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Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2019-24) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
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Abstract: We consider a class of min-max robust problems in which the functions that need to be
robustified can be decomposed as the sum of arbitrary functions. This class of problems includes
many practical problems such as the lot-sizing problem under demand uncertainty. By considering a
Lagrangian relaxation of the uncertainty set we derive a tractable approximation that we relate with
the classical dualization approach introduced by Bertsimas and Sim (2004) and also with the exact
min-max approach. Moreover we show that the dual Lagrangian approach coincides with the affine
approximation of the uncertainty set.

The dual Lagrangian approach is applied to a lot-sizing problem, which motivated our work, where
demands are assumed to be uncertain and to belong to the uncertainty set with a budget constraint
for each time period introduced by Bertsimas and Sim (2003, 2004). This approach is also related to
two classical robust approaches for this problem, the exact min-max approach introduced by Bienstock
and Özbay (2008) and the dualization approach from Bertsimas and Thiele (2006).

Using the insights provided by the interpretation of the Lagrangian multipliers in the proposed
dual model as penalties, two heuristic strategies, a new Guided Iterated Local Search heuristic and
a Subgradient Optimization method, are designed to solve more complex lot-sizing problems where
additional practical aspects, such as setup costs, are considered. Computational results show the
efficiency of the proposed heuristics which provide a good compromise between the quality of the
robust solutions and the running time.

Keywords: Lagrangian relaxation, robust optimization, lot-sizing, demand uncertainty, affine approx-
imation, budgeted uncertainty polytope
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1 Introduction

Dealing with uncertainty is very important when solving practical problems where some decisions

need to be taken before the real data are revealed. This is the case of inventory management problems

where some decisions, as the quantities to produce or to order, need to be taken without knowing the

exact demands. A recent and popular approach to deal with such uncertain optimization problems

is Robust Optimization (RO). RO was first introduced by Soyster [27] who proposed a model for

linear optimization such that constraints must be satisfied for all possible data values. Ben-Tal and

Nemirovski [10], El Ghaoui and Lebret [19], Bertsimas and Sim [13, 14] propose computationally

tractable approaches to handle with uncertainty and avoid excessive conservatism. For a recent paper

on less conservative variant of RO see Roos and den Hertog [25]. For general reviews on RO see [8, 11].

Although current research on RO is being very profitable and different approaches have been

proposed, there is a large gap on research devoted to applying that research to complex problems. That

is the case of robust min-max problems that includes many practical production planning problems with

demand uncertainty which motivated our work. While deterministic production planning problems

have been extensively studied both from a practical and a theoretical viewpoint [24], robust applications

are still scarce. Two seminal works on robust inventory models are the study of robust basestock levels,

by Bienstock and Özbay [16], where a decomposition approach to solve the true min-max problem

to optimality is proposed (henceforward denoted by BO approach), and the dualization approach

introduced by Bertsimas and Thiele [15] (henceforward denoted by BT approach) to inventory problems

adapted from the general approach proposed by Bertsimas and Sim [14]. The two approaches have

been applied to more complex problems. The decomposition approach for the min-max problem using

the budget polytope was also investigated in [4] for a larger class of robust optimization problems where

the first-stage decisions can be represented by a permutation, while the general decomposition solution

procedure, regarded as row-column generation, is described for general robust optimization problems

in [30]. The BO approach was also used to solve more complex inventory problems, for example, the

robust maritime inventory problem [2], and a production and inventory problem with the option of

remanufacture [7]. The dualization approach is also very popular since it easily leads to tractable

models. For an extension of the Bertsimas and Thiele [15] results to a production and inventory

problem with remanufacture, where uncertainty is considered on returns and demands, see [28]. For

the application of the dualization approach to a robust inventory routing problem see [26].

Solving the true min-max problem to optimality, using for instance a decomposition algorithm, can

be impractical for many inventory problems and the dualization approach may produce too conser-

vative solutions. In order to circumvent both the hardness of solving the min-max problem and the

conservativeness of the dualization approach, other approaches have been proposed such as the use of

affine decision rules [9, 17]. In spite of being a conservative approaximation and, in some cases, its

degree of conservativeness can be measured, see [23], the use of affine decision rules can also lead to op-

timal solutions, see [11, 12, 22]. Furthermore, for special uncertainty sets the use of affine decision rules

leads to computationally tractable affinely adjustable robust counterpart (AARC) models. In partic-

ular, when the uncertainty set is a polyhedron the resulting AARC model is linear, see [9]. Tractable

AARC models can also be obtained for lot-sizing problems when the demands are uncertain and belong

to the uncertainty set with a budget constraint for each time period. However, when additional aspects

are included in the lot-sizing problems, such tractable models can become computationally hard to

solve even for small size instances. The results present in this paper express how difficult can be to

solve the AARC model when setup costs are considered in the basic lot-sizing problem. Such results

justify the need of developing simpler tractable models as well as the use of approximation heuristic

schemes. For a survey on adjustable robust optimization see [29]. For a deeper discussion of other

conservative approximations for the min-max problem obtained through relaxations of the uncertainty

set we refer to [5] and [21].

For many practical production planning or inventory management problems some data, like de-

mands, are not known in advance. Moreover several decisions need to be taken before the data is

revealed. Frequently, such decisions are taken before the start of the planning horizon and are not
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adjustable to the data when it is revealed. For instance, that is the case of decisions such as the amount

to produce of each item in each time period, when complex aspects such as setups, sequence dependent

changeovers, etc. are present [24]. Adjusting the production to the known demands can imply new

setups, create different sequences of products that may not be implementable. Another example is the

inventory management, such as in maritime transportation, where the distribution must be planned in

advance and can hardly be adjusted to the demands given the long transportation times. Motivated

by such applications we focus on robust problems in which the functions to be robustified can be

decomposed as the sum of arbitrary functions. This class of problems was also investigated in [18].

The authors proposed a new robust formulation for generic uncertainty sets where it is assumed that

the functions to be robustified are decomposed into the sum of functions where each function involves

a separate nonadjustable variable, which is not the case we consider in this paper.

Contributions

In this paper, we propose a reformulation of the inner maximization subproblem occurring in a min-max

model, known as adversarial problem, for a class of RO problems with decomposable functions. This

reformulation starts by creating copies of both the uncertain variables and the uncertainty set in a way

that the uncertainty set becomes constraint-wise independent and then additionally imposes a set of

constraints enforcing that all the copies take identical values. By relaxing those constraints in the usual

Lagrangian way, we obtain a mixed integer linear model, called Lagrangian dual model, that allows us

to directly relate the min-max approach with the dualization approach (obtained when such constraints

are ignored). The obtained model allows us to derive efficient heuristic approximation schemes that

use the information from the Lagrangian multipliers to obtain solutions with lower true costs.

Our main contributions are the following:

1. Exploit the Lagrangian relaxation of the uncertainty set to obtain a tractable model for a class

of RO min-max problems in which the function to be robustified is decomposable in the sum of

the maximum of affine functions.

2. Provide a better theoretical understanding of the relations between several approaches for RO

problems with decomposable functions. In particular we show that our Lagrangian dual model

coincides with the AARC model and that the classical dualization approach results from the

Lagrangian dual approach with all the Lagrangian multipliers null.

3. Provide computational results for the lot-sizing problem with setups showing the impact of the
setup costs on the several approaches considered. In particular, when the setup costs increase,

the quality of the solutions obtained by the BT approach is rapidly degraded. This behaviour

was not observed when using the proposed Lagrangian dual model; For large setup costs, the BT

approach provides an optimal bound that is up to 28% larger than the optimal solution provided

by the BO approach, while an optimal choice of multipliers can reduce it to near 6%. A similar

reduction on the gap can be achieved quickly by solving the Lagrangian dual model with the

multipliers fixed to their optimal value in the linear relaxation.

4. Design efficient heuristic schemes. In particular, we propose a new Guided Iterated Local Search

heuristic and a Sugbradient Optimization method that explicitly use the interpretation of the

Lagrangian multipliers as penalties. Comparing with other heuristics, for large size instances,

the Subgradient Optimization method that we propose runs in a shorter time, and it was able

to find solutions with true costs that are i) strictly better for 91.8% of the instances used and ii)

up to 18.4% better than those obtained by the BT approach.

The paper is organized as follows. In Section 2 a dual Lagrangian approach is presented for RO

problems with decomposable functions and its relation with the known approaches is established. The

dual Lagrangian approach is applied to the robust inventory problem in Section 3. Heuristics based

on the interpretation of the Lagrangian multipliers, including a new Guided Iterated Local Search

heuristic and a Subgradient Optimization method are also presented in Section 3. Computational

tests are reported in Section 4 and final conclusions are given in Section 5.
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2 Lagrangian duality for RO problems with decomposable functions

Consider the min-max robust model

R∗ = min
u∈U

R(u)

with

R(u) = g(u) + max
ξ∈Ω

∑
t∈T

ft(u, ξ)

where U is a feasible set, Ω ⊆ Rn is a polyhedral uncertainty set, T = {1, . . . , n} and ft : U × Ω→ R
is an arbitrary function. Variables u represent non-adjustable decisions. The decision maker chooses

a vector u while an adversary determines the uncertain vector ξ ∈ Ω that is most unfavorable to the

decision u ∈ U. Problem R(u) is known as the adversarial problem [16] and it gives what we call the

true cost for the vector u.

Problem R∗ can be rewritten as a two-stage robust problem by using adjustable variables θ as

follows. Let for t ∈ T, θt(ξ) : Ω→ R.

R∗ = min
u,θ(·)

max
ξ∈Ω

g(u) +
∑
t∈T

θt(ξ)

s.t. θt(ξ) ≥ ft(u, ξ), ξ ∈ Ω, t ∈ T, (1)

u ∈ U.

For particular functions of θt(ξ), conservative approaches of R∗ are obtained. In particular, the

static approach proposed by Bertsimas and Sim [14] considers the case where θt(ξ) = θt, t ∈ T, that is,

C∗ = min
u,θ

g(u) +
∑
t∈T

θt

s.t. θt ≥ ft(u, ξ), ξ ∈ Ω, t ∈ T, (2)

u ∈ U.

It is known (e.g. [16]) that the gap between the two approaches can be large. However, there are

cases where there is no gap between these approaches, that is, R∗ = C∗. In particular, this equality

holds when the uncertainty region Ω is the Cartesian product of sets Ξt, Ω = Ξ1 × · · · × Ξn, and each

function ft(u, ξ) in the constraints (2) is only affected by the terms of ξ which lie in Ξt:

R∗ = min
u∈U

max
ξ∈Ω

g(u) +
∑
t∈T

ft(u, ξt) = min
u∈U

g(u) +
∑
t∈T

max
ξt∈Ξt

ft(u, ξ) = C∗ .

Here we explore this property to derive a Lagrangian relaxation of the adversarial problem. First,

for each constraint t ∈ T, we create a list of copies {ζt}t∈T of the variables ξ and a list of respective

uncertainty sets {Ωt}t∈T , such that each Ω ⊆ Ωt and ∩t∈TΩt = Ω (e.g. for simplicity one can use

Ωt := Ω). We further impose a set of constraints enforcing that all the copies must be equal. This

leads to the following exact reformulation of R(u):

R(u) = g(u) + max
ζ1,...,ζn

∑
t∈T

ft(u, ζ
t)

s.t. ζt = ζ1, t = 2, ..., n, (3)

ζt ∈ Ωt, t ∈ T.

Remark 1 In relation to the set of equalities (3), it is important to notice that one could impose

additional redundant equalities ζt = ζ` for t 6= ` or replace them with other equivalent sets of equations.

For all those cases, the process derived next still holds.
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Attaching Lagrangian multipliers λt ∈ Rn to each constraint (3) and dualizing these constraints in

the usual Lagrangian way, the following Lagrangian relaxation of R(u) is obtained

LR(u, λ) := g(u) + max
ζ1,...,ζn

∑
t∈T

ft(u, ζ
t)−

n∑
t=2

(λt)>(ζt − ζ1)

s.t. ζt ∈ Ωt, t ∈ T.

The multipliers λ penalize the use of different uncertainty vectors for different constraints. Imposing

that λ1 := −
∑n
t=2 λ

t this model is equivalent to

LR(u, λ) := g(u) + max
ζ1,...,ζn

∑
t∈T

ft(u, ζ
t)−

∑
t∈T

(λt)>ζt

s.t. ζt ∈ Ωt, t ∈ T.

Using the epigraph reformulation, LR(u, λ) can be written as follows.

LR(u, λ) = g(u) + min
θ1,...,θn

∑
t∈T

θt

s.t. θt ≥ ft(u, ζt)− (λt)>ζt, ζt ∈ Ωt, t ∈ T.

For a given u and λ, the minimization problem in LR(u, λ) can be separated into n independent

subproblems, one for each t ∈ T :

LRt(u, λ
t) = min

θt
θt

s.t. θt ≥ ft(u, ζt)− (λt)>ζt, ζt ∈ Ωt

and LR(u, λ) = g(u) +
∑n
t=1 LRt(u, λ

t).

The Lagrangian dual problem is DLR(u) = min
λ

LR(u, λ). Hence we have R(u) ≤ DLR(u).

Denoting by D the problem D = min
u∈U

DLR(u), the following relation holds

R∗ = min
u∈U

R(u) ≤ min
u∈U

DLR(u) = D.

The Lagrangian dual problem D can be written as follows:

D = min
u,λ,θ

g(u) +

n∑
t=1

θt

s.t. θt ≥ ft(u, ζt)− (λt)>ζt, ζt ∈ Ωt, t ∈ T,

λ1 = −
n∑
t=2

λt,

u ∈ U.

Let D(λ) = min
u∈U

LR(u, λ). Hence D = min
λ

D(λ), and for given multipliers λ,

D(λ) =min
u,θ

g(u) +

n∑
t=1

θt

s.t. θt ≥ ft(u, ζt)− (λt)>ζt, ζt ∈ Ωt, t ∈ T,
u ∈ U.

Noticing that C∗ is obtained with λ = 0 and Ωt = Ω, we have the following relation.

Theorem 1 When Ωt = Ω, we have that R∗ ≤ D = C∗.

Proof. R∗ = min
u∈U

R(u) ≤ min
u∈U

min
λ

LR(u, λ) = D = min
λ

D(λ) ≤ D(0) ≤ C∗.
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2.1 Dualization versus affine approximation

It is known that less conservative approaches than C∗ to approximate R∗ can be obtained assuming

that θt(ξ) is the affine approximation, θt(ξ) = νt0 + (νt)>ξ, with νt0 ∈ R and νt ∈ Rn. The resulting

model, called Affinely Adjustable Robust Counterpart (AARC) model [21] is

AARC = min
u,ν0,ν

g(u) + d

s.t. d ≥
n∑
t=1

(
νt0 + (νt)>ξ

)
, ξ ∈ Ω,

νt0 + (νt)>ξ ≥ ft(u, ξ), ξ ∈ Ω, t ∈ T,
u ∈ U

and it holds R∗ ≤ AARC ≤ C∗.

Next we establish the main result of this section stating that the Lagrangian dual bound D obtained

with Ωt = Ω, t ∈ T coincides with the affine approximation AARC.

Theorem 2 When Ωt = Ω, t ∈ T we have that AARC = D.

Proof. When Ωt = Ω, model D can be obtained from AARC by replacing νt0 by θt, ν
t by λt and

adding the constraint
∑n
t=1 ν

t = 0, hence AARC ≤ D.

To prove that AARC ≥ D, we can show that given any feasible solution (ν0, ν) of AARC that

achieves a finite objective value, it is possible to construct a feasible solution for D that achieves the

same objective value. To do so, we let m = maxξ∈Ω

∑n
t=1(νt)>ξ and set λ1 = −

∑n
t=2 ν

t, λt = νt,

t = 2, . . . , n, and θ1 = ν1
0 + m, θt = νt, t = 2, . . . , n. Clearly, the objective value for D is the same as

achieved in AARC:

g(u) +

n∑
t=1

νt0 + max
ξ∈Ω

n∑
t=1

(νt)>ξ = g(u) +

n∑
t=1

νt0 +m = g(u) +

n∑
t=1

θt,

and the solution (θ, λ) is feasible for D, since for the constraint t = 1 (the remaining constraints are

easily shown to be equivalent) and for each ξ ∈ Ω, we have

θ1 + (λ1)>ξ = ν1
0 +m−

n∑
t=2

(νt)>ξ ≥ ν1
0 + (ν1)>ξ ≥ f1(u, ξ)

where the first inequality follows from the definition of m since

m = max
ξ∈Ω

n∑
t=1

(λt)>ξ ≥
n∑
t=1

(λt)>ξ, ∀ξ ∈ Ω ⇒ m−
n∑
t=2

(λt)>ξ ≥ (λ1)>ξ, ∀ξ ∈ Ω

and the second inequality follows from the feasibility of (ν0, ν) in AARC.

2.2 Duality for the B&T budget set and for the maximum of affine functions

Here we consider the particular case that motivated our work, where functions ft(u, ζ
t) are given by

the maximum of affine functions. We consider the uncertainty set used in Bertsimas and Thiele [15]

Ω = {ξ ∈ [−1, 1]n |
t∑

j=1

|ξj | ≤ Γt, t ∈ T}.

where a budget constraint is imposed for each time period and we refer to this set as the B&T

budget set.
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We assume that ft(u, ζ
t) = max

k∈K
f̂kt (u, ζt) where K is a finite set of indexes and where

f̂kt (u, ζt) = L̄kt (u) +
∑
j∈T

atkj
(
µj + δjζ

t
j

)
= Lkt (u) +

∑
j∈T

atkj δjζ
t
j , t ∈ T, k ∈ K,

where atkj ∈ R, for all k ∈ K, j, t ∈ T , L̄kt (u) : U → R is an affine function, and Lkt (u) = L̄kt (u) +∑
j∈T a

tk
j µj .

When Ωt = Ω, the Lagrangian dual problem D takes the form

D =min
u,θ,λ

g(u) +

n∑
t=1

θt

s.t. θt ≥ Lkt (u) +

∑
j∈T

atkj δjζ
t
j −

∑
j∈T

ζtjλ
t
j

 , ζt ∈ Ωt, k ∈ K, t ∈ T,

λ1 = −
n∑
t=2

λt,

u ∈ U.

After equivalently replacing ζt with ζt+ − ζt− with (ζt+, ζt−) ∈ Ω̄t such that

Ω̄t =
{

(ζt+j , ζt−j ) ∈ Rt × Rt |
j∑
`=1

(ζt+` + ζt−` ) ≤ Γj , 1 ≤ j ≤ t, (4)

ζt+j + ζt−j ≤ 1, 1 ≤ j ≤ t, (5)

ζt+j , ζt−j ≥ 0, 1 ≤ j ≤ t } ,

one can apply linear programming duality to reformulate each robust constraint and obtain an equiv-

alent linear program for D:

D = min
u,λ,θ,q,r

g(u) +

n∑
t=1

θt

s.t. θt ≥ Lkt (u) +

t∑
j=1

qtkj Γj +

t∑
j=1

rtkj , t ∈ T, k ∈ K, (6)

t∑
`=j

qtk` + rtkj ≥ atkj δj − λtj , j, t ∈ T : j ≤ t, k ∈ K, (7)

t∑
`=j

qtk` + rtkj ≥ −atkj δj + λtj , j, t ∈ T : j ≤ t, k ∈ K, (8)

qtkj , r
tk
j ≥ 0, j, t ∈ T : j ≤ t, k ∈ K, (9)

λ1 = −
n∑
t=2

λt, (10)

u ∈ U. (11)

where we associated the dual variables qtkj and rtkj to the constraints of the inner problem in con-

straints (4) and (5), respectively.

In practice, when T is reasonably small, it can be interesting to rewrite D in a lower dimensional

space by eliminating variables rtkj .



Les Cahiers du GERAD G–2019–24 7

Proposition 1 Projecting out variables rtkj , j, t ∈ T : j ≤ t, k ∈ K model D can be written as follows.

D = min
u,λ,θ,q,r

g(u) +

n∑
t=1

θt

s.t. θt ≥ Lkt (u) +

t∑
j=1

qtkj Γj −
t∑

j=1

|πtj |
t∑
`=j

qtk` +

t∑
j=1

πtj(a
tk
j δj − λtj),

πti ∈ {−1, 0, 1}, t ∈ T, k ∈ K, (12)

qtkj ≥ 0, j, t ∈ T : j ≤ t, k ∈ K.

Proof. Using Fourier-Motzkin elimination, we first project out variables rtkt . From (7), (8) and (9) we

have for each k ∈ K, respectively,

rtkt ≥ −qtkt + atkt δt − λtt,
rtkt ≥ −qtkt − atkt δt + λtt,

rtkt ≥ 0.

Combining (6) with these inequalities we obtain

θt ≥ Lkt (u) +

t∑
j=1

qtkj Γj +

t−1∑
j=1

rtkj − |πtt |qtkt + πtt(a
tk
t δt − λtt), πtt ∈ {−1, 0, 1}, t ∈ T, k ∈ K.

By iteratively eliminating rtkj from j = t− 1 until j = 1 and using (7), (8) and (9) we obtain (12).

Alternatively, one might improve numerical efficiency, albeit at the price of precision, by using a

simpler set Ω̂t, such that Ωt ⊆ Ω̂t. In particular, the following form is a natural choice (see Remark 2 ):

Ω̂t = {ζt ∈ [−1, 1]n |
t∑

j=1

|ζtj | ≤ Γt},

and leads to the following relation:

R∗ ≤ AARC = D ≤ D̂ ≤ D̂(0),

where D̂ and D̂(λ) denote respectively D and D(λ) by considering Ω̂t instead of Ωt.

Remark 2 In the case of the B&T budget set, the set of constraints in the adversarial problem is

given by {
(ζ1, . . . , ζn) ∈ [−1, 1]n | ζt = ζ`, t, ` ∈T, t 6= `, (13)∑̀

j=1

|ζtj | ≤ Γt, t, ` ∈ T} (14)

where constraints (14) for ` < t are redundant in the presence of the constraints (13). However, when

constraints (13) are relaxed, constraints (14) are no longer redundant for ` < t and the corresponding

Lagrangian relaxations may differ.
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Proposition 2 Given any fixed λ such that
∑
t∈T λ

t = 0 and letting αtkj (λ) =| atkj δj−λtj | for all j ∈ T,
the value of D is bounded above by

D̂(λ) = min
u

g(u) +

n∑
t=1

θt

s.t. θt ≥ Lkt (u) +Akt (λ), t ∈ T, k ∈ K,
u ∈ U,

where

Akt (λ) =

bΓtc∑
`=1

αtkj(`)(λ) + (Γt − bΓtc)αtkj(dΓte)(λ)

with αtkj(`)(λ) is the `th largest value among the values αtk1 (λ), . . . , αtkn (λ).

The proof is similar to the proof of Proposition 1 in [14] so it will be omitted.

Remark 3 In all the approximation models for R∗ presented in this section the cost associated to each

first-stage solution u is overestimated. Hence, those approaches may lead to a poor bounds based on

good solutions and the following relation holds

R∗ = R(u∗) ≤ R(uJ) ≤ J,

where uJ denotes the first-stage solution obtained with the model J, and J can be D, D̂ or D̂(λ).

3 The case of a robust inventory problem

In this section we particularize the results of the previous section for the case of the robust inventory

problem that motivated this study and relate the results with those known from the literature. We

consider lot-sizing problems defined over a finite time horizon of n periods and define T = {1, . . . , n}.
For each time period t, t ∈ T, the unit holding cost ht, the unit backlogging cost bt and the unit

production cost ct are considered. The demand in time period t is given by dt. We define xt as the

inventory at the beginning of period t, x1 is the initial inventory level. In case xt is negative it indicates

a shortage. Variables ut ≥ 0 indicate the quantity to produce in time period t. When the demand dt
is known and fixed we obtain a basic deterministic lot-sizing problem that can be modelled as follows:

min
u,x

n∑
t=1

(ctut + max{htxt+1,−btxt+1})

s.t. xt+1 = x1 +

t∑
j=1

(uj − dj) t ∈ T,

ut ≥ 0, t ∈ T.

If xt+1 ≥ 0, then max{htxt+1,−btxt+1} gives the holding cost htxt+1, otherwise it gives the backlogging

cost −btxt+1 at the end of time period t.

Here we consider the case where the demands dt are defined by dt := µt + δtzt, for each t ∈ T,
where µt and δt are the nominal demand and the maximum allowed deviation in period t, respectively,

and the uncertain variables z belong to the B&T budget set:

Ω = {z ∈ [−1, 1]n |
t∑

j=1

|zj | ≤ Γt, t ∈ T}.

We assume that

0 ≤ Γ1 ≤ Γ2 ≤ · · · ≤ Γn, Γt ≤ Γt−1 + 1, 1 < t ≤ n.
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The results presented in this section can easily be extended to accommodate other practical aspects

such as setup costs and/or other production constraints. In that case we may write the objective

function as

min
u,y

n∑
t=1

(ctut + Styt + max{htxt+1,−btxt+1}) (15)

where yt is the setup variable indicating whether there is a production setup in time period t, and St
is the setup cost in time period t. A new set of constraints is also considered with

ut ≤ Ptyt, yt ∈ {0, 1}, t ∈ T, (16)

where Pt is an upper bound on the production quantity at period t. In order to keep the notation easy,

and since all the theoretical results presented hold for both the cases with and without setups, in the

derivation of the theoretical results we consider only the simplest case where no setup costs (and no

setup variables) are considered while for the computational aspects (Sections 3.3 and 4) the general

case with setups is considered.

3.1 The Bienstock and Özbay and the Bertsimas and Thiele approaches

First, we review two of the main approaches for robust inventory problems: the decomposition ap-

proach introduced by Bienstock and Özbay [16] to solve the problem written as a min-max problem

(BO approach) and the dualization approach employed by Bertsimas and Thiele [15] (BT approach).

Bienstock and Özbay [16] consider the robust inventory problem as a min-max problem where, for a

given production vector u, the demand dt is picked by an adversary problem. The min-max formulation

is the following:

R∗ = min
u≥0

R(u)

where

R(u) = max
x,z

n∑
t=1

(ctut + max{htxt+1,−btxt+1}) (17)

s.t. xt+1 = x1 +

t∑
j=1

(uj − µj − δjzj), t ∈ T,

t∑
j=1

|zj | ≤ Γt, t ∈ T,

zt ∈ [−1, 1], t ∈ T.

Problem (17) corresponds to the general adversarial problem introduced in Section 2.2 with

K = {1, 2}, L1
t (u) = ht

(
x1 +

∑t
j=1(uj − µj)

)
, L2

t (u) = −bt
(
x1 +

∑t
j=1(uj − µj)

)
, g(u) =

∑
t∈T ctut

and U = Rn+.

Bienstock and Özbay [16] solve the min-max problem using a decomposition approach where, in

the master problem, a production planning problem is solved for a subset of demand scenarios, while in

the subproblem (adversarial problem) the worst case scenario is found for the current production plan

and added to the master problem. A FPTAS is given in [4] where a similar decomposition approach

is used and the adversarial problem is solved by dynamic programming.

The dualization approach introduced in [14] was proposed by Bertsimas and Thiele [15] for the

robust inventory problem. The formulation is as follows
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Ĉ∗ = min
u,z

n∑
t=1

(ctut + θt) (18)

s.t. θt ≥ ht

x1 +

t∑
j=1

(uj − µj) +At

 , t ∈ T,

θt ≥ −bt

x1 +

t∑
j=1

(uj − µj)−At

 , t ∈ T,

ut ≥ 0, t ∈ T,

where, for t ∈ T,

At = max
z

t∑
j=1

δjzj

s.t.

t∑
j=1

|zj | ≤ Γt,

zt ∈ [−1, 1].

Notice that this approach is based on the supersets Ω̂t, t ∈ T .

3.2 Lagrangian relaxation based approaches

To derive the Lagrangian relaxation of the adversarial problem (17) we consider, for each time period

t ∈ T, a copy vtj of each variable zj with j ≤ t. That is, we consider new variables vtj ∈ [−1, 1] which

account for the deviation in period j affecting period t, t ≥ j, and impose

vtt = vjt , j, t ∈ T : t < j. (19)

With this set of equalities, constraints
∑t
j=1 |zj | ≤ Γt, t ∈ T are replaced by constraints

∑`
j=1 |vtj | ≤

Γ`, 1 ≤ ` ≤ t ≤ n and the following approximation for the problem R∗ is obtained.

Theorem 3 Model D defined below is a tractable approximation for the problem R∗.

D = min
u,λ,θ,q,p,r,s

∑
t∈T

(ctut + θt) (20)

s.t. θt ≥ L1
t (u) + ht

 t∑
j=1

qt1j Γj +

t∑
j=1

rt1j

 , t ∈ T, (21)

θt ≥ L2
t (u) + bt

 t∑
j=1

qt2j Γj +

t∑
j=1

rt2j

 , t ∈ T, (22)

qt1t + rt1t ≥ (−1)i

δt +

n∑
j=t+1

λjt
ht

 , i ∈ {1, 2}, t ∈ T, (23)

t∑
`=j

qt1` + rt1j ≥ (−1)i
(
δj −

λtj
ht

)
, i ∈ {1, 2}, 1 ≤ j < t, t ∈ T, (24)

qt2t + rt2t ≥ (−1)i

 n∑
j=t+1

λjt
bt
− δt

 , i ∈ {1, 2}, t ∈ T, (25)
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t∑
`=j

qt2` + rt2j ≥ (−1)i
(
λtj
bt

+ δj

)
, i ∈ {1, 2}, 1 ≤ j < t, t ∈ T, (26)

qt1j , r
t1
j , q

t2
j , r

t2
j ≥ 0, 1 ≤ j ≤ t, t ∈ T. (27)

The proof of this theorem is given in Appendix and it follows directly from the application of

the process described in Section 2 to the robust inventory problem. By replacing the sets Ωt by the

supersets Ω̂t we obtain model D̂, that will be used in the heuristics proposed in Section 3.3. Model D̂

corresponds to model D by setting variables qtkj = 0 for all k ∈ {1, 2}, j, t ∈ T : j < t.

Remark 4 The Bertsimas and Thiele model (18) is a C model where Ω is replaced in each constraint (2)

by Ω̂t. Hence, we have the relations D ≤ C∗ ≤ Ĉ∗ and D̂ ≤ D̂(0) ≤ Ĉ∗.

Applying Proposition 1 to the robust inventory problem, model D can be written in a lower

dimension space as follows:

D = min
u,λ,θ,q,p

∑
t∈T

(ctut + θt) (28)

s.t. θt ≥ L1
t (u) + ht

 t∑
j=1

qt1j Γj −
t∑

j=1

|πtj |
t∑
`=j

qt1` +

t−1∑
j=1

πtj

(
δj −

λtj
ht

)
+ πtt

δt +

n∑
j=t+1

λjt
ht

 ,

πti ∈ {−1, 0, 1}, 1 ≤ i ≤ t, t ∈ T, (29)

θt ≥ L2
t (u) + bt

 t∑
j=1

qt2j Γj −
t∑

j=1

|πtj |
t∑
`=j

qt2` +

t−1∑
j=1

πtj

(
δj +

λtj
bt

)
+ πtt

δt − n∑
j=t+1

λjt
bt

 ,

πti ∈ {−1, 0, 1}, 1 ≤ i ≤ t, t ∈ T, (30)

qt1j , q
t2
j ≥ 0, 1 ≤ j ≤ t ≤ n. (31)

Remark 5 The BT model can be obtained through the projected model (28)–(31) by setting λ = 0,

qt1j = qt2j = 0, j, t ∈ T : j < t and qt1t = qt2t .

Although the number of constraints (29) and (30) in the projected model, exponentially increases

with the number n of time periods, most of these inequalities are redundant. In fact, for each

k ∈ {1, . . . , t} such that
∑t
j=1 |πtj | = k, only one inequality (29) and only one inequality (30) are

non dominated for each t ∈ T. The projected model can be solved through a Benders decomposition

approach with a separation algorithm for the constraints (29) and (30) that can easily work by inspec-

tion. However, preliminary results reported in Section 4.1 have shown that many of such constraints

need to be included.

The next proposition provides an efficient way to solve model D̂ when multipliers are fixed and it

will be used in the next section to design efficient heuristics to find solutions with lower true cost.

Proposition 3 For fixed multipliers λ, D̂(λ) is given as follows

D̂(λ) = min
u

n∑
t=1

(ctut + θt)

s.t. θt ≥ ht

x1 +

t∑
j=1

(uj − µj)

+A1
t (λ), t ∈ T,

θt ≥ −bt

x1 +

t∑
j=1

(uj − µj)

+A2
t (λ), t ∈ T,

ut ≥ 0, t ∈ T,
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with

A1
t (λ) =

bΓtc∑
`=1

αtj(`) + (Γt − bΓtc)αtj(dΓte),

A2
t (λ) =

bΓtc∑
`=1

βtj(`) + (Γt − bΓtc)βtj(dΓte),

where αtj =| −htδj + λtj | for 1 ≤ j < t, αtt =| −htδt −
∑n
j=t+1 λ

j
t |, βtj =| btδj + λtj | for 1 ≤ j < t,

and βtt =| btδt −
∑n
j=t+1 λ

j
t |, where αtj(`) is the `th largest value among αt1, . . . , α

t
t and βtj(`) is the `th

largest value among βt1, . . . , β
t
t .

The proof is a direct application of Proposition 2 so it will be omitted.

3.3 Heuristic schemes to improve the quality of solutions

Among all the models considered in this paper, model D, corresponding to the AARC approach, is the

one that provides bounds closer to R∗. However, from the practical point of view, more relevant than

obtaining a good bound is to obtain solutions u such that R(u) is close to R∗, that is, solutions with

the best possible true cost. Hence, in this section, we develop iterative heuristic solution approaches

based on the interpretation of the Lagrangian multipliers as penalties for constraints violation to obtain

solutions with lower true cost. To do so, the value of the uncertain variables vjt with 1 ≤ t ≤ j ≤ n

must be computed for a given vector of multipliers at each iteration. Such computations can easily be

done by inspection in model D̂ but not in model D, thus we use model D̂ instead of model D for the

proposed heuristics. Furthermore, model D̂ is computationally easier to solve when the multipliers are

fixed (see Proposition 3) and the results presented in the computational section indicate that there are

no significant differences between the true cost of the solutions provided by both models D̂ and D for

the instances solved to optimality.

Notice that model D̂ (and also model D) is a pure linear model, therefore one may expect to solve

it to optimality even for large size models. However, when other aspects are included, the model

can become very large quickly, thus using directly such model can be prohibitive. In order to take

advantage of this model we derive heuristic schemes that iteratively fix the value of the new variables

(multipliers) leading to easier subproblems. The proposed heuristics are tested using the inventory

problem when production setup costs are considered, that is, when the objective function is given

by (15) and the set of constraints (16) is added.

3.3.1 Guided Iterated Local Search algorithm

The first heuristic approach that we propose is called Guided Iterated Local Search (GILS). The GILS

heuristic can easily be used to solve other complex problems and it is inspired in the classical Iterated

Local Search (ILS) heuristic based on the local branching idea of Fischetti and Lodi [20]. ILS heuristics

have performed well in complex inventory problems with uncertainty, such as the Maritime Inventory

Routing problem [1, 2] and the Production Inventory problem [3].

The main idea of the ILS heuristic is to restrict the search space of some integer variables (setup

variables in our case) to a neighbourhood of a given solution. For a given positive integer parameter ρ,

we define the neighborhood N (ȳ, ρ) of ȳ as the set of feasible solutions of the model D̂ satisfying the

additional local branching constraint (see [20]):∑
t∈T |yt=0

yt +
∑

t∈T |yt=1

(1− yt) ≤ ρ. (32)

Hence, N (ȳ, ρ) is the set of solutions that differ by a maximum number of ρ values of the yt variables

from the current solution ȳ. The linear constraint (32) limits to ρ the total number of binary variables

yt flipping their value with respect to the solution ȳ, either from 1 to 0 or from 0 to 1.
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The GILS heuristic can be seen as an improved version of the ILS heuristic in which the search

space is even more reduced through the inclusion of new constraints on the Lagrangian multipliers.

Since the Lagrangian multipliers are used to penalize the deviations between the copies of the uncertain

variables of the adversarial problem, at each iteration, we impose two types of constraints to guide the

value of the multipliers.

• Type I: Constraint λjt ≤ 0 if vtt − v
j
t < 0 or constraint λjt ≥ 0 if vtt − v

j
t > 0.

• Type II: Constraint λjt ≤ λ
j

t if vtt − v
j
t < 0 or constraint λjt ≥ λ

j

t if vtt − v
j
t > 0.

At each iteration, the current value of the uncertain variables vjt and the current value of the Lagrangian

multipliers are denoted by vjt and λ
j

t , for all 1 ≤ t ≤ j ≤ n, respectively.

To start the GILS heuristic an initial solution is required. Such solution can be found by solving

the model D̂ and fixing the Lagrangian multipliers to their value in the linear relaxation of model D̂.

The full algorithm is described in Algorithm 1.

Algorithm 1 Guided Iterated Local Search

1: Solve the linear relaxation of model D̂
2: Solve the integer model D̂, with the Lagrangian multipliers fixed to the multipliers value obtained in the previous

step
3: Save the solution y
4: repeat
5: for all t, j ∈ T such that t ≤ j do
6: Compute the value of the uncertainty variables vjt
7: Add either constraints of type I or of type II to the model according to a predefined rule
8: end for
9: Add constraint (32) to the model D̂ and solve it for γ seconds

10: Update the solution y
11: Remove all the constraints added
12: until the time limit of β seconds or a maximum number of iterations is reached

Steps 5 to 8 are used to guide the values of the Lagrangian multipliers as penalties for variable

deviations. By removing these steps, Algorithm 1 becomes the classic ILS heuristic, that will also be

tested in the computational section. Several specific rules can be used in step 7 to choose the type

of constraints added to the problem in each iteration. Some of those rules will be discussed in the

computational section.

It is important to notice that the aim of steps 5 to 8 is not to speed up the algorithm. Moreover,

we may also expect to obtain worse bounds (based on the value of model D̂) using the GILS heuristic

than using the ILS heuristic since we are restricting the search space. By penalizing the differences

between the copies of the uncertain variables, we aim to force the choice of a neighbor solution based

on an estimation of the cost closer to the true one, thus obtaining better solutions (with true cost close

to the cost of the optimal solution).

3.3.2 Subgradient Optimization method

Since model D̂ is based on a Lagrangian relaxation, we adapt the subgradient method, frequently used

to solve the dual problem of a Lagrangian relaxation, to solve model D̂ heuristically. The Subgradient

Optimization (SO) method that we propose depends on two parameters given a priori, parameter

ItLim and parameter φ and uses the following additional functions:

• R(u) : computes the true cost of a given production policy u.

• Cdeviations(λ) : given a vector λ , computes the value v̄ of the deviation variables v.

The SO method starts by solving the linear relaxation of model D̂ to obtain the initial values for

the Lagrangian multipliers λ. The optimal value of the linear relaxation is used to define a lower

bound to the problem. In the loop (step 4 to step 28 of the Algorithm 2), model D̂ is solved with
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updated information and the corresponding bound as well as the true cost of the production policy

are computed and compared with the current best values. The value of the Lagrangian multipliers is

updated in steps 21 to 25 according to the interpretation of those multipliers as penalties associated

with the violation of constraints (19), taking into account the value of the variables vjt and vtt . In each

iteration model D̂ is solved with the Lagrangian multipliers fixed and all the remaining variables free,

however, whenever a limit number of iteration (ItLim) is reached without a better bound or a better

solution (solution with lower true cost) is obtained, the multipliers are left free and the setup variables

are fixed. This strategy is used to escape from local minimums and hence explore new feasible regions

of the search space.

Algorithm 2 Subgradient Optimization method

1: Initialization: NoImprove := 0, Bestbound :=∞, Bestvalue :=∞
2: Solve the linear relaxation of model D̂ and save the multipliers λ
3: Set LB equal to the objective function value of the linear relaxation
4: repeat
5: if NoImprove < ItLim then

6: Impose constraints λjt = λ
j
t and make all the remaining variables free

7: else
8: Impose constraints yt = yt and make the Lagrangian multipliers free
9: NoImprove ← 0

10: end if
11: Solve the integer model D̂ with the imposed constraints
12: Set Bound equal to the objective function value of model D̂
13: if Bound < Bestbound then
14: Update Bestbound

15: NoImprove ← 0
16: end if
17: if R(u) < Bestvalue then
18: Update Bestvalue
19: NoImprove ← 0
20: end if
21: Compute the value vjt of the deviation variables vjt for all t, j ∈ T such that t ≤ j using function Cdeviations(λ)

22: Compute the subgradient sjt := vtt − v
j
t for all t, j ∈ T such that t < j

23: Compute norm :=
∑T

t=1

∑T
j=t+1(sjt )2

24: Define stepsize := φBound−LB
norm

25: Update multipliers λ
j
t ← λ

j
t + stepsize × sjt

26: Remove all the added constraints
27: NoImprove ← NoImprove + 1
28: until A time limit of β minutes is reached

4 Computational experiments

This section reports the computational experiments carried out to compare the BO approach, the

BT approach, the approach based on model D̂ (that is designed by LD for Lagrangian Dual), and

the approach based on model D. Since we have proved that this last approach coincides with the

affinely adjustable robust counterpart approach, in what follows it is denoted by AARC approach. In

Section 4.1 we report the results for medium size lot-sizing instances with 30 time periods, for which

all the optimal solutions can be obtained, while in Section 4.2 larger size instances with at most 100

time periods are considered.

Table 1 displays the total number of constraints and the total number of non integer variables of

model D with 30 and 100 time periods. The reported results correspond to the cases where the setup

costs are either considered or not (column Setup), and the cases where the Lagrangian multipliers

are either free or fix (column #Multipliers). In the column #Variables, the numbers in parenthesis

indicate the total number of integer variables in the model D associated with the use of setup costs.

Notice that the number of constraints for model D̂ is exactly the same as for model D and the number
of variables is approximately 2/3 of the number of variables in model D.
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Table 1: Total number of variables and constraints of model D.

n Setup #Multipliers #Constraints #V ariables

No fix 2850 990
30 free 2850 1425

Yes fix 2910 990 (+30)
free 2910 1425 (+30)

No fix 31100 10500
100 free 31100 15550

Yes fix 31300 10500 (+100)
free 31300 15550 (+100)

The computational experiments use instances generated as follows. For each time period t, t ∈ T ,

the nominal demand µt and the maximum allowed deviation δt are randomly generated in [0, 50] and

[0, 0.2µt], respectively. The maximum number of deviations in period t is computed using the relation

Γt = Γt−1 + τ , with τ varying in {0, 1} and Γ0 is assumed to be zero. The initial stock level at the

producer, x1, is randomly generated between 0 and 30 and the production capacity Pt is constant and

equal to
∑n
t=1 µt. The production, holding and backlog costs are the same as those used in [15], i.e.,

ct = 1, ht = 4, bt = 6, respectively, for all t ∈ T . Throughout this section, we consider two variants

of the robust inventory problem, with and without setup costs. Such production setup costs occur in

many practical inventory problems. However, the main goal of using instances with setup costs is to

get harder instances, since the inclusion of integer setup variables results in a non linear model.

In order to compute the true cost of a solution u, R(u), preliminary tests were conducted using

four approaches: the dynamic program proposed in [16], the dynamic program proposed in [4], the

mixed integer formulation with big-M constraints presented in Section 2, in [21], and the decomposition

approach proposed in [16]. The dynamic program proposed in [16] provided, in general, better results

and solved all the adversarial problems in less than one second for instances with 100 time periods.

Hence, for all the approaches considered in the computational experiments, whenever the true cost of

one solution is computed, the dynamic program in [16] is used.

All tests were run using a computer with an Intel Core i7-4750HQ 2.00 GHz processor and 8 GB

of RAM, and were conducted using the Xpress-Optimizer 28.01.04 solver with the default options.

4.1 Computational experiments for medium size instances

In this subsection all the reported results are based on instances with 30 time periods. Preliminary ex-

periments based on a set of 10 instances were conducted to evaluate the performance of model (20)–(27)

against the projected model (28)–(31). The second model is solved through a Benders decomposition

procedure having a separation subproblem for constraints (29) and (30). The average running time

for the Benders decomposition was 721 seconds and the average number of iteration required was 552.

Using the model (20)–(27) the average running time was lower than 1 second. Although model D

could also be solved by using the decomposition procedure proposed in [6], our preliminary experi-

ments indicate that the performance of that procedure is similar to the one observed when Benders

decomposition is used to solve the projected model (28)–(31), since a large number of iterations is

needed. Therefore, henceforward we consider only model (20)–(27).

We start by analysing the performance of the presented approaches in terms of the setup cost.

Figures 1 to 4 report average results obtained by using 16 different setup costs having values in

{0, 10, 20, . . . , 150}. For each setup cost, one hundred instances were randomly generated considering

different samples of the nominal demand values. Since all the obtained results are presented through

their average values, Mann-Whitney hypothesis tests are conducted to find significative differences

between all the approaches considered. A significance level of 1% is used in all tests.

Figure 1 displays the average cost of the solutions obtained by the BO approach (optimal value)
and the average objective function values corresponding to the LD, AARC and BT approaches (which
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are upper bounds for the value of the BO solution). The points marked with squares (LD(uBT ))

represent the average cost of the solutions obtained by the LD approach for the production policy

obtained by the BT approach, i.e., after the solution of the BT approach is obtained, the value of the

production variables ut, t ∈ T , is fixed and model D̂ is solved.
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Figure 1: Cost of the solutions obtained by the different approaches in terms of the setup cost.

The obtained results suggest that the BT approach is too conservative, since the quality of the

upper bound provided by this approach degrades rapidly as the setup cost increases. This is not the

case of both LD and AARC approaches where the obtained upper bounds are close to the cost of the

solution obtained by the BO approach, even when the setup cost increases. In fact, for large setup

costs, the BT approach provides an optimal bound that is up to 28% larger than the true cost of the

solutions provided by the BO approach while the gaps associated to both the LD and AARC approach

are up to 6% and 3%, respectively, for all the setup costs considered.

By comparing the lines associated to LD(uBT ) and BT we see that, in general, there is a gap (that

is up to 6%) between the corresponding bounds. This means that the optimal value of the Lagrangian

multipliers for the production policy obtained by the BT approach is usually different from zero (as

considered in the BT approach). Hence, a better choice of the Lagrangian multipliers can be used to

improve the quality of the upper bound provided by the BT approach.

For all the setup values tested, the average upper bounds obtained by the LD, AARC and BT

approaches are significantly higher than the optimal value provided by the BO approach. The average

upper bounds obtained by the BT approach are significantly higher than the ones obtained by both

the LD and the AARC approaches for setup costs greater than 10, and significantly greater than the

ones obtained by the LD(uBT ) approach for high setup costs (greater than 110).

Figure 2 reports the average computational time in seconds required by each approach to find the

solution, in terms of the setup cost.
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Figure 2: Average computational time associated to each approach in terms of the setup cost.

The computational time of the BT approach is always lower than one second. The exact BO

approach is on average twice faster than the LD approach. The computational time required by the

AARC approach is approximately twice the computational time required by the LD approach. The

average time required by the BO approach to solve each master problem varies between zero and twelve

seconds while the computational time required to solve each adversarial problem is always lower than

one second.

Figure 3 displays the average true cost of the production policy determined by the approaches

LD (R(uLD)), AARC (R(uAARC)), BT (R(uBT )), and compare them with the cost of the optimal

production policy obtained by the BO approach. Note that these values are not the upper bounds

obtained by the LD, AARC and BT approaches directly. They are the true costs obtained by solving

the adversarial problem for each solution obtained with the indicated approach.

The behavior of the true cost of the production policy obtained by the LD, AARC and BT ap-

proaches is similar to the one observed for the upper bound values. However, when the setup costs

are not considered, the true cost of the production policy obtained by the BT approach is, in general,

lower than the one obtained by both the LD and AARC approaches. It is interesting to note that the

true cost of the solutions determined by both the LD and AARC approaches are very close. In fact,

the Mann-Whitney hypothesis tests reveal that, in terms of the true cost of the production policy,

the differences between both approaches are not significant. Moreover, the average true costs of the

production policies determined by both LD and AARC approaches are not significantly different from

the average costs of the optimal production policies. On the other hand, the average true cost of the

production policies determined by the BT approach is significantly greater than the one determined

by the LD and the AARC approaches for setup costs greater than 30.

A key conclusion that one can draw from Figure 3 is that while in the case where the setup costs

are not considered, the true average cost from the solutions obtained using the BT approach may give

a fair approximation on the optimal value, when setup costs are high not only the BT approach can

give poor bounds, but it can also produce bad solutions (with costs up to 16% larger than the optimal

true costs). This may indicate that for more complex inventory problems the overestimation of costs

from the BT approach may lead to poor decisions.
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Figure 3: True average cost of the solution obtained by both the LD and the BT approaches compared with the cost of
the optimal production policy obtained by the BO approach.

Figure 4 displays the average number of production periods associated with the production policy

determined by the BO, the LD, the AARC and the BT approaches. This figure can help to explain

the results displayed in Figures 1 and 3, since the average number of production periods in the LD,

AARC and BO approaches is similar. Notice that even when the setup cost is high, the number of

production periods in the BT approach remains high, which may be justified by the fact that the BT

approach tends to overestimate the contribution of the inventory costs in the objective function. The

differences between the average number of production periods in the LD, AARC and BO approaches

is not significant for any setup costs used while such differences between the BT and BO approaches

are significant for all the setup cost tested.
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Figure 4: Average number of production periods in the production policies obtained by the different approaches in terms
of the setup cost.

Next, we analyse the performance of the LD, the AARC and the BT approaches in terms of the

maximum number of deviations Γn in the last time period. The maximum number of deviations in

the previous periods is taken as follows. Given a value k ∈ {1, . . . ,Γn}, the time periods t ∈ T such

that Γt = k are the ones satisfying the condition

t = q(k − 1) +

k−1∑
`=1

α` + 1, . . . , qk +

k∑
`=1

α`,

where q =
⌊
n

Γn

⌋
, and α` = 1 if ` ≤ n − qΓn and α` = 0, otherwise. This rule ensures that given

two values k1, k2 ∈ {1, . . . ,Γn} the difference between the number of periods with at most k1 and k2

deviations is either zero or one.

Figures 5 and 6 display the results for the case where Γ30 ranges from 0 (nominal case) to 30

(box-constrained case). For each value of Γ30, 100 randomly generated instances were considered and

the average gap between a given upper bound (UB) and the optimal value (BO), obtained by using

the BO approach, is displayed according to the formula

Gap =
UB −BO

BO
× 100.

The lines associated with LD, AARC and BT represent the average gap corresponding to the

upper bounds obtained by the LD, AARC and BT approaches, respectively. The lines associated

with R(uLD), R(uAARC) and R(uBT ) represent the average gap corresponding to the true cost of the

solutions obtained by the LD, AARC and the BT approaches, respectively. In Figure 5 the setup costs

are not considered, while in Figure 6 a setup cost of value 150 is considered.
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Figure 5: Average gaps in terms of the maximum number of deviations considering no setup costs.
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Figure 6: Average gaps in terms of the maximum number of deviations considering a setup cost equal to 150.

For both cases, the average gap associated with the LD and AARC approaches is always lower

than 10% and 7%, respectively, while for the BT approach such gap can reach 28%. In particular,

in our experiments, for the box-constrained case, there is no gap associated with the upper bounds

obtained by both the LD and AARC approaches. In general, the average gap associated with the true

cost of the solutions determined by both LD and AARC approaches tends to decrease as the number

of deviations increases and it is zero for the box-constrained case.
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4.2 Computational experiments for large size instances

In this section we report the computational results for large size instances with up to 100 time periods.

For these instances the exact BO approach cannot be solved to optimality within a reasonable time

limit. Preliminary results showed that even for a small number of scenarios the master problem cannot

be solved within eight hours. Similar difficulties were observed for a related lot-sizing problem in [7].

Furthermore, when the setup costs increase, solving the model D (the one used in the AARC approach)

to optimality is computationally heavy. For the instances with 100 time periods and setup costs greater

than 70 we are not able to solve model D within a time limit of eight hours. Table 2 reports the average

optimality gaps obtained with model D over a set of 10 instances with 100 time periods considering a

time limit of two hours, for four different setup costs.

Table 2: Average optimality gaps obtained with model D with a time limit of two hours.

Setup Cost 50 150 450 750

Gap (%) 0.14 1.39 3.61 5.51

Table 2 shows that the instances become more difficult to solve when the setup cost increases.

Results not reported here allow us to conclude that the optimal solution of the LD approach can be

obtained in less than 2 hours for problem instances with 55 time periods while for the AARC approach

only problem instances with 40 time periods can be solved to optimality within 2 hours. Hence, the

main goal of this section is to test heuristic approaches that can be used on large size inventory models

to obtain tight upper bounds as well as good solutions (with true cost close to the optimal value).

When the Lagrangian multipliers are fixed, models D and D̂ can be solved quickly, even if setup

costs are considered. In particular, the model D̂ with the multipliers fixed to zero, that corresponds to

the BT approach, can be solved in less than 5 seconds. An initial value for the Lagrangian multipliers

can easily be obtained by solving the linear relaxation of models D and D̂, respectively. Figure 7
displays, for each setup cost in {0, 10, ..., 150}, the average upper bound values over 100 randomly

generated instances with 100 time periods obtained by both LD and AARC approaches when all the

multipliers are fixed to the optimal value of the Lagrangian multipliers in the linear relaxation of

models D̂ and D, respectively. The average upper bound values obtained by the BT approach are

also displayed.

Figure 7 shows opposite behaviors of both LD and AARC approaches, when the Lagrangian mul-

tipliers are fixed to their values in the linear relaxation, comparing to the BT approach. While the

gap between the lines associated with the AARC and the BT approaches tend to decrease as the setup

cost increases, the gap between the lines associated with the LD and BT approaches tends to increase

as the setup cost increases. The first gap varies between 2.6% and 3.0% while the second one varies

between 0.7% and 6.4%.

These results show that, when the value of the setup cost increases, tighter upper bounds can

be obtained by considering the Lagrangian multipliers of the linear relaxation of model D̂ in the LD

approach instead of considering all the multipliers equal to zero (as in the case of the BT approach).

Furthermore, the difference between the computational time required to compute the upper bounds in

both cases corresponds to the computational time required to solve the linear relaxation of model D̂,

which is always lower than 7 seconds for all the tested instances. This means that, in general, for large

size instances, a better bound than the one obtained by the BT approach can quickly be obtained by

considering the optimal multipliers of the linear relaxation of model D̂.

From the theoretical study we know that the upper bound corresponding to the optimal solution

of the AARC approach is lower than or equal to the one obtained by the LD approach. Moreover, the

value of the linear relaxation is lower in the AARC approach than in the LD approach. Nevertheless,

Figure 7 shows that in the case that the multipliers are fixed to their value in the linear relaxation,

the upper bounds provided by the LD approach tend to be better than the ones obtained with the

AARC approach, when the value of the setup cost increases.
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Figure 7: Average upper bound values obtained by the LD and AARC approaches considering the optimal Lagrangian
multipliers of the linear relaxation of models D̂ and D, respectively, for different setup costs.

4.2.1 Evaluation of the proposed heuristics

In this section we analyse the performance of both the GILS heuristic and the SO method presented in

Section 3.3. It is important to remind that these two heuristics were specifically designed to generate

better solutions and not necessarily better bounds resulting from the objective function values of

the considered models. As reference methods we use the heuristic that consists on solving the full

model D with a time limit of one hour, and the ILS heuristic. The first heuristic will be called Full

Model heuristic (FM heuristic).

Tuning of the parameters

We consider two variants of the ILS heuristic, one based on model D̂ and other based on model D, that

are denoted by ILSD̂ and ILSD, respectively. Both heuristics correspond to the Algorithm 1 described

in Section 3.3.1 without steps 5 to 8. However, instead of imposing a time limit or a maximum number

of iterations, the algorithm stops when no improvement in the objective function is observed. In

both heuristics, the parameter ρ was set to 2 since with this parameter for the instances with 100 time

periods, almost all the problems arising in each iteration of the ILS heuristics were solved to optimality

in less than 150 seconds (the time limit imposed in each iteration).

For both the GILS heuristic and the SO method, a set of 20 randomly generated instances with

30 time periods was used to tune the values of the parameters used. Since we are imposing additional

constraints on the Lagrangian multipliers in the GILS heuristic, the value of the objective function in

a current iteration can be worse than the one obtained in the previous iteration, so it does not make

sense to stop the algorithm when there is no improvement in the objective function value. Hence, the

stop criterion for the GILS heuristic is defined through the number of iterations (that is limited to 15).

Three rules were tested to choose the type of constraints added to the problem in each iteration: i)

add only constraints of type I; ii) add only constraints of type II and iii) successively add constraints

of type I k times and then add constraints of type II k times (with k = 1, 2, 3). Taking into account

both the upper bounds and the true cost of the solutions, the best results were obtained when the
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third rule was used with k = 2, so this is the strategy used henceforward. To compare the GILS with

both variants of the ILS heuristics we use the same time limit in each iteration (150 seconds) and also

ρ = 2.

For the SO method, different values {0.25, 0.5, 1, 1.5, 2} of φ and different values {5, 10, 15, 20} of

parameter ItLim were tested. The best results where obtained when the values φ = 1 and ItLim = 10

were used. The time limit imposed in the SO method is 600 seconds.

Comparing upper bounds and true costs

Here we compare the performance of the heuristics in terms of the setup cost (for instances with 100

time periods) and also in terms of the number of periods (for instances with a setup cost equal to 150).

Tables 3 and 4 present the average upper bounds obtained for each one of the heuristics tested and

the average computational time in seconds. Each line of the tables reports average values obtained for

a set of 10 instances. The best average upper bounds obtained for each set of instances are marked in

bold. Furthermore, the numbers in parenthesis next to the bounds indicate the number of best bounds

obtained by the corresponding heuristic.

Table 3: Average upper bounds obtained for the heuristics tested for instances with 100 time periods and setup costs
varying from 25 to 150.

FM ILSD ILSD̂ GILS SO
Setup Cost Bound Sec. Bound Sec. Bound Sec. Bound Sec. Bound Sec.

25 92365(2) 3600 92338(8) 1364 94583 655 94620 525 94710 600

50 92756(5) 3600 92776(5) 1264 94943 762 95001 718 95097 600

75 93178(2) 3600 93120(8) 1206 95269 781 95365 801 95889 600

100 93474(4) 3600 93445(6) 1295 95594 836 95770 917 95893 600

125 93733(7) 3600 93789(3) 1011 95891 736 96080 1051 96188 600

150 94155(5) 3600 94131(5) 1032 96183 786 96286 1089 96592 600

Table 4: Average upper bounds obtained for the heuristics tested for instances with setup cost equal to 150 and time
periods varying from 20 to 100.

FM ILSD ILSD̂ GILS SO
n Bound Sec. Bound Sec. Bound Sec. Bound Sec. Bound Sec.

20 5380(10) 18 5385(6) 8 5526(1) 4 5539(1) 13 5524(1) 600

40 16673(9) 2309 16728(3) 58 17259 23 17294 52 17231 600

60 37273(4) 3600 37287(6) 192 38191 116 38258 188 38246 600

80 59383(1) 3600 59261(9) 644 61425 425 61606 774 61548 600

100 94155(5) 3600 94131(5) 1032 96183 786 96286 1089 96592 600

The results presented in Tables 3 and 4 reveal that best upper bounds are obtained with both the

FM and the ILSD heuristics. These results agree with what was stated in the theoretical study since

the best upper bounds are obtained by the heuristics based on model D. All the instances with 20

time periods and almost all the instances with 40 time periods are solved to optimality by the FM

heuristic which justify that the best results for the instances with these time periods are obtained with

the FM heuristic. However, when the number of periods increases, best upper bounds are in general

obtained by the ILSD heuristic.

In Tables 5 and 6 we compare the heuristics in terms of the true cost of the obtained solutions. As

in the previous tables, the best average results are marked in bold and the number of best solutions

(with the best true cost) appears in parenthesis.

Notice that at each iteration of the ILS heuristics, GILS heuristic and SO method, the true cost of

the current solution is obtained and the best obtained value is reported. In the FM heuristic the true

cost of all integer solutions found during the Branch-and-Bound process is computed and the best true

cost is reported.
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Table 5: Average true cost of the solutions obtained for the heuristics tested for instances with 100 time periods and
setup costs varying from 25 to 150.

Setup Cost FM ILSD ILSD̂ GILS SO

25 91875 92016 92445 92343 90729(10)

50 92223(2) 92428 92732 92582 91004(8)

75 92567(1) 92736 93012 92666 91320(9)

100 92890 93089 93299 92768 91223(10)

125 93147 93414 93520 92929 91607(10)

150 93479 93725 93829 93203 91840(10)

Table 6: Average true cost of the solutions obtained for the heuristics tested for instances with setup cost equal to 150
and time periods varying from 20 to 100.

n FM ILSD ILSD̂ GILS SO

20 5319(3) 5353(1) 5359(1) 5354(1) 5301(5)

40 16534(1) 16619 16661(1) 16521 16155(9)

60 36988 37118 37210 36971 36066(10)

80 59061 59060 59518 59038 57728(10)

100 93479 93725 93829 93203 91840(10)

The results presented in Tables 5 and 6 clearly suggest that the best average true costs are in

general obtained by the SO method. Only for 9 of the 110 instances presented in these two tables the

best solutions were not found by the SO method. Furthermore, the computational time associated to

the SO method (600 seconds) is much lower than the one required by the remaining heuristics. The

SO method allows us to obtain solutions with true costs that are, on average, 1.8% lower than the

ones obtained with the FM heuristic (which is the heuristic closer to the AARC approach). Hence,

among all the heuristic solutions tested, the SO method is the most efficient heuristic to obtain good

solutions (with low true costs).

As expected, the upper bound values obtained by both ILS heuristics are better than the ones

obtained by the GILS heuristic. However, in terms of the true cost of the obtained production policies,

better results are in general obtained using the GILS heuristic. In fact, among all the 60 instances with

100 time periods considered in Table 5, 45 best solutions were found by the GILS heuristic while 9

and 6 were found by the ILSD and the ILSD̂ heuristics, respectively. Among all the 50 instances with

a setup cost equal to 150 considered in Table 6, 38 best solutions were found by the GILS heuristic
while 9 and 3 were found by the ILSD and the ILSD̂ heuristics, respectively.

Looking deeper to the SO method

Since the true cost of the solutions obtained with the BT approach is much higher than those obtained

by all the heuristics tested, such results were not reported in the Tables 5 and 6. However, in Table 7
we report some gaps showing the improvements on the true cost of the solutions obtained by the SO

method compared to the true cost of the solutions obtained by the BT approach. Columns 2 to 7 refer

to the instances presented in Table 5, those with 100 time periods and setup costs varying between 25

and 150, while columns 8 to 12 refer to the instances presented in Table 6, the ones with a setup cost

equal to 100 and time periods varying between 20 and 100. Remember that the SO method starts from

the solution obtained with model D̂ with the multipliers fixed to their value in the linear relaxation

of such model. Hence, the line Initial Solution reports the average gaps associated to the true cost

of the initial solution used in the SO method comparing to the true cost of the solution obtained by

the BT approach. The line Best Solution reports the average gaps associated to the true cost of the

best solution found by the SO method comparing to the true cost of the solution obtained by the BT

approach.
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Table 7: Average gaps (in percentage) between the SO method and the BT approach in terms of the true cost of the
solutions.

Instances from Table 5 Instances from Table 6

Setup Cost/Time periods 25 50 75 100 125 150 20 40 60 80 100

Initial Solution 0.3 1.2 2.2 2.8 3.3 3.8 7.3 5.1 4.5 4.2 3.8
Best Solution 2.4 3.8 5.1 6.5 7.3 7.9 18.4 15.4 11.8 9.9 7.9

From Table 7 we see that the gap between the SO method and the BT approach, in terms of the

true cost of the solutions, increases as the setup cost increases and decreases as the number of periods

increases. For the hardest instances, the ones with 100 time periods and setup cost equal to 150, the

BT approach provides solutions with true costs that are 7.9% larger than those obtained by the SO

method.

Finally, in order to compare the quality of the solutions generated by the SO method with those

resulting from the AARC method solved to optimality, we report in Table 8 the average optimality

gaps associated with both the SO method and the AARC approach in terms of the true cost of the

solutions, for instances with n = {10, 20, 30, 40} time periods (those instances where the AARC method

can be solved to optimality within reasonable amount of time. For each number n, 25 instances were

used. The numbers in parenthesis next to the gaps indicate the number of best solutions obtained by

the corresponding method. The average gaps were computed according to the formula:

Gap% =
R(uJ)−R(u∗)

R(u∗)
× 100,

where u∗ is the optimal solution (obtained by the BO approach) and uJ is the solution obtained by

approach J , with J = AARC or J = SO.

Table 8: Average optimality gaps associated to both the SO method and the AARC approach.

n 10 20 30 40

SO 0.46(15) 0.68(23) 1.07(18) 1.03(23)

AARC 0.80(10) 1.43(2) 2.06(7) 1.82(2)

Table 8 suggests that for the instances solved to optimality the best solutions are on average
obtained by the SO method since the gaps associated with this approach are lower than the ones

associated to the AARC approach. Furthermore, the number of best solutions found is greater in the

SO method than in the AARC approach.

5 Conclusion

In this paper we consider RO min-max problems with decomposable functions. Based on the dual

Lagrangian problem resulting from a Lagrangian relaxation of the reformulation of the adversarial

problem, we provide a compact formulation to approximate the true min-max problem and show that

the Bertsimas and Thiele dualization approach is a particular case of this approach with the multipliers

equal to zero. Additionally, we show that the new dual Lagrangian formulation coincides with an affine

approximation.

The theoretical results are applied to the robust inventory problem where the demands are uncer-

tain and the uncertain variables belong to the B&T budget set. Computational results have shown

that when other complicating aspects as setup costs are present, by overestimating the costs, the

classical dualization approach from Bertsimas and Thiele [15] can provide poor bounds and poor solu-

tions. The dual Lagrangian formulation, which coincides with an affine approximation model, leads to

bounds closer to the true min-max value even for those instances where the dualization from Bertsimas
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and Thiele [15] provide worst bounds. However, although the dual Lagrangian formulation leads to

tractable models, their size can be too large to be solved to optimality for real size instances. Taking

advantage of regarding such models from the perspective of Lagrangian duality theory, we propose

heuristics approaches that consider the new multipliers as penalties for violation of the constraints

of the adversarial problem. Thus, such penalties penalize the overestimation of the true cost of each

feasible solution. Using such idea, we introduce a Guided Iterated Local Search heuristic and a Sub-

gradient Optimization method to solve large size inventory models. The Subgradient Optimization

method proved to be efficient to obtain better solutions than those obtained using other approximation

approaches including the dual Lagrangian formulation.

Appendix

Proof of Theorem 3:

Proof. We start by writing model R(u) with the new variables vtj , for j, t ∈ T : j ≤ t as follows:

R(u) = max
x,v

n∑
t=1

(ctut + max{htxt+1,−btxt+1})

s.t. xt+1 = x1 +

t∑
j=1

(uj − µj − δjvtj), t ∈ T,

∑̀
j=1

|vtj | ≤ Γ`, 1 ≤ ` ≤ t ≤ n,

vjt = vtt , 1 ≤ t < j ≤ n, (33)

vjt ∈ [−1, 1], 1 ≤ t ≤ j ≤ n.

Following the process described in Section 2, we attach a Lagrangian multiplier λjt to each con-

straint (33) for 1 ≤ t < j ≤ n, and dualize these constraints in the usual Lagrangian way. This leads

to the following relaxed problem

LR(u, λ) = max
x,v

n∑
t=1

ctut + max{htxt+1,−btxt+1} −
n∑

j=t+1

λjt (v
t
t − v

j
t )


s.t. xt+1 = x1 +

t∑
j=1

(uj − µj − δjvtj), t ∈ T,

∑̀
j=1

|vtj | ≤ Γ`, 1 ≤ ` ≤ t ≤ n,

vjt ∈ [−1, 1], 1 ≤ t ≤ j ≤ n.

Rearranging the terms in the objective function by noticing that

n∑
t=1

n∑
j=t+1

λjtv
j
t =

n∑
t=2

t−1∑
j=1

λtjv
t
j , and

eliminating variables xt, t > 1, the relaxed problem can be written as follows

LR(u, λ) = max
v

n∑
t=1

ctut + max

L1
t (u)− ht

t∑
j=1

δjv
t
j , L

2
t (u) + bt

t∑
j=1

δjv
t
j

− vtt
n∑

j=t+1

λjt +

t−1∑
j=1

λtjv
t
j


s.t.

∑̀
j=1

|vtj | ≤ Γ`, 1 ≤ ` ≤ t ≤ n,
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vtj ∈ [−1, 1], 1 ≤ j ≤ t ≤ n.

where L1
t (u) = ht

x1 +

t∑
j=1

(uj − µj)

 and L2
t (u) = −bt

x1 +

t∑
j=1

(uj − µj)

 .

For a given u and λ, the problem LR(u, λ) can be separated into n independent subproblems, one

for each time period. Hence, for a fixed time period t ∈ T , the corresponding subproblem can be

written as follows

LRt(u, λ
t) = min

θt
ctut + θt

s.t. θt ≥ L1
t (u) + max

vt∈Ωt

−ht
t∑

j=1

δjv
t
j − vtt

n∑
j=t+1

λjt +

t−1∑
j=1

λtjv
t
j

 ,

θt ≥ L2
t (u) + max

vt∈Ωt

bt
t∑

j=1

δjv
t
j − vtt

n∑
j=t+1

λjt +

t−1∑
j=1

λtjv
t
j

 ,

where Ωt = {vt ∈ [−1, 1]t |
∑j
`=1 |vt`| ≤ Γj , 1 ≤ j ≤ t}.

Linearizing LRt(u, λ
t) by writing variables vtj as vtj = vt+j −v

t−
j , for all j, t ∈ T, j ≤ t and rearranging

the terms in the set of constraints, model LRt(u, λ
t) becomes

LRt(u, λ
t) = min

θt
ctut + θt

s.t. θt ≥ L1
t (u) + ht max

(vt+j ,vt−j )∈Ω̄t

−
δt +

n∑
j=t+1

λjt
ht

 (vt+t − vt−t ) +

t−1∑
j=1

(
λtj
ht
− δj

)
(vt+j − v

t−
j )

 ,

(34)

θt ≥ L2
t (u) + bt max

(vt+j ,vt−j )∈Ω̄t


δt − n∑

j=t+1

λjt
bt

 (vt+t − vt−t ) +

t−1∑
j=1

(
λtj
bt

+ δj

)
(vt+j − v

t−
j )

 , (35)

where

Ω̄t :=

{
(vt+j , vt−j ) ∈ Rt × Rt |

j∑
`=1

(vt+` + vt−` ) ≤ Γj ; v
t+
j + vt−j ≤ 1; vt+j , vt−j ≥ 0; 1 ≤ j ≤ t

}
.

Associating the dual variables qt1j and rt1j to the constraints of the inner problem in the RHS of

constraints (34) and the dual variables qt2j and rt2j to the constraints of the inner problem in the RHS

of constraints (35) we obtain model D.
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