
Γ

Γ

subject to
∑

i

Di(hi(·, ξ)) ≤ Γ , ∀ξ ∈ {ξk}Kk=1 ,

where all ξ’s in {ξk}Kk=1 are drawn from F .

To obtain the guarantee presented in Case 2, one can use a well known result in statistics about establishing

a confidence interval for a percentile of some random variable Z based on K i.i.d. samples. In particular, it

is known that when K is large enough one can have 1− ǫ confidence that the 1− β percentile is smaller than

the k∗-th term of the ordered list of {Zk}Kk=1, where k∗ is the smallest integer above K(1 − β) + Φ−1(1 −
ǫ/2)

√

Kβ/(1− β).

A data-driven context that is a bit more complicated to handle occurs when one only has access to the

historical costs that were paid for the specific decisions that were implemented without any information about

the realized ξ’s. In particular, let {(xk, hk)}Kk=1 be a set of historical data point capturing at K different
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points of time k which were the decisions (xk
1 , x

k
2 , . . . , x

k
n) that were made and which were the individual

costs that were paid (hk
1 , h

k
2 , . . . , h

k
n). When each cost term of the total cost expression are independent from

each other, this information might for instance take the shape of figures like Figure 1. Indeed, one might be
tempted in this situation to follow a similar data analysis as above yet this must be done with care in order

for the chosen Γ̄ to be insensitive to the historical distribution of implemented decisions xk. To resolve this

issue, one might be able to employ the result of Proposition 3.5 after conservatively estimating each Γk as

the largest value that can be motivated by the pair (xk, hk), namely,

Γk := max
ξ∈Uξ

∑

i

Di(hi(·, ξ))

s.t. hi(x
k
i , ξ) = hk

i , ∀i .

Alternatively, it might also be possibly to recuperate information about ξk, and implicitly about its distri-

bution, through Bayesian inference. Recognizing that there are serious difficulties that need to be addressed
in both cases, we leave both directions of solutions open to further study.

4 A network congestion case study

There are different performance measures that are key for telecommunication networks planning and eval-

uation. They typically depend on the type of technologies that are implemented. IP networks are based

on packet-switching, which is a store-and-forward method that depends on buffering packets, on network
devices along the route, up to their final destination. For those networks, congestion measures depending on

the queuing behaviour of the traffic are important to evaluate network performance(see Fortz and Thorup

(2004) and Hijazi et al. (2013)). Telephone networks and some other access technologies, deal instead with

circuit-switching, a method that implies the reservation of circuits for the whole duration of a call. The key

performance measures in those cases is the probability of blocking (see Plante and Sansò (2002)). In recent
years, there has been another aspect taken into account in network planning, the energy consumption (as

in Restrepo et al. (2009)) that yields a trade-off with congestion in Sansò and Mellah (2009).

In all three cases, we are dealing with non-linear functions that are used in network design, routing and/or

capacity assignment. Those non-linearities approximate complex phenomena that cannot be perfectly known

a-priori and generate uncertainty that impacts performance.

This paper deals exclusively with routing IP networks, for which congestion delay is major issue. Note,

however, that congestion delay is widely used not only in routing (also called traffic engineering (TE)) but

also in other network design(ND) problems either as an objective function or as part of explicit problem

constraints. In most optimization models for those problems, the classical M/M/1 mean delay function is

typically embedded even though it is well known that, given the nature of the traffic, it may not be appropriate
in some cases (see Gendreau et al. (1996)). In fact, as shown in Figure 1 obtained from Eijl (2002), the

delay curve on a real link may experience significant deviations from the mean.

This deviation becomes the core of our example since we want to show how the proposed routing robustness

method can be applied in this context. For this, we start from the nominal problem, based on the classical

mean delay formulation, and show how to apply the PRC formulation to a more general version of such
congestion minimization problem.

4.1 The nominal congestion minimization problem

Let G = (V,A) be a directed graph representing an IP network. V is the set of network nodes (routers),

while A is the set of unidirectional network links. The capacity available on a link (i, j) ∈ A is defined as

cij . Given the set of traffic demands D, where each demand d ∈ D is characterized by a source node od,
a destination node td and a request of ρd units of traffic, our aim is to adjust the multiple routing paths

used by each demand d ∈ D so as to minimize a measure of network congestion based on the queuing delay
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observed on each link. In particular, let xd

ji be the positive real variable which represents the amount of

traffic generated by demand d ∈ D and routed through link (i, j) ∈ A, and xij the total traffic carried by

link (i, j) ∈ A, we define the total congestion as

1
∑

d∈D
ρd

∑

(i,j)∈A

xij

cij − xij

, [s/Mbit]

which corresponds to the weighted sum of the M/M/1 queuing delay function
1

cij − xij

computed on each

link. Note that the total congestion decomposes as the sum of congestion of each of the links of the network,

each being affected by the amount of traffic that traverses it through the expression:

hij(xij) :=
xij

∑

d∈D
ρd(cij − xij)

.

Network routing is considered multi-commodity and fully splittable. Given all the previous assumptions,

let us define the following nonlinear convex programming formulation for the nominal congestion minimization

problem:

minimize
x,{xd}d∈D

1
∑

d∈D
ρd

∑

(i,j)∈A

xij

cij − xij

(8a)

subject to xij+ ≤ cij , ∀(i, j) ∈ A (8b)
∑

d∈D

xd

ji ≤ xij , ∀ (i, j) ∈ A (8c)

∑

(i,j)∈A

xd

ji −
∑

(j,i)∈A

xd

ji =







ρd if i = od

−ρd if i = td

0 else
, ∀ i ∈ V, d ∈ D (8d)

xd

ji ≥ 0 , ∀ (i, j) ∈ A, d ∈ D . (8e)

In this model, constraint (8b) imposes that the total traffic on each link respects the maximum capacity. Note

that in the classical nonlinear splittable flow formulation such constraints would be implied by the domaine

of the objective function, however, we make them explicit to facilitate the transition towards the robust

model. Constraint(8c) allows to correctly compute the total amount of traffic xij carried by link (i, j) ∈ A.

Constraint (8d) routes each demand d ∈ D from source od to destination td by splitting the traffic over
multiple paths, when required. Finally, variable domains are reported by constraint (8e).

4.2 The robust counterpart

The classical M/M/1 formulation provided above is well known to be optimistic, as both empirical and

simulation methods have shown that delay values can significantly deviate from it (as argued in Eijl (2002)

and Hijazi et al. (2013)). In fact, given the non-Poisson nature of most Internet traffic, the delay values
provided by the M/M/1 function are, in many cases, lower bounds on measured delay.

This motivates the use of a parametrized model in order to study the effect of perturbations of the delay

functions at different links on the total congestion and possibly design routing strategies that are immunized

against such perturbations. Practically speaking, one could argue that the following parametrized delay

model might be the most flexible one to use for this purpose:

hij(xij , aij , bij , dij , eij) := dij ·

(

(1 + xij)
1+aij − 1

∑

d∈D
ρd(cij − xij − bij)

)

+ eij
xij

∑

d∈D
ρd

, (9)

where aij ≥ 0, bij ≥ 0, dij ≥ 0, and eij ≥ 0 are the parameters that define the shape of the delay function and

which might be difficult to estimate precisely. Intuitively, eij might capture some additive delay (as was used
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in Hijazi et al. (2013)), bij might account for temporary capacity variation due, for instance, to interference

phenomena in radio link or to instantaneous increment of traffic, finally aij and dij might together serve

the purpose of accounting for some additional nonlinearities that have been observed (see for instance the
calibrated version of this model in Section 5.2). Note that hij(xij , 0, 0, 1, 0) reduces to the M/M/1 weighted

delay function hij(xij). Another important property of this parametrized delay function is that it is always

convex in xij and increasing in its four parameters.

In what follows, for simplicity of exposure and to better grasp both the congestion uncertainty and the

nonlinear nature of congestion, we apply the PRC formulation in a context where there is no uncertainty on

dij and eij (i.e. the parameters that affect the delay linearly) so that dij = 1 and eij = 0. Thus, we will

assume instead that the following parametrized weighted congestion cost function is used :

hij(xij , aij , bij) :=
(1 + xij)

1+aij − 1
∑

d∈D
ρd(cij − xij − bij)

,

and that perturbations can cause each parameter to vary in its respective closed interval [âij − āij , âij + āij ]
and [b̂ij − b̄ij , b̂ij + b̄ij ], where âij ≥ 0, āij < 1 + âij and b̄ij < cij − b̂ij .

In this context, a robust optimization approach would therefore recommend retrieving the solution to the
following robust nonlinear optimization problem:

minimize
x,{xd}d∈D

max
(a,b)∈Uab

∑

(i,j)∈A

hij(xij , aij , bij) (10a)

subject to xij + b̂ij + b̄ij ≤ cij (10b)

(8c)− (8e) , (10c)

where the first constraint ensures that the traffic can be routed under any realization of b, and where

Uab ⊆

{

(a, b) ∈ R
|A| × R

|A|

∣

∣

∣

∣

âij − āij ≤ aij ≤ âij + āij , ∀ (i, j) ∈ A

b̂ij − b̄ij ≤ bij ≤ b̂ij + b̄ij , ∀ (i, j) ∈ A

}

.

In particular, we will focus on the budgeted uncertainty set which captures the fact that only a limited
number of parameters among all the aij ’s and bij ’s can take an extreme value:

Uab(Γ) :=















(a, b)

∣

∣

∣

∣

∣

∣

∣

∣

∃(δa, δb) ∈ R
|A| × R

|A|,

‖δa‖∞ ≤ 1, ‖δb‖∞ ≤ 1
aij = âij + āijδ

a
ij , ∀ (i, j) ∈ A

bij = b̂ij + b̄ijδ
b
ij , ∀ (i, j) ∈ A

‖δa‖1 + ‖δb‖1 ≤ Γ















.

4.3 The practicable robust counterpart formulation

As argued in Section 3, problem (10) is potentially intractable which motivates the use of the PRC formulation

which consists in considering instead the following optimization problem:

minimize
x,{xd}d∈D

max
α∈Uα

∑

(i,j)∈A

sup
fij :Dij(fij)≤αij

fij(xij) (11a)

subject to (10b), (8c)− (8e) , (11b)

where Dij(·) follows Definition 3.1. To complete this model, we need to characterize f+
ij (xij) using

f+
ij (xij) := hij(xij , âij + āij , b̂ij + b̄ij) ≥ max

(a,b)∈Uab

hij(xij , aij , bij) .

Based on Section 3, we know that it is possible to select Uα so that optimization model (11) returns a

conservative approximation of the original problems (see Proposition 3.3). Furthermore, looking back at the
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conditions of Proposition 3.4, we can establish that there exists some Uα that will allow this model to return

the truly optimal robust traffic assignment. We refer the reader to Appendix D for a detailed validation of

the conditions.

Finally, based on Corollary 3.1, we get that the PRC formulation can be reduced to the following convex
optimization model when Uα(Γ) is employed:

minimize
x,{xd}d∈D,y,u

∑

ij

yij + Γu

subject to yij ≥
(1 + xij)

1+âij − 1
∑

d∈D
ρd
(

cij − xij − b̂ij

) , ∀ (i, j) ∈ A

yij + u ≥
(1 + xij)

1+âij+āij − 1
∑

d∈D
ρd
(

cij − xij − b̂ij − b̄ij

) , ∀ (i, j) ∈ A

(8c)− (8e) ,

where y ∈ R
|A| and u ∈ R.

4.4 A Taylor series expansion reformulation

One can actually think of an alternative scheme for solving approximately problem (10) that would rely on

first-order Taylor series expansion to get rid of the nonlinearities in (a, b). Indeed it is possible to approximate

each congestion terms hij(xij , aij , bij) with the following expansion:

h̃ij(xij , aij , bij) = hij(xij , âij , b̂ij) + (aij − âij)
dhij

daij

∣

∣

∣

∣

(xij,âij ,b̂ij)

+ (bij − b̂ij)
dhij

dbij

∣

∣

∣

∣

(xij ,âij ,b̂ij)

,

where

dhij

daij

∣

∣

∣

∣

(xij,âij ,b̂ij)

=
ln(1 + xij)(1 + xij)

1+aij

∑

d∈D
ρd (cij − bij − xij)

∣

∣

∣

∣

(xij,âij ,b̂ij)

=
ln(1 + xij)(1 + xij)

1+âij

∑

d∈D
ρd
(

cij − b̂ij − xij

)

dhij

dbij

∣

∣

∣

∣

(xij,âij ,b̂ij)

=
(1 + xij)

1+aij − 1
∑

d∈D
ρd (cij − bij − xij)

2

∣

∣

∣

∣

∣

(xij ,âij ,b̂ij)

=
(1 + xij)

1+âij − 1
∑

d∈D
ρd
(

cij − b̂ij − xij

)2 .

Hence, we have that problem (10) can be approximated by the formulation below

minimize
x

max
(a,b)∈Uab

∑

(i,j)∈A

h̃ij(xij , aij , bij) (12a)

subject to (10b), (8c)− (8e) , (12b)

where h̃ij(xij , aij , bij) is equal to

(

(1 + xij)
1+âij − 1

cij − b̂ij − xij

+ (aij − âij)
ln(1 + xij)(1 + xij)

1+âij

cij − b̂ij − xij

+ (bij − b̂ij)
(1 + xij)

1+âij − 1

(cij − b̂ij − xij)2

)

1
∑

d∈D
ρd

.

If it so happens that for all (a, b) ∈ Uab there is actually a pair (a′, b′) ∈ Uab with a′ ≥ â, b′ ≥ b̂, a′ ≥ a and

b′ ≥ b, as is the case for Uab(Γ), then this reformulation is a convex optimization problem since the objective

function reduces to

maximize
(a,b)∈Uab

∑

(i,j)∈A

h̃ij(xij , aij , bij)

subject to a ≥ â, b ≥ b̂ ,
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and one can confirm that each h̃ij(xij , aij , bij) is convex in xij for such values of a’s and b’s. In fact, when

using Uab(Γ), the problem can be reformulated as the following tractable convex optimization problem:

minimize
x,u,v,w

∑

(i,j)∈A

(1 + xij)
1+âij − 1

∑

d∈D
ρd
(

cij − b̂ij − xij

) + vij + wij + Γu

subject to u+ vij ≥ āij
ln(1 + xij)(1 + xij)

1+âij

∑

d∈D
ρd
(

cij − b̂ij − xij

)

u+ wij ≥ b̄ij
(1 + xij)

1+âij − 1
∑

d∈D
ρd
(

cij − b̂ij − xij

)2

(10b), (8c)− (8e) ,

The downside of this approximate reformulation is that it is not clear whether it provides a good solution

in terms of x. In fact, one can show that for all 1 ≤ xij < cij − b̂ij − b̄ij , the function hij(xij , aij , bij)

is a convex function of aij and bij over the region that interests us2 thus that h̃ij(xij , aij , bij) provides a

lower bound to hij(xij , aij , bij). Effectively, this means that problem (12) will most likely underestimate the
worst-case total cost for such levels of traffic and it is likely that the solution that is returned tries to exploit

this inaccuracy. We believe this might explain the somewhat erratic performance observed in the numerical

experiments of Section 6 for the solutions obtained using this approximation scheme .

5 Two illustrative examples

This section is devoted to two examples that illustrate some of the modeling and resolution choices that

are made in this paper. The first, presented in Subsection 5.1 shows the impact of applying the robustness
method to a very simple network. The second, explained in Subsection 5.2 provides some insights about

nonlinearity issues and their implication in the robust congestion minimization problem.

5.1 The value of being robust

Let us consider the 5-node network of Figure 3. There is a source node, src, a destination node, dest, and

three transit nodes, transit 1, transit 2 and transit 3 that give rise to three different routes. The links

capacity is 2 Gbps. The demand is such that 3 Gbps of traffic must be routed from source to dest. The
three paths available are portrayed in three shades of black and grey, and their links are characterized by

different delay profiles based on the a and b parameters. Nominal and upper bounds of a and b are reported

in Table 1.

Examining those parameters, it can be seen that, in terms of nominal functions (â and b̂), black links
experience the lowest delay. On the other hand, light-grey links are those with the worst latency. From

the perspective of the upper bound function the situation is, however, reversed. In fact, black links present

the worst upper bound delay profile whereas light grey links show almost no uncertainty, i.e. with upper

bound values very close to nominal. Practically speaking, those links that experience the lowest delay, on

average, are also those characterized by the highest variability, while those that show the highest delay,
always on average, show the most stable performance. Since a robust approach is designed to optimize the

worst-case scenario, it should prefer sending traffic on the grey links (the less uncertain), while a typical

nominal method would give priority to black links (the fastest, on average). The above explanation can be

graphically perceived by examining Figure 2 where both nominal (dashed lines) and upper bound (continuous
lines) congestion functions are shown. The reader can appreciate that the black pair of lines are the widest

apart, showing great uncertainty, whereas the light grey pair of lines are very close together.

To show the effect of robustness on the optimal solutions, Table 2 contains the solution results of the

PRC formulation when the budget parameter Γ is varied from 0 to |A|. Since each route is characterized by
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Table 1: Set of values for the illustrative example (Figure 3).

Links â b̂ â+ ā b̂+ b̄

Black 0.4 300 0.80 600

Medium− grey 0.5 400 0.65 550

Light− grey 0.6 500 0.61 510

Links definition

Type Names Route

Black src-transit 1; transit 1-dest 1

Medium− grey src-transit 2; transit 2-dest 2

Light− grey src-transit 3; transit 3-dest 3

Other problem parameters

Parameter domain Value

cij ∀(i, j) ∈ A 2Mb/s

ρd ∀d ∈ D 3Mb/s

(a) Black links (b) Medium-grey links (c) Light-grey links

Figure 2: Nominal and upper bound functions for the links of the illustrative example (Figure 3).

Figure 3: Three-route network illustrative example.

the “colour” of their links, from now on we assign that colour to the name of the route. As expected, the

flow values (see Table 2) obtained for each value of Γ, show how traffic is progressively shifted from the black

link route to the light-grey route as the solution becomes more robust. From a robustness perspective, it is
more convenient to use links which are more expensive, on average, but less uncertain.
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Table 2: Routing solution of the illustrative example of Figure 3. The table represents the solution of the
PRC formulation when employing the values of Table 1, in terms of routed flows per route (in Mb/s) when
budget Γ is varied.

Routed flows (Mb/s)

Γ Black route Medium− grey route Light− grey route

0.0000 1264.19 1007.99 727.82

0.0060 1221.77 1027.55 750.68

0.0108 1201.44 1036.88 761.68

0.0192 1174.66 1049.13 776.22

0.0336 1140.13 1064.85 795.02

0.0600 1096.84 1084.46 818.70

0.1068 1044.05 1108.22 847.73

0.1896 981.30 1136.27 882.43

0.3372 909.07 1168.31 922.62

0.6000 853.84 1176.75 969.40

1.0668 822.07 1153.00 1024.93

1.8972 788.30 1126.39 1085.31

3.3738 759.05 1094.43 1146.52

6.0000 790.22 1063.55 1146.23

The robustness of the computed solutions is now assessed by evaluating the congestion values that are

obtained when 1000 different random cost scenarios are produced. Each random scenario is represented by

a set of a and b parameters generated within the uncertainty region defined by nominal (â and b̂) and upper

bound (â+ ā and b̂+ b̄) parameters. The random generation process is precisely described in Section 6.2.

For each random scenario and each value of Γ, we consider the corresponding robust solution and compute
its actual congestion cost according to the realizations of a and b. Thus, for each Γ−solution we obtain 1000

different congestion costs. For those 1000 congestion values, we can find statistics like average and percentiles,

portrayed in plotting form in Figure 4(a) and Figure 4(b) . In both figures, the X axis represents the average

congestion costs over the 1000 scenarios whereas the Y axis shows the 100th percentile, to which in the
reminder of the paper we often refer as worst-case scenario or value (see Figure 4(a)) or 95th percentile (see

Figure 4(b)), when Γ is increased from 0 to |A|. All values on both axis are normalized with respect to those

of the nominal problem solution (Γ = 0), which is always represented by the point (1, 1). In this way the

relative variation between robust and nominal solutions is clearly pointed out: (X,Y ) =

(

XΓ

X0
,
Y Γ

Y 0

)

.

The idea behind the plots of Figure 4 is to show the trade-off between worst-case values and average

values when the robustness parameter Γ is varied. It is perhaps surprising to observe that already with a

small values of robustness, the solution that is returned by the PRC formulation outperforms the solution
of the nominal problem both in terms of expected total cost and in terms of its 95th percentile (or even

100th percentile). For larger values of robustness, the PRC solutions seem to identify a Pareto frontier of

compromises that needs to be made between expected total cost and its larger percentiles. Indeed, the

expected cost increases as the solution becomes more robust and worst-case congestion is further minimized.
This behavior was actually confirmed on an extensive set of experiments presented in Section 6.

5.2 The relevance of non-linear perturbations

This section is devoted to providing insights about the use of the parametric delay function presented in

Equation (9), and how it permits to better characterize link delay uncertainty when integrated to the PRC

formulation. In particular, we provide evidence that an additive perturbation model is insufficient and
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(a) Example - 100th perc. vs avg. (b) Example - 95th perc. vs avg.

Figure 4: Results with example network topology.

illustrate the main shortcoming associated to linearization schemes as the TSEA approach presented in

Section 4.4 when approximating a robust optimization that involve nonlinear perturbation effects.

This illustrative example is inspired by the delay uncertainty that can be perceived in the measurements

presented in Figure 1. We actually refer the reader to Figure 5(a) where the same measurements are presented

using units that are more closely aligned with our application of interest: namely, in our framework a delay

function maps the amount of flow (in Mb/s) to the delay that is experienced per Megabit of data.3. Based

on this figure, it is possible to calibrate our nominal weighted delay function h(x, â, b̂, d̂, ê) using the diamond
shaped points. These points were visually estimated to the 10 pairs of values reported in Table 3, which are

plotted in Figure 5(b) under the label “Nominal-figure”, and which led the following choice of parameters

â := 2.65, b̂ := 0, d̂ := 0.14, ê := 0 .

Note that in order to perform a meaningful calibration we chose to minimize the sum of relative absolute
deviation in delay predictions, namely the following optimization model:

min
a,b,d,e

M
∑

m=1

∣

∣ym − h(xm, a, b, d, e) ·
(
∑

d∈D
ρd/xm

)
∣

∣

ym
,

where h(xm, a, b, d, e) ·
(
∑

d∈D
ρd/xm

)

converts our weighted link delay function into the actual link delay.

A similar procedure (see Table 3 for the points) was used to characterize an upper bound on the link

delay function to obtain the following parameters:

ā := 0.5, b̄ := 2, d̄ := 0, ē := 250 .

This calibrated upper bounding function is presented in Figure 5(b) under the label “Upper-region” while

the calibrated nominal function was labeled “Lower-region”. Both appear to capture fairly accurately the

Table 3: Points representing the Nominal-figure and the Upper-figure plots visually derived from Figure 5(a).

{ym}1m=1
0 4.5 9 13.5 18 22.5 27 31.5 36 40.5 44.5

Nominal-figure {xm}1m=1
0 25 25 25 25 25 50 100 250 500 2500

Upper-figure {xm}1m=10 250 300 325 350 550 825 1075 1500 7500 ∞
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(a) (b)

Figure 5: Comparison of uncertainty regions produced through different approaches. (a) Delay measurements
of C. Van Eijl Eijl (2002),(b) uncertainty regions captured by different methods. Figure (a), which is taken
from Hijazi et al. (2013), was originally published in Eijl (2002). With kind permission from Springer Science
and Business Media.

Table 4: Functions used in Figure 5(b).

ID Expression Description

Nominal-figure Data-driven4 Series of points representing the typical
amount of link delay

Upper-figure Data-driven4 Series of points representing an upper
bound on the link delay

Lower-region

(

∑

d∈D
ρd

x

)

·

(

d̂
(1 + x)1+â − 1

∑

d∈D
ρd(c− x− b̂)

+ ê
x

∑

d∈D
ρd

)

Function that approximates the nominal
link delay function according to our
parameterized weighted delay function

Upper-region

(

∑

d∈D
ρd

x

)

·

(

(d̂ + d̄)
(1 + x)1+â+ā − 1

∑

d∈D
ρd(c− x− b̂− b̄)

+ (ê+ ē)
x

∑

d∈D
ρd

)

Function that approximates the upper
bound on link delay according to our
parameterized weighted link delay function

Upper-fixed-
additive

(

∑

d∈D
ρd

x

)

·

(

d̂
(1 + x)1+â − 1

∑

d∈D
ρd(c− x− b̂)

+ ê
x

∑

d∈D
ρd

)

+ κ

Function that approximates the upper
bound on link delay when employing an
additive delay perturbation as in Hijazi
et al. (2013)

Upper-TSEA

(

∑

d∈D
ρd

x

)

· h̃(x, â+ ā, b̂+ b̄, d̂+ d̄, ê+ ē) Function that approximates the upper
bound on link delay when employing TSEA

Parameter Description Value

â Nominal a parameter 2.65
ā Maximum deviation for a parameter 0.5

b̂ Nominal b parameter 0Mbps
b̄ Maximum deviation for b parameter 2Mbps

d̂ Nominal d parameter 0.14
d̄ Maximum deviation for d parameter 0
ê Nominal e parameter 0 s
ē Maximum deviation for e parameter 0.3 s
r Average number of packet in 1Mb 250
c Link capacity (as in Eijl (2002)) 45Mbps
κ Maximum additive delay perturbation 0.6 s
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range of values that the delay might take for any amount of flow that is passed through the link. Looking

at the calibrated parameters, it is clear that the parameters that affect delay nonlinearly, namely a and b,

play an important role in characterizing the uncertainty. Alternatively, one might try only using an additive
noise model and obtain the upper bound function labeled “Upper-fixed-additive” which is clearly inadequate.

Indeed, this upper bound for the uncertainty region overestimates the worst-case delay when the flow is small

while underestimating it when the flow is large.

Finally, the curve labeled “Upper-TSEA” captures the upper bound of the uncertainty region that is

used when employing a linearization scheme based on a first-order Taylor series expansion of h(x, a, b, d, e).
One might observe here that the upper bound of TSEA for the uncertainty region is more accurate than the

additive perturbation model, especially for small values of x, but that it quickly ends up underestimating

the worst-case delay as the amount of flow increases. It is worth noting however that compared to the PRC

formulation such an approximation scheme might more appropriately capture the correlations that could
exists between different link delay functions assuming that one can design an uncertainty set that captures

well how all parameters in {(aij , bij , dij , eij , } behave jointly. For completeness, we conclude this discussion

with the definition of a TSEA approximation of the weighted link delay function in this context:

h̃(x, a, b, d, e) := d̂
(1 + x)1+â − 1

∑

d∈D
ρd(c− x− b̂)

+ ê
x

∑

d∈D
ρd

+ (a− â)
ln (1 + x) (1 + x)1+â

∑

d∈D
ρd(c− x− b̂)

+

+(b− b̂)
(1 + x)

1+â
− 1

∑

d∈D
ρd(c− x− b̂)2

+ (d− d̂)
(1 + x)

1+â
− 1

∑

d∈D
ρd(c− x− b̂)

+ (e − ê)
x

∑

d∈D
ρd

.

6 Numerical experiments

This section presents a study involving thousands of problem instances (categorized into 18 different test

conditions) of congestion minimization problems. We believe this study allowed us to identify some important

strengths and limitations of the PRC formulation, in particular when compared to the nominal problem and

the TSEA approach. We start by describing carefully how the problem instances of this study were generated
and how the solutions’ performances were statistically evaluated through Monte-Carlo simulations. Next,

we discuss the most relevant observations that were made about these results, while highlighting during this

process the merits of the PRC formulation. The computing platform used for the tests was an Intel i7 PC

with 4 core and multi-thread 8x, equipped with 8Gb of RAM. Non-linear convex programs were solved with
MINOS 5.51 and the AMPL language.

The 18 different tests are summarized in Table 5. Each ID number on the table represents a set of

instances that are characterized by their topology, the number of nodes, edges, robustness parameters, etc.

For each ID, 1000 random instances were generated so that |V e| edge nodes were randomly selected, traffic

matrices were chosen according to a random distribution (more details below) and link capacities were also
randomly assigned to respect, on average, the following proportions: (i) 8 Gbps (30%), (ii) 5 Gbps (30%),

(iii) 2.4 Gbps (20%) and (iv) 2 Gbps (20%). Both upper bound (f+
ij ) and nominal functions (f̂ij) of each

network link were also randomly selected. For this purpose, for each link (i, j) ∈ A, both nominal, i.e., âij
and b̂ij , and maximum deviation values, i.e., āij and b̄ij , were generated for bounding the a and b parameters.
Now, for each of the 1000 random instances, the model was solved for Γ = 0, . . . , |A|, which provided 13

different solution per test instance (from the least to the most robust). Two alternative solution methods

were used for comparison (details below).

Once the random instances and their results were calculated, the question was how to assess the robustness

of the method. For this, a post-processing simulation-like approach was used in which 999 realizations of the
random parameters a and b of each link were generated for each of the previously described 1000 instances.

We call a single realization a scenario and for each one of them, we determined how much both nominal and

robust solutions would have costed, in terms of congestion, according to the current values of a and b. Both

average and percentile costs over the set of 999 scenarios and for each value of Γ were evaluated to determine

the robustness of the PRC formulation and the TSEA approach.
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Table 5: Description of test instances.

ID Net |V | − |V e| |A| a+max b+max σ λ ̟ iter Region

1 nobel 28-14 82 1 0.5 0.1 2 0.8 1000 1

2 nobel 28-14 82 1 0.5 0.1 2 0.8 1000 2

3 nobel 28-14 82 1 0.5 0.1 2 0.5 1000 1

4 nobel 28-14 82 1 0.5 0.1 2 0.5 1000 2

5 nobel 28-14 82 0.6 0.5 0.1 2 0.8 1000 1

6 nobel 28-14 82 0.6 0.5 0.1 2 0.8 1000 2

7 nobel 28-14 82 0.6 0.5 0.1 2 0.5 1000 1

8 nobel 28-14 82 0.6 0.5 0.1 2 0.5 1000 2

9 nobel 28-14 82 0.2 0.5 0.1 2 0.8 1000 1

10 nobel 28-14 82 0.2 0.5 0.1 2 0.8 1000 2

11 nobel 28-14 82 0.2 0.5 0.1 2 0.5 1000 1

12 nobel 28-14 82 0.2 0.5 0.1 2 0.5 1000 2

13 germany 50-25 176 1 0.5 0.1 2 0.8 200 1

14 germany 50-25 176 1 0.5 0.1 2 0.8 200 2

15 germany 50-25 176 0.6 0.5 0.1 2 0.8 200 1

16 germany 50-25 176 0.6 0.5 0.1 2 0.8 200 2

17 germany 50-25 176 0.2 0.5 0.1 2 0.8 200 1

18 germany 50-25 176 0.2 0.5 0.1 2 0.8 200 2

6.1 Instance generation details

As previously explained, an instance is characterized by: 1) a randomly generated topology and link capacity,

2) uncertainty region and 3) traffic demand. More details on those elements are given in the following

subsections.

6.1.1 Network topologies and link capacities

Two network topologies were extracted from the very popular SNDLibrary from Orlowski et al. (2010), i.e.,
nobel-eu and germany. Column |V |−|V e| of Table 5 reports the total number of nodes and pure edge nodes,

i.e., those with either source or destination of traffic, while column |A| represents the cardinality of the link

set. For each random instance, |V e| edge nodes and link capacities were randomly selected.

6.1.2 Uncertain region

For each instance, the upper bound (f+
ij ) and the nominal functions (f̂ij) of each network link were randomly

determined in the following manner. For each link (i, j) ∈ A, both nominal, i.e., âij and b̂ij , and maximum

deviation values, i.e., āij and b̄ij , were generated for a and b. We experimented with two different ways of

generating these values. This gives rise to two different types of uncertainty regions.

Region 1: nominal values âij , b̂ij ∀(i, j) ∈ A respectively generated according to the uniform distributions
U (0.01, a+max) and U (0.01, b+max), while the maximum deviation values āij ∀(i, j) ∈ A and b̄ij ∀(i, j) ∈ A

followed respectively two uniform distributions defined by

U
(

0,min
(

a+max − âij , âij
))

and

U
(

0,min
(

b+max − b̂ij , b̂ij

))

.
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Region 2: nominal and maximum deviation values of b generated as for Region 1, while each nominal

âij , ∀(i, j) ∈ A was generated according to U (0.01, a+max/2), and each maximum deviation āij ∀(i, j) ∈ A

was set equal to âij . The values of b+max reported in Table 5 were normalized w.r.t. the link capacity.

6.1.3 Traffic matrices

The traffic matrices provided by the SNDLibrary (one for each network) were modified as follows. For each

random instance, all the demands that were not Origin-Destination were discarded. Then, traffic request
values ρd ∀ d ∈ D were chosen according to a Uniform distribution U(1, 10), and the resulting traffic matrix

was scaled for the maximum parameters which allowed to route all traffic demands with fully splittable

routing while not consuming more than ̟
(

cij − b̂ij − b̄ij

)

. The higher ̟ (never larger than 1), the more

loaded the network. The scaling parameter was computed by means of an LP formulation.

Note that the number of traffic demands |D| was related to the composition of the edge node set V e,

which determines which demands had to be discarded from the reference SNDLibrary traffic demand set.

6.2 Postprocessing scenario generation details

As previously mentioned, the post processing scenarios were obtained by randomly generating values a and b

for each link. This was done according to a multivariate normal distribution centered on the nominal values.

The standard deviation of each parameter a (or b) was āij/λ (see Table 5). If a parameter was generated

outside the uncertainty region [âij , âij + āij ], it was remapped within the desired interval by considering
the equivalence between the CDFs of the corresponding Normal distribution and the Uniform distribution

U (âij , âij + āij). Note that with λ = 3, on average 99.9% of the random parameters would lay within the

uncertainty region. The a and b parameters of links generated by the same node were assumed to have a

correlation σ = 0.1 while other correlations where set to zero.

6.3 Computational results

Extensive testing was performed for networks nobel-eu and germany50. As shown in Table 5, the problem

parameters were progressively adjusted to assess the performance, under different conditions, of both the

PRC formulation and the TSEA approach.

For each of the 1000 instances, an X-Y plot similar to the one shown in Figure 4 was created, to analyze

the trade-off between average and worst-case congestion as a function of robustness. Differently from the
illustrative example of Section 5, results are now averaged over the 1000 instances of each class. In other

words, the following X-Y plots were obtained by averaging over the individual X-Y plots of the 1000 instances.

In Table 6 the average results obtained over the 1000 instances are presented for each instance ID. In

particular, the best improvement is reported in terms of (i) worst-case, (ii) 95th percentile, (iii) 90th percentile

and (iv) average congestion costs observed when the robust solutions are applied. The improvement is
computed with respect to the congestion costs obtained when Γ = 0 (nominal problem). In this table we

report the best improvement obtained by varying Γ. Note that such an improvement might be achieved by

different values of Γ.

The last row of Table 6 demonstrates how robustness allows to significantly improve worst-case, up to

62.4%, 95th percentile, up to 10.5%, 90th percentile, up to 5.5% and even average congestion costs, up to
4.7%. The PRC formulation clearly outperforms, on average, the TSEA approach: by 15.8%, 0.9%, 0.1%

and 0.2% in terms of, respectively, worst-case, 95th percentile, 90th percentile and average congestion.

A clear trend emerges from Table 6: the larger and more nonlinear the uncertainty region is, the larger

the relative improvement produced by the PRC formulation will be. Furthermore, in terms of 95th percentile

and 90th percentile congestion costs, the difference between the PRC formulation and the TSEA approach is
less significant than the one registered for worst-case costs.
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Table 6: Best improvements achieved by robust approaches.

Worst-case 95th perc. 90th perc. Average

ID PRC TSEA PRC TSEA PRC TSEA PRC TSEA

1 62.4% 26.0% 10.5% 9.4% 5.3% 6.2% 4.7% 3.7%

2 29.0% 0.0% 7.4% 4.5% 5.0% 3.8% 1.3% 2.1%

3 31.0% 20.0% 8.3% 8.2% 4.6% 5.7% 1.6% 1.2%

4 14.0% 5.2% 8.2% 5.9% 5.5% 4.5% 0.4% 2.4%

5 47.3% 23.7% 5.8% 5.0% 2.3% 2.4% 3.2% 1.6%

6 20.7% 2.3% 2.5% 2.2% 1.1% 1.5% 1.1% 0.5%

7 7.5% 6.7% 1.5% 1.6% 0.8% 0.9% 0.3% 0.1%

8 4.2% 3.6% 1.3% 1.8% 0.7% 1.3% 0.0% 0.1%

9 11.5% 11.0% 2.4% 2.3% 0.9% 0.9% 0.9% 0.8%

10 10.4% 9.8% 1.9% 1.7% 0.7% 0.6% 0.7% 0.5%

11 0.5% 0.6% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%

12 0.4% 0.4% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%

13 76.1% 30.4% 13.4% 11.5% 7.4% 7.6% 5.7% 4.6%

14 46.1% 0.0 % 9.3% 5.4% 6.6% 4.7% 2.2% 2.8%

15 67.9% 31.8% 8.8% 6.9% 3.8% 3.1% 3.8% 1.9%

16 34.5% 11.5% 3.0% 2.2% 1.4% 1.4% 1.1% 0.2%

17 28.2% 26.6% 3.7% 3.5% 1.3% 1.2% 1.5% 1.2%

18 20.6% 19.1% 2.3% 2.0% 0.9% 0.7% 1.0% 0.8%

average 28.5% 12.7% 5.0% 4.1% 2.7% 2.6% 1.6% 1.4%

These and other relevant results emerging from the general table are discussed in the next sections with

the aid of the corresponding X-Y plots.

6.3.1 Worst-case analysis

For this analysis we considered ID class 5, which is characterized by (i) uncertainty regions of moderate size,

i.e., a+max = 0.6, generated according to Region 1, (ii) moderate traffic load, i.e. fully splittable routing

is achieved without exceeding 80% of the worst-case link capacity c − b̂ − b̄. Three different subfigures
can be found in Figure 6. For both the PRC formulation and the TSEA approach, the plots show the

trade-off between average and worst-case congestion costs as the robustness budget is increased from 0 to

|A| (13 points). To represent worst-case cost we report 100th (see Figure 6(a)), 95th (see Figure 6(b)) and

90th (see Figure 6(c) percentile congestion values. The reader is reminded that all percentiles and average
congestion values were taken by averaging over 1000 test instances of the same class for each one of the Γ

points. Furthermore, to better highlight the improvement w.r.t. the nominal solutions, both percentiles and

averages were normalized with respect to the values obtained with zero budget, that is, with Γ = 0.

Examining Figure 6(a), it can be seen that the PRC formulation substantially reduces the worst-case

congestion outcome as Γ is increased. Most importantly, the PRC formulation considerably improves the
figures obtained by TSEA, achieving a worst-case congestion improvement close to 45% (whereas TSEA can

get up to 25%). Furthermore, with the PRC formulation a clear trade-off between worst-case and average

values can be observed: reducing worst-case congestion naturally causes a degradation of the average. Note

that the degradation is very small (namely less than 3%) in the case of the PRC formulation.

It is worth pointing out that, due to the particular shape of the congestion function, that tends to infinite
when the traffic reaches the available capacity, being robust with a very small Γ allows, in a first moment,

to reduce as well the average congestion.
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Figure 6: Analyzing the impact of robustness on worst-case congestion. Uncertainty regions are of moderate
size, i.e., a+max = 0.6, a parameters are generated according to Region 1, traffic load is kept moderate, i.e.
̟ = 0.8. The notation avg. relative improv. used on both X and Y axis remarks that all X-Y coordinates
represent the average variation (1000 test instances) with respect to both the X and Y normalized coordinates
obtained with the nominal solutions. Nominal coordinates are always (1,1).

The 95th and 90th percentile plots for the PRC formulation show a very interesting behavior. At the

beginning, as Γ increases from 0, the performance has a sharp improvement. However, as Γ moves towards

its maximum value, a congestion deterioration is progressively observed. This phenomenon has a very simple

explanation: to further reduce the worst-case figures (see Figure 6(a)), the model is forced to pay a price in

terms of the 95th and 90th percentiles. This behavior is not observed with TSEA because the latter fails to
improve the worst-case congestion up to a point where we can start to observe the aforementioned trade-off.

From these plots it can be affirmed that the PRC formulation clearly outperforms TSEA. What is more

remarkable is that this is the case despite the fact that, unlike the TSEA approach, the PRC formulation

does not require perfect knowledge of the parametric form of the delay function nor does it need detailed

information about uncertainty in the parameters. This aspect is crucial because an exact characterization
of a nominal function can be hardly derivable in many cases: the PRC formulation circumvent this issue

by exploiting nominal and upper bound functions, both of which can be derived straightforwardly when

analyzing historical data.
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6.3.2 Impact of the uncertainty region nonlinearity

Here we want to show how the PRC formulation and the TSEA approach behave as uncertainty regions

become wider and more nonlinear, i.e., by varying a+max from 0.2 (instance 9) to 1 (instance 1) passing from
0.6 (instance 5). Link cost parameters were always generated according to Region 1. In Figure 7 the 95th

percentile congestion values obtained while varying the robustness budget Γ from 0 to |A| are reported.

As expected, the wider and more nonlinear the uncertainty regions are, the higher the worst-case conges-

tion improvement becomes. This trend is found for both methods: from 2.5% to 11% improvement with the

PRC formulation and from 2% to 9.5% with the TSEA approach.

It is also worth pointing out that as a+max grows and the uncertainty regions become more nonlinear, the

gap between PRC and TSEA increases. This confirms that the first-order Taylor approximation works better

when the uncertainty region is defined will with less pronounced nonlinear terms. The PRC formulation,
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Figure 7: Analyzing the impact of the uncertainty region nonlinearity on congestion costs. Delay function
parameters a+max varying from 0.2 (a) to 0.6 (b) and again to 1 (c). Parameters are generated according to
Region 1, traffic load is kept moderate, i.e. ̟ = 0.8. All figures show the 95th percentile versus average
congestion trend. The notation avg. relative improv. used on both X and Y axis remarks that all X-Y
coordinates represent the average variation (1000 test instances) with respect to both the X and Y normalized
coordinates obtained with the nominal solutions. Nominal coordinates are always (1,1).
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which is based on the convex combination of upper bound and nominal functions does not seem to be affected

by such nonlinearities.

6.3.3 Sensitivity to network load

When the traffic load is higher, the link works close to its capacity limit c − b̂ − b̄. Due to the nonlinearity

of the delay function, the gap between nominal and real functions in this part of the uncertainty region can

be much wider (see also Figure 5); thus, it is still more important to consider the possible deviation from
the nominal curves, since a bad evaluation could lead, in this case, to a significant deterioration of the global

congestion.

In Figure 8 the worst-case congestion curves obtained by varying the budget Γ for two different traffic scal-

ing are compared. In Figures 8(a) and 8(c) traffic matrices were scaled to respect a capacity of 0.8
(

c− b̂− b̄
)

whereas Figures 8(b) and 8(d) show the results for a capacity scaling of 0.5
(

c− b̂− b̄
)

. All parameters were

generated according to Region 1.

As expected, when the traffic is higher, being robust is more important and may lead to a 95th percentile

congestion improvement of 12% (e.g. in a+max = 1, instance 1, Figure 8(a)) and 5.5% (e.e. in a+max = 0.6,

instance 5, Figure 8(c)). With a less congested network, the improvements are less significant and range from

8% (see Figure 8(b)) to 1.5% (see Figure 8(d)).

6.3.4 Sensitivity to the uncertainty region type

It is quite interesting to observe how the plot profiles change when the way the uncertainty region is generated

changes. For Region 1, the generation scheme used to compute nominal and upper bound values for a and b
provides a subset of link delay functions with very low nominal values but significant variability, and a second

group where nominal delay is higher but variability is lower. In this case, the robust approaches achieve a

clear trade-off between average and worst-case congestion cost, i.e., average costs are increased to further

improve worst-case and 95th percentile costs (see the u-shape plots of Figure 6). In fact, as robustness (Γ)

is increased, the robust approaches tend to prefer routing traffic on links with higher average delay but less
uncertainty, rather than on those where delay is lower, on average, but more uncertain.

On the other hand, when uncertainty regions are generated according toRegion 2, the situation is somehow

different. Since ā is now equal to â, the less uncertain links are also those with the lowest average delay. The

X-Y plots drawn for Region 2 instances show that as the uncertainty regions become larger (Instance 2 with

a+max = 1) the typical u-shape observed with Region 1 is observed only for the first values of Γ. Starting from
a certain Γ = 0, the trend previously observed is inverted such that increasing Γ allows the PRC formulation

to improve both worst-case and average performance (see Figure 9). Note that if we consider Instance 2,

the worst-case solution (Γ = |A|) is even the best in terms of both average and 95th percentile congestion.

Among the multiple interpretations which can be given to explain this behavior we provide the following two:

1. To achieve robustness in this case, it is necessary to find the best trade-off between the shortest paths

in terms of hops and average delay and those shortest in terms of worst-case delay. When the budget

Γ is small, the PRC formulation cannot distribute the uncertainty over the whole set of links, and

the situation leads it to a traffic that is less splitter, which is less efficient in congestion terms. Once
Γ = |A|, traffic is maximally splitted due to the higher convexity of the delay function, and this routing

configuration seems to perform quite well in terms of average delay costs too: a high splitting ratio

results in a lower aggregation of traffic, so that a delay variation on a link has a lower impact in terms

of overall congestion.

2. There is an approximation gap when a convex combination is used to represent real delay profiles. With

this specific setting, this may prevent the PRC formulation from achieving the classical U-shape plot

in the resulting X-Y graphs.



Les Cahiers du GERAD G–2015–27 27

0.94 0.96 0.98 1.00 1.02 1.04 1.06
Average cong. - avg. relative improv.

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02
9
5
.0

th
 p

e
rc

. 
co

n
g
. 
- 
a
v
g
. 
re

la
ti
v
e
 i
m

p
ro

v.

|A| budget

|A| budget

0 budget PRC formulation
TSEA

1.00 1.05 1.10
Average cong. - avg. relative improv.

0.92

0.94

0.96

0.98

1.00

9
5
.0

th
 p

e
rc

. 
co

n
g
. 
- 
a
v
g
. 
re

la
ti
v
e
 i
m

p
ro

v.

|A| budget

|A| budget

0 budget PRC formulation
TSEA

(a) Inst. 1 - 95th perc. vs avg. (b) Inst. 3 - 95th perc. vs avg.

0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04
Average cong. - avg. relative improv.

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

9
5
.0
th
 p
e
rc
. 
co
n
g
. 
- 
a
v
g
. 
re
la
ti
v
e
 i
m
p
ro
v.

|A| budget

|A| budget

0 budget PRC formulation
TSEA

1.00 1.02 1.04 1.06
Average cong. - avg. relative improv.

0.98

0.99

1.00

1.01

1.02

9
5
.0

th
 p

e
rc

. 
co

n
g
. 
- 
a
v
g
. 
re

la
ti
v
e
 i
m

p
ro

v.

|A| budget

|A| budget

0 budget

PRC formulation
TSEA

(c) Inst. 5 - 95th perc. vs avg. (d) Inst. 7 - 95th perc. vs avg.

Figure 8: Analyzing the sensitivity to network load. Traffic load varies from moderate in plots (a) and (c),
i.e., ̟ = 0.8, to low in plots (b) and (d), i.e., ̟ = 0.5. Delay function parameters a+max are varied from 1
in plots (a) and (b) to 0.6 in plots (c) and (d). Delay parameters are generated according to Region 1. All
plots show the 95th percentile versus average congestion trend. The notation avg. relative improv. used on
both X and Y axis remarks that all X-Y coordinates represent the average variation (1000 test instances)
with respect to both the X and Y normalized coordinates obtained with the nominal solutions. Nominal
coordinates are always (1,1).

It is worth pointing out that, although X-Y plots are different according to the uncertainty region types,

the PRC formulation always allows to substantially reduce worst-case and even average congestion. We thus

believe that it can be adopted independently of the uncertainty region shapes. However, for each uncertainty

setting, it is important to adjust |Γ| to maximize the method performance.

6.3.5 Results with a larger network

To verify whether the considerations made for nobel-eu remained valid with a larger and different network,

in Figure 10 we report six plots obtained using germany50, a network of 50 nodes and 176 links. From top
down, a+max = 0.2, a+max = 0.6 and a+max = 1, while from left to right the 95th percentile-average and the

90th percentile-average trade-offs are shown. The uncertainty regions were generated by according to Region
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Figure 9: Analyzing the worst-case versus average congestion trend when delay function parameters are
generated according to Region 2. Delay function parameters a+max is varying from 0.2 (a) to 0.6 (b) and
again to 1 (c). Traffic load is kept moderate, i.e. ̟ = 0.8. All figures show the 95th percentile versus
average congestion trend. The notation avg. relative improv. used on both X and Y axis remarks that
all X-Y coordinates represent the average variation (1000 test instances) with respect to both the X and Y
normalized coordinates obtained with the nominal solutions. Nominal coordinates are always (1,1).

1. The plots reveal that the same trends are also observed with this network, which seems to confirm the
quality of the PRC formulation.

7 Conclusion

In this article, we have proposed a novel robust optimization formulation to handle optimization problems

characterized by cost functions that decompose over each decision variables and behave nonlinearly with

respect to both the parameters and the decisions. Our formulation, which we named Practicable Robust
Counterpart formulation, only assumes that each term of the nominal cost function is convex with respect

to the decision variable and can be bounded above by another convex function. The PRC formulation

has the big advantage of reducing to a robust optimization problem that can easily be calibrated using

historical data, and that ends up not being much harder to solve than the deterministic version of the

problem. We apply the PRC formulation to the question of how to minimize network congestion through
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Figure 10: Analyzing the overall results with a network of 50 nodes, i.e., germany50. Delay function pa-
rameters a+max varying from 0.2 (a-b) to 0.6 (c-d) and again to 1 (e-f). Traffic load is kept moderate, i.e.
̟ = 0.8. Parameters are generated according to Region 1. Plots (a-c-e) show the 95th percentile versus
average congestion trend, while plots (b-d-f) the 90th percentile one. The notation avg. relative improv. used
on both X and Y axis remarks that all X-Y coordinates represent the average variation (1000 test instances)
with respect to both the X and Y normalized coordinates obtained with the nominal solutions. Nominal
coordinates are always (1,1).
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multi-commodity fully splittable routing when transmission delays on each link are considered uncertain and

to be affected nonlinearly by the link’s congestion level. Our numerical experiments demonstrate that the

PRC formulation is able to identify routing strategies that can substantially outperform a strategy that is
based on a deterministic approach, both with respect to congestion level that are achieved on average and in

sets of unfavorable conditions: i.e. up to 5.7% improvement of the expected value or up to 13.4% of the 95th

percentile. Moreover, we demonstrate that the PRC formulation outperforms RO formulations that rely on

naive linearization schemes, such as a using first-order Taylor series approximation.

It is worth noting that in this article our discussion focused on emphasizing the contribution of the PRC
formulation in the context of classical robust optimization theory which assumes a model of the form of

problem (1). However, it is our firm opinion that in practice there are many problems for which knowledge of

a cost function naturally takes the shape of two bounds for hi(xi), i.e. f̂i(xi) ≤ hi(xi) ≤ f+
i (xi), without any

obvious association to a parametric form for hi(xi) whose parameters would be uncertain. While we men-

tioned in a few occasion that the hypothesis made by the PRC formulation makes it especially well adapted
for such situations (see for instance Remark 1), there are many interesting research questions that remain

open. We mentioned for instance some issues regarding the calibration of Γ when individual historical cost

measurements of the form {(xj
i , hi(x

j
i ))} are used. Yet, when one can only rely on historical measurements,

there is even the issue of choosing the proper expressions for f̂i and f+
i based on the data. Alternatively,

bounds on the terms of the total cost function might also naturally arise in contexts where there are con-

flicting theories, or experts opinions, that could be used to predict the cost of a decision.5 Indeed, in this

case, one can then consider the nominal cost function to be the average cost predicted by different theories,

and the upper bound function to return, for any value of the decision, the largest cost predicted by any of

the theories. It then becomes interesting to clarify what might be the role of Uα in this context and how
one might calibrate Γ in Uα(Γ). Due to both the limited time on our hands and space consideration in this

article, we choose, somehow with regret, to leave these questions as directions for future research.

Endnotes

1. Although a specific definition will be proposed in Section 3, the deviation measure Di should generally
be a positive one such that only hi(·, ξ̂) satisfies D(fi) = 0 in order to recuperate the nominal problem when
α = 0.

2. Assuming that 1 ≤ xij < cij − b̂ij − b̄ij , that aij ≥ 0, and that 0 ≤ bij ≤ b̂ij + b̄ij , one can confirm the
convexity of hij(·) in aij and bij by studying the second derivatives:

d2hij

da2ij
=

ln(1 + xij)
2(1 + xij)

1+aij

∑

d∈D
ρd (cij − bij − xij)

≥ 0

d2hij

db2ij
=

2(1 + xij)
1+aij − 2

∑

d∈D
ρd (cij − bij − xij)

3 ≥ 0

d2hij

daijdbij
=

ln(1 + xij)(1 + xij)
1+aij

∑

d∈D
ρd (cij − bij − xij)

2 .

So that the determinant of the Hessian is necessarily non-negative, i.e. (d2hij/da
2
ij) · (d2hij/db

2
ij)−

(d2hij/daijdbij)
2 ≥ 0.

3. This was done assuming that the link capacity was 45 Mbps and that packets have an average size of
500 Bytes, i.e., 4000 bits. Since 250 packets of 4000 bits are contained in 1 Mbit, the packet delay values of
Figure 1 are multiplied by 250 to obtain the average delay per Mbit.

4. Points extracted from the realistic plot provided in Eijl (2002) and reported in Figures 1 and 5(a).

5. One can take for example theories that make different hypotheses about the stochastic arrival and pro-
cessing time of packets in a router in order to make conclusions about a router’s transmission delay function.
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Appendix A Proof of Proposition 3.1

This result is obtained by showing that the NP-complete 3-SAT problem can be reduced to verifying whether

max
ξ∈Uξ

n
∑

i=1

hi(xi, ξ) ≥ 0

is true or not.

3-SAT Problem Let W be a collection of disjunctive clauses W = {w1, w2, ..., wM} on a finite set of variables
V = {v1, v2, ..., vN} such that |wm| = 3 ∀i ∈ {1, ...,M}. Let each clause be of the form w = vi ∨ vj ∨ v̄k,

where v̄ is the negation of v. Is there a truth assignment for V that satisfies all the clauses in W?

Given an instance of the 3SAT Problem, we can construct the following optimization problem

maximize
ξ

M
∑

m=1

hm(xm, ξ)− 1 (13a)

subject to 0 ≤ ξk ≤ 1 , ∀ k ∈ {1, ..., N} , (13b)

where hm(xm, ξ) := max{ξi; ξj ; 1−ξk} if the m-th clause is wm = vi∨vj ∨ v̄k. It is straightforward to confirm
that Uξ is a polyhedron here (actually a simple box) and that each hm(xm, ξ) is non-concave in ξ. More

importantly, we have that the answer to the 3-SAT problem is positive if and only if the optimal value of

problem (13) achieves an optimal value greater or equal to zero.

Appendix B Proof of Proposition 3.4

Let the feasible set X be represented using the following set of convex constraints:

gi(x) ≤ 0 ∀ i = 1, 2, . . . ,M ,

where each gi(x) is a convex function of x. Let also h̄(x) := maxξ∈Uξ

∑

i hi(xi, ξ) capture the objective

function of problem (1). Given that, based on by Condition 1, it is well known that an optimal solution

exists for problem (1), it is also well known that it must be possible to pair such an optimal solution x∗ with
a set of values λ∗

i that satisfies the Karush-Kuhn-Tucker conditions:

λ∗
i ≥ 0 ∀ i = 1, 2, . . . ,M

gi(x
∗) ≤ 0 ∀ i = 1, 2, . . . ,M

λ∗
i gi(x

∗) = 0 ∀ i = 1, 2, . . . ,M

0 ∈ ∂h̄(x∗) +
∑

i

λ∗
i ∂gi(x

∗) ,

where ∂fi(x) and ∂gi(x) are the sets of subgradients of h̄(x) := maxξ∈Uξ

∑

i hi(xi, ξ) and gi(x) respec-

tively. Given Condition 1, we must have that the maxξ∈Uξ

∑

i hi(x
∗
i , ξ) =

∑

i hi(x
∗
i , ξ

∗) for some ξ∗ ∈ Uξ.

Since the maximum is achieved and given conditions 2 and 3, the set ∂h̄(x) must therefore be the convex

hull of all v(ξ̄) := [h′
1(x

∗
1, ξ̄), h

′
2(x

∗
2, ξ̄), . . . , h

′
n(x

∗
n, ξ̄)]

T vectors such that ξ̄ ∈ Uξ achieves the supremum.
Let ∇h̄(x∗) ∈ ∂h̄(x∗) be the right convex combination of these v(ξ̄)’s that together with the M -tuplet

(∇g1(x
∗),∇g2(x

∗), . . . ,∇gM (x∗)), with each ∇gi(x
∗) ∈ ∂gi(x

∗), satisfies the following equality

∇h̄(x∗) = −

M
∑

i=1

λi∇gi(x
∗) .

Since for any ξ̄ ∈ Uξ, Condition 4 ensures that the derivatives h′
i(x

∗
i , ξ̄) are in the interval [f̂ ′

i(x
∗
i ), f

+
i

′
(x∗

i )],

the fact the i-th term of ∇h̄(x∗), referred below as ∇ih̄(x
∗), is a convex combination of these derivatives
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ensures that if we construct some

ᾱi :=
∇ih̄(x

∗
i )− f̂ ′

i(x
∗
i )

f+
i

′
(x∗

i )− f̂ ′
i(x

∗
i )

we have that 0 ≤ ᾱi ≤ 1 for all i.

We finalize the proof by showing that if one chooses Uα to be such that ᾱ is the unique optimizer of

maxα∈Uα

∑

i αif
+
i (x∗

i )+ (1−α)f̂i(x
∗
i ) , then the optimal solution of problem (3) is necessarily x∗. Note that

this condition is easily satisfied with Uα := {α ∈ [0, 1]n|0 ≤ αi ≤ ᾱi} when f+
i (xi) > f̂i(xi) for all x ∈ X but

can also be satisfied in many other ways.

We now verify that (x∗, λ∗
1, . . . , λ

∗
m) satisfies the KKT conditions of problem (3) when ᾱ is the unique

optimizer of maxα∈Uα

∑

i αif
+
i (x∗

i ) + (1 − α)f̂i(x
∗
i ). In fact, only the last of the KKT condition must be

verified. Since ᾱ is the unique optimizer, the condition reduces to

0 ∈















ᾱ1f̂1(x
∗
1) + (1 − ᾱ1)f

+
1

′
(x∗

1)

ᾱ2f̂2(x
∗
2) + (1 − ᾱ2)f

+
2

′
(x∗

2)
...

ᾱnf̂n(x
∗
n) + (1− ᾱn)f

+
n

′
(x∗

n)















+
∑

i

λ∗
i ∂gi(x

∗) ,

which is equivalent to

0 ∈ ∇h̄(x∗) +
∑

i

λ∗
i ∂gi(x

∗) .

The latter is known to be satisfied using the previously constructed M -tuplet (∇g1(x
∗), ∇g2(x

∗), . . . ,

∇gM (x∗)).

Given that Condition 2 implies that the functions fi
+(xi) and f̂i(xi) are strictly convex in xi, it is therefore

the case that the objective function of problem (3) is strictly convex and that its optimal solution is unique.

This allows us to confirm that x∗ is necessarily the only solution to the KKT conditions and will therefore

necessarily be returned when solving problem (3).This concludes our proof.

Appendix C Conjugate functions needed for Corollary 3.1

When the uncertainty set for α takes the form of Uα(Γ), one can simply use problem (6) with B =
[

1

−1

]

[ 1 1 . . . 1 ]
and b = [ Γ −Γ ]T . Note also that problem (6) reduces to

minimize
x∈X ,y,z,u+,u−

∑

i

yi + Γ(u+ − u−)

subject to yi ≥ f̂i(x)

yi + zi ≥ f+
i (x)

u+ − u− = zi, ∀ i

u+ ≥ 0, u− ≥ 0 ,

where u+ ∈ R and u− ∈ R. One can then simply use u ∈ R to replace u+ − u− and each zi thus making the

problem reduce to problem (6).

Appendix D Verifying Conditions 1 to 4 for Problem (11)

Indeed, while conditions 1 and 2 can be directly verified, the last two can be confirmed by studying all the

relevant derivatives. First, since
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dhij(xij , aij , bij)

dxij

=
(1 + aij)(1 + xij)

aij

∑

d∈D
ρd(cij − bij − xij)

+
(1 + xij)

1+aij − 1
∑

d∈D
ρd(cij − bij − xij)2

d2hij(xij , aij , bij)

dx2
ij

=
aij(1 + aij)(1 + xij)

aij−1

∑

d∈D
ρd(cij − bij − xij)

+
2(1 + aij)(1 + xij)

aij

∑

d∈D
ρd(cij − bij − xij)2

+
2(1 + xij)

1+aij − 2
∑

d∈D
ρd(cij − bij − xij)3

,

we therefore have that f̂ij and f+
ij are both convex since in both cases âij and âij + āij are greater than zero

and since each xij belongs to the interval [0, cij − b̂ij − b̄ij ]. Finally, Condition 4 is also satisfied with Uab(Γ)
since we have that

d2hij(xij , aij , bij)

dxijdaij
=

(1 + (1 + aij) ln(1 + xij))(1 + xij)
1+aij

∑

d∈D
ρd(cij − bij − xij)

+
ln(1 + xij)(1 + xij)

1+aij

∑

d∈D
ρd(cij − bij − xij)2

≥ 0

d2hij(xij , aij , bij)

dxijdbij
=

aij(1 + aij)(1 + xij)
aij−1

∑

d∈D
ρd(cij − bij − xij)2

+
2(1 + xij)

1+aij − 2
∑

d∈D
ρd(cij − bij − xij)3

≥ 0 ,

for similar reasons.
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