"Dice"-sion Making under Uncertainty: When Can a Random Decision Reduce Risk?

Erick Delage

HEC Montréal CRC in decision making under uncertainty

joint work with Daniel Kuhn and Wolfram Wiesemann

IFORS 2017, Québec

Canada Research Chairs

Chaires de recherche du Canada

Facility Location under Uncertainty

Facility Location under Uncertainty

Facility Location under Uncertainty

Ambiguity Averse Decision-Making

In practice, the probabilities for the profit scenarios may only be partially known:

Distributionally robust optimization: Optimize a risk measure over worst distribution in ambiguity set

Ambiguity Averse Decision-Making

Assume we want to maximize expected profits under the worst probability distribution in the ambiguity set:

 $\underset{p \in \Delta}{\text{maximize}} \quad \underset{q \in \mathcal{P}(\Gamma)}{\text{min}} \quad \mathbb{E}_{i \sim p, j \sim q}[\text{profit}(\text{loc}_i, \text{scen}_j)]$

Agenda

Randomization under Distributional Ambiguity

- Mathematical Amplitude Averse Risk Measures
- **Markov Problem Setup**
- Maintoin The Power of Randomization

Agenda

Randomization under Distributional Ambiguity

Mathematical Ambiguity Averse Risk Measures

- **Markov Problem Setup**
- The Power of Randomization

Ambiguous Probability Spaces

We model uncertainty via an *ambiguous* probability space: $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$

• We denote by $\mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ the real-valued random variables that are essentially bounded w.r.t. all $\mathbb{P} \in \mathcal{P}_0$

• We denote by $F_X^{\mathbb{P}} \in \mathcal{D}$ the distribution function of X under \mathbb{P} : $F_X^{\mathbb{P}}(x) = \mathbb{P}(X \le x) \quad \forall x \in \mathbb{R}$

Observe and a set of a set o

 $\exists U_0 \in \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ that follows a uniform distribution on [0, 1] under *every* probability measure $\mathbb{P} \in \mathcal{P}_0$.

Risk Measures

A risk measure assigns each random variable a risk index: $\rho_0 : \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) \to \mathbb{R}$

A risk measure ρ_0 is law invariant if it satisfies:

$$\left\{F_X^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\right\} = \left\{F_Y^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}_0\right\} \implies \rho_0(X) = \rho_0(Y)$$

Proposition: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is law invariant. Then, there exists a unique $\varrho_0 : \mathcal{D} \to \mathbb{R}$ satisfying $\rho_0(X) = \varrho_0(F_X) \quad \forall X \in \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0) : F_X^{\mathbb{P}} = F_X \quad \forall \mathbb{P} \in \mathcal{P}_0.$

Ambiguity Averse Risk Measures

Proposition: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is law invariant, ambiguity averse and translation invariant. Then the risk measure satisfies $\rho_0(X) = \sup_{\mathbb{P}\in\mathcal{P}_0} \rho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0).$

Ambiguity Averse Risk Measures

Proposition: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is law invariant, ambiguity averse and translation invariant. Then the risk measure satisfies $\rho_0(X) = \sup_{\mathbb{P}\in\mathcal{P}_0} \rho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega_0, \mathcal{F}_0, \mathcal{P}_0).$

Agenda

2 Randomization under Distributional Ambiguity

- Manual Andrew Averse Risk Measures
- **Markov Problem Setup**
- The Power of Randomization

3 Discussion

From Deterministic to Random Decisions

We consider an ambiguity averse risk minimization problem

$$\min_{X \in \mathcal{X}_0} \rho_0(X)$$

(PSP)

where $\mathcal{X}_0 \subseteq \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ denotes the feasible region.

From Deterministic to Random Decisions

We consider an ambiguity averse risk minimization problem

$$\underset{X \in \mathcal{X}_0}{\text{minimize }} \rho_0(X)$$

where $\mathcal{X}_0 \subseteq \mathcal{L}_{\infty}(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ denotes the feasible region.

(PSP)

Randomization Devices

We assume we have a randomisation device that generates uniform samples from [0, 1]:

Randomization Devices

We assume we have a randomisation device that generates uniform samples from [0, 1]:

Risk of Randomized Decisions

<u>Proposition</u>: Assume that $(\Omega_0, \mathcal{F}_0, \mathcal{P}_0)$ is non-atomic and that ρ_0 is law invariant, ambiguity averse and translation invariant.

The unique extension of ρ_0 to an ambiguity averse risk measure ρ on $\mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P})$ is given by

$$\rho(X) = \sup_{\mathbb{P}\in\mathcal{P}} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega, \mathcal{F}, \mathcal{P}).$$

Agenda

2 Randomization under Distributional Ambiguity

Manual Ambiguity Averse Risk Measures

Randomized Strategy Problem

We define the randomized strategy problem

$$\left[\begin{array}{c} \underset{X \in \mathcal{X}}{\text{minimize }} \rho(X) \end{array} \right]$$

(RSP)

where the extended risk measure ρ is defined via

$$\rho(X) = \sup_{\mathbb{P}\in\mathcal{P}} \varrho_0(F_X^{\mathbb{P}}) \quad \forall X \in \mathcal{L}_\infty(\Omega, \mathcal{F}, \mathcal{P}).$$

and \mathcal{X} denotes the enlarged feasible region:

$$\mathcal{X} = \left\{ X \in \mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathbb{P}) : X(\cdot, u) \in \mathcal{X}_{0} \; \forall u \in [0, 1] \right\}$$

<u>Theorem</u>: If ρ_0 is convex and \mathcal{X}_0 is convex, then (PSP) = (RSP).

The Power of Randomization

The Rainbow Urn Game

Consider an urn with balls of K different colors where:

- the number of balls is unknown
- the proportions of colors are unknown

A player is offered the following game:

The Rainbow Urn Game

Assume the player uses an ambiguity averse risk measure ρ_0 :

Agenda

2 Randomization under Distributional Ambiguity

Manual Andrew Averse Risk Measures

Summary

The Issue of Time Consistency

Remember the randomized strategy problem:

Once we observe the outcome of the randomization, we have an incentive to deviate in favour of the optimal pure choice!

Bibliography

Randomized decisions in economics:

[1] M. Agranov and P. Ortoleva. *Stochastic choice and preferences for randomization.* Available on SSRN, 2015.

Randomized decisions in algorithm design:

[2] R. Motwani and P. Raghavan. *Randomized algorithms.* Cambridge University Press, 1995.

Randomized decisions in Markov decision processes:

- [3] Y. Le Tallec. *Robust, risk-sensitive, and data-driven control of Markov decision processes.* PhD thesis, MIT, 2007.
- [4] W. Wiesemann, D. Kuhn and B. Rustem. *Robust Markov decision processes.* Math. OR 62(6):1358-1376, 2014.

Randomized decisions in SP and DRO:

- [7] G. Pflug. Version-independence and nested distributions in multistage stochastic optimization. SIAM J. Optim. 20(3):1406-1420, 2010.
- [8] E. Delage, D. Kuhn and W. Wiesemann. *"Dice"-sion making under uncertainty: When can a random decision reduce risk?* Available on Opt. Online, 2016.

Accounting for time inconsistencies with a commitment mechanism:

[9] R. H. Strotz. *Myopia and Inconsistency in Dynamic Utility Maximization.* The Review of Economic Studies, 23(3):165-180, 1955.