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Facility Location under Uncertainty
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Facility Location under Uncertainty
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Facility Location under Uncertainty
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Ambiguity Averse Decision-Making

In practice, the probabilities for the
profit scenarios may only be partially known:

Distributionally robust optimization: Optimize a
risk measure over worst distribution in ambiguity set
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Ambiguity Averse Decision-Making

worst probability distribution in the ambiguity set:

maximize min [E;., j~q|profit(loc;,scen;)|

" Assume we want to maximize expected profits under the )
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Ambiguous Probability Spaces

@We model uncertainty via an ambiguous probability space:
(Q()7 FO) PO)

@We denote by L..(0, Fo, Po)the real-valued random
variables that are essentially bounded w.r.t. all P € P,

@We denote by I} € D the distribution function of X under P :
Fyr()=P(X<z) VxeR

@An ambiguous probability space (20, 50, Po) is non-atomic if:

Uy € Lo (20, Fo, Po) that follows a uniform distribution on [0, 1]
under every probability measure P € P,.
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Risk Measures

A risk measure assigns each random variable a risk index:
po : Loo(Q0,F0,Po) — R
A risk measure p, is law invariant if it satisfies:

[Fx :PePy} = {Fy :PePy} = po(X)=po(Y)

4 )
Proposition: Assume that (2g, Fo, Py) is non-atomic and that
po is law invariant. Then, there exists a unique 0o : D — R
satisfying

00(X) = 00(Fx) VX € Loo(Qo, Fo,Po) : Fx = Fx VP € Py.
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Ambiguity Averse Risk Measures

( D
Definition: A risk measure pg is called ambiguity averse

if it satisfies for all X,Y € £L..(Q2q, Fo,Po):
M Ambiguity aversion: If {Fy : Pe Py} C {Fy : P e Py},
then po(X) < po(Y).
¥ Ambiguity monotonicity: If oo (Fx) < 0o(Fy ) for all

P € Py, then po(X) < po(Y). g
\_

4 )

Proposition: Assume that (Q2y, Fo, Po) is non-atomic and that
po Is law invariant, ambiguity averse and translation invariant.

Then the risk measure satisfies

po(X) :PSU}DD 00(Fy) VX € Loo(Q0,Fo,Po)-
€ o
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Ambiguity Averse Risk Measures

(

Proposition: Assume that ({2, Fy, Py) is non-atomic and that

po Is law invariant, ambiguity averse and translation invariant.
Then the risk measure satisfies

po(X) :Psu%) 00(F%) YX € Loo(Q0, Fo, Po).
€ o

\
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From Deterministic to Random Decisions

We consider an ambiguity averse risk minimization problem

{mi)gier;;gze po(X )] (PSP)

where Xy C L (Q0, Fo, Po) denotes the feasible region.
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From Deterministic to Random Decisions

We consider an ambiguity averse risk minimization problem

[ml)glg;(lgze po(X )] (PSP)

where &) C L. (Q0, Fo, Po) denotes the feasible region.




Randomization Devices

We assume we have a randomisation device that generates
uniform samples from |0, 1]:

[ pure strateqy problem j [ randomized strateqy problem]

4 )
(Q()a'FO)PO)

g J
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XO g EOO(Q()aFO?PO)
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Randomization Devices

We assume we have a randomisation device that generates

uniform samples from |0, 1]:

[ pure strateqy problem j
. A

(Q()a FO) PO)

AV

-

\_

~

randomized strateqy problem

J
4 )
(

O, F,P)

M Q=Qyx[0,1]
M.F:F()@B[(),l]
MP={PxU:PePo}

with

;
X ={XeLo(QFP):

X(-,u) € Xy Yu€0,1]}

J
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Risk of Randomized Decisions

4 A
Proposition: Assume that (2, Fg, Po) is non-atomic and that

po Is law invariant, ambiguity averse and translation invariant.

The unique extension of pg to an ambiguity averse risk
measure p on L. (2, F,P) is given by

p(X) =sup 0o(Fx) VX € Loo(Q,F,P).
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Randomized Strategy Problem

We define the randomized strategy problem

{ minimize p(X) ] (RSP)

XeXx

where the extended risk measure p is defined via

p(X) =sup 00(Fy) VX € Loo(Q,F,P).
PeP

and X denotes the enlarged feasible region:

X={Xe€Lo(QFP): X(-,u) e Xy Yucl01]}

4 )
Theorem: If pg is convex and A} is convex, then

(PSP) = (RSP).

20/26



The Power of Randomization

[The_oreﬂ Assume that

M (Qo, Fo, Po) has a maximally ambiguous
random variable:
3X € Loo(Q0,F0,Po), {Fx : PEPy} =D

M ro satisfies the Lebesgue property:
klim 00(Fx) = 0o(F) whenever F — F' .
— 00

Then there is Ay such that (PSP) > (RSP).
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The Rainbow Urn Game

Consider an urn with balls of K different colors where:
M the number of balls is unknown

M the proportions of colors are unknown

A player is offered the following game:

player ball is player
names drawn receives:

color { -$1 if ball is of stated color

+$1 if ball is not of stated color
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The Rainbow Urn Game

Assume the player uses an ambiguity averse risk measure pg:

[ Strateqy ] [ Worst-case outcome

Any pure strategy

IS as good as losing » All balls are of stated color

5

$1 with certainty

. o1
The randomized strategy -$1 with probability %

that names each color
with probability 1/K

+$1 with probability %

J

N
Randomization

IS a cure for
ambiguity !

i If po has the Lebesgue property, then .

this is as attractive as receiving +$1 for

sure as K — oo |
\_ J
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The Issue of Time Consistency

Remember the randomized strategy problem:

{ minimize p(X) ] (RSP)
4 \ )
! Commitment
mechanism
R
)
) | — Y,

an incentive to deviate in favour of the optimal pure choice!
26/26

{ Once we observe the outcome of the randomization, we haveJ
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