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0.45 vs. 0.59 
µ = 0.52

0.04 vs. 1.79 
µ = 0.92

-0.05 vs. 3.50 
µ = 1.73

-0.10 vs. 5.39 
µ = 2.65

-0.51 vs. 6.62 
µ = 3.06

Where should facility be built  so as to maximize our  expected profits?

Facility Location under Uncertainty
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One can control risk exposure using  
mean semi-variance

E[X] � E [E[X] � X]2+



Facility Location under Uncertainty

Where should it be built  so as to maximize the  mean semi-variance?
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-0.10 vs. 5.39 

-0.51 vs. 6.62 

One can control risk exposure using  
mean semi-variance

E[X] � E [E[X] � X]2+

M/SV = 0.52

M/SV = 0.53
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M/SV = -3.30



Facility Location under Uncertainty
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0.45 vs. 0.59 
M/SV = 0.52

0.04 vs. 1.79 
M/SV = 0.53

-0.05 vs. 3.50 
M/SV = 0.15

-0.10 vs. 5.39 
M/SV = -1.13

-0.51 vs. 6.62 
M/SV = -3.30

Making a decision randomly 
can actually reduce the risk:

�
M/SV = 0.59

25% 25%

-0.05          0.45 0.59          3.50     

25% 25%



Ambiguity Averse Decision-Making
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2

Distributionally robust optimization: Optimize a  
risk measure over worst distribution in ambiguity set

In practice, the probabilities for the  
profit scenarios may only be partially known:

1

2

1

1

ambiguity set
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Ambiguity Averse Decision-Making

best deterministic choice 
best randomized choice

Assume we want to maximize expected profits under the  
worst probability distribution in the ambiguity set:
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This phenomenon does not occur when one employs:
maximize

p2�
Ei⇠p[ min

q2P(�)
Ej⇠q[profit(loci, scenj)]

maximize

p2�
min

q2P(�)
Ei⇠p, j⇠q[profit(loci, scenj)]
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Ambiguous Probability Spaces

We model uncertainty via an ambiguous probability space:
(�0, F0, P0)

that follows a uniform distribution on

An ambiguous probability space                    is non-atomic if:(�0, F0, P0)

�U0 � L�(�0, F0, P0) [0, 1]

under every probability measure            .P � P0

We denote by                          the real-valued random  
variables that are essentially bounded w.r.t. all            P � P0

L�(�0, F0, P0)
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We denote by               the distribution function of     under    :X

F P
X(x) = P(X � x) �x � R

F P
X 2 D P



D

Risk Measures
A risk measure assigns each random variable a risk index:

�0 : L�(�0, F0, P0) � R
A risk measure      is law invariant if it satisfies:�0

�
F P

X : P � P0

�
=

�
F P

Y : P � P0

�
� �0(X) = �0(Y )

Proposition: Assume that                    is non-atomic and that  
     is law invariant. Then, there exists a unique                    
satisfying
�0 �0 : D � R

(�0, F0, P0)

F P
X = FX �P � P0.�0(X) = �0(FX) �X � L�(�0, F0, P0) :

�0(F )

�0(F )
⇢0(X)

⇢0(X)

= %0(F )

= %0(F )

⇢0(X) =?
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=?

=?



Ambiguity Averse Risk Measures

Definition: A risk measure     is called ambiguity averse 
                   if it satisfies

�0

for all                                     :

Ambiguity aversion: If                                                     ,  
then                         . 
Ambiguity monotonicity: If                             for all  
           , then                         .

{F P
X : P � P0} � {F P

Y : P � P0}

�0(X) � �0(Y )

�0(F
P
X) � �0(F

P
Y )

P � P0 �0(X) � �0(Y )

X, Y � L�(�0, F0, P0)
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Proposition: Assume that                    is non-atomic and that  
     is law invariant, ambiguity averse and translation invariant. 
 

Then the risk measure satisfies
�0

(�0, F0, P0)

�0(X) = sup
P�P0

�0(F
P
X) �X � L�(�0, F0, P0).



Ambiguity Averse Risk Measures
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Proposition: Assume that                    is non-atomic and that  
     is law invariant, ambiguity averse and translation invariant. 
 

Then the risk measure satisfies
�0

(�0, F0, P0)

�0(X) = sup
P�P0

�0(F
P
X) �X � L�(�0, F0, P0).

�0(F )

�0(F )

D

>⇢0(X)

⇢0(X)

= %0(F )

= %0(F )

⇢0(X) = %0(F )⇢0(X) =?
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We consider an ambiguity averse risk minimization problem

minimize
X�X0

�0(X) (PSP)

where                                   denotes the feasible region.

�
�0(X)

X0 � L�(�0, F0, P0)
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From Deterministic to Random Decisions

X

X0
Y

Z



From Deterministic to Random Decisions
We consider an ambiguity averse risk minimization problem

minimize
X�X0

�0(X) (PSP)

where                                   denotes the feasible region.

X

X0
Y

Z
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X0 � L�(�0, F0, P0)

What is the risk of randomized decisions?
+

8
<

:

2 [2, 4]
2 [5, 8]
2 [9, 12]

How can we represent randomized decisions?



Randomization Devices
We assume we have a randomisation device that generates 
uniform samples from        :[0, 1]

pure strategy problem randomized strategy problem

(�0, F0, P0)

X0 � L�(�0, F0, P0)
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X

X0
Y

Z

0

1

Randomization Devices
We assume we have a randomisation device that generates 
uniform samples from        :[0, 1]

pure strategy problem randomized strategy problem

(�0, F0, P0) � = �0 � [0, 1]
F = F0 � B[0,1]

 
  
 
 

with
(�, F , P)

P = {P⇥ U : P 2 P0}

X(·, u) � X0 �u � [0, 1]
�

X =
�
X � L�(�, F , P) : X(·, u) � X0 �u � [0, 1]

�
X0 � L�(�0, F0, P0)
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Risk of Randomized Decisions
X

The unique extension of     to an ambiguity averse risk 
measure     on                      is given by

�0

�

Proposition: Assume that                    is non-atomic and that  
     is law invariant, ambiguity averse and translation invariant.�0

(�0, F0, P0)

L�(�, F , P)

�(X) = sup
P�P

�0(F
P
X) �X � L�(�, F , P).

D

�0(F )

>

�0(F )

18/26

⇢0(X) = %0(F )

⇢0(X)= %0(F )
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Randomized Strategy Problem
We define the randomized strategy problem

(RSP)

where the extended risk measure    is defined via

minimize
X�X

�(X)

�

X

X =
�
X � L�(�, F , P) : X(·, u) � X0 �u � [0, 1]

�
and     denotes the enlarged feasible region:
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�(X) = sup
P�P

�0(F
P
X) �X � L�(�, F , P).

�0

(PSP) = (RSP).

Theorem: If     is convex and      is convex, thenX0



The Power of Randomization

Theorem: Assume that

                   has a maximally ambiguous 

random variable: 

     satisfies the Lebesgue property: 
 

Then there is      such that (PSP) > (RSP).X0
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(�0, F0, P0)

9X 2 L1(⌦0,F0,P0),
�
F P
X : P 2 P0

 
= D

�0

lim
k��

�0(Fk) = �0(F ) whenever              .Fk � F



The Rainbow Urn Game

Consider an urn with balls of K different colors where:K

the number of balls is unknown 
the proportions of colors are unknown

A player is offered the following game:

player 
names 
color

ball is 
drawn

player 
receives:

 - $1 if ball is of stated color 
+$1 if ball is not of stated color

�
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The Rainbow Urn Game

Assume the player uses an ambiguity averse risk measure     :�0

All balls are of stated color

Worst-case outcome

 - $1 with probability 

+$1 with probability

� 1

K

K � 1

K

If      has the Lebesgue property, then 
this is as attractive as receiving +$1 for 

sure as                !

�0

K � �

Any pure strategy 
is as good as losing 

$1 with certainty

1/Kwith probability

The randomized strategy 
that names each color 

    

Strategy
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Randomization 
is a cure for 
ambiguity !!!
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Summary

Randomization
Receptive

Randomization
Proof
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every RM with 
Lebesque property
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Mixture quasi- 
concave RM’s

convex RM’s  
with convex X0X0

Mean moment &  
mean deviation RM’s

Mean semi-moment &  
mean semi-deviation RM’s
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convex RM’s  
with convex X0X0



Remember the randomized strategy problem:

(RSP)minimize
X�X

�(X)

The Issue of Time Consistency

+

8
<

:

2 [2, 4]
2 [5, 8]
2 [9, 12]

X

X0
Y

Z

Commitment 
mechanism

Once we observe the outcome of the randomization, we have  
an incentive to deviate in favour of the optimal pure choice!
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