
A Double-oracle, Logic-based Benders decomposition
approach to solve the K-adaptability problem

Alireza Ghahtarani*1, Ahmed Saif1, Alireza Ghasemi1, and Erick Delage †2

1Department of Industrial Engineering, Dalhousie University
2Department of Decision Sciences, HEC Montréal

Abstract

We propose a novel approach to solve K-adaptability problems with convex objective and
constraints and integer first-stage decisions. A logic-based Benders decomposition is applied to
handle the first-stage decisions in a master problem, thus the sub-problem becomes a min-max-
min robust combinatorial optimization problem that is solved via a double-oracle algorithm
that iteratively generates adverse scenarios and recourse decisions and assigns scenarios to K-
subsets of the decisions by solving p-center problems. Extensions of the proposed approach to
handle parameter uncertainty in both the first-stage objective and the second-stage constraints
are also provided. We show that the proposed algorithm converges to an optimal solution
and terminates in finite number of iterations. Numerical results obtained from experiments
on benchmark instances of the adaptive shortest path problem, the regular knapsack problem,
and a generic K-adaptability problem demonstrate the performance advantage of the proposed
approach when compared to state-of-the-art methods in the literature.

Key Words: K-adaptability problem, Min-max-min robust combinatorial optimization,
Adaptive robust optimization, Discrete recourse, Logic-based Benders decomposition

1 Introduction
Robust Optimization (RO) has become a classical framework for dealing with parameter un-
certainty in optimization problems (Bertsimas et al., 2011). In RO, parameter uncertainty is
captured through an uncertainty set of proper structure and size, and the optimization is con-
ducted with respect to the worst-case realization in it. An important class of RO problems that
has gained considerable attention recently is adaptive/adjustable robust optimization (ARO), in
which some decisions are assumed to be delayable until the realized values of uncertain param-
eters become partially or fully known. Whereas ARO formulations often lead to better (less
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1

ar
X

iv
:2

20
9.

02
93

6v
1 

 [
m

at
h.

O
C

] 
 7

 S
ep

 2
02

2



pessimistic) solutions than their corresponding static RO models, they are computationally in-
tractable (Ben-Tal et al., 2004). However, several exact and approximate algorithms have been
proposed to solve important ARO classes such as linear two-stage RO problems (Thiele et al.,
2009; Chen & Zhang, 2009; Kuhn et al., 2011; Zhao & Zeng, 2012; Bertsimas et al., 2012;
Jiang et al., 2012; Iancu et al., 2013). With a few exceptions, these algorithms use duality
to handle the second-stage (recourse) problem. Hence, they can be only used with continu-
ous recourse decisions. Although some attempts have been made to develop efficient solution
methods for ARO problems with discrete recourse (Dhamdhere et al., 2005; Georghiou et al.,
2015; Bertsimas & Georghiou, 2015, 2018), the literature for this class of problems is still
sparse.

Recently, an alternative modeling approach, referred to as K-adaptability, has been pro-
posed as a conservative approximation of ARO problems with discrete recourse (Hanasusanto
et al., 2015; Subramanyam et al., 2020). Rather than allowing any feasible integer recourse to
be selected, the decision-maker prepares K solutions in advance (under uncertainty). Then,
upon full knowledge of the realized value of the uncertain parameters, the best among these
K solutions is selected. Apart from being better in general compared to the solutions of static
RO, Buchheim & Kurtz (2017) argued that K-adaptability solutions are more easily accepted
by a human user as they do not change each time but are taken from a relatively small set of
candidate solutions.

Similar to Hanasusanto et al. (2015) and Subramanyam et al. (2020), we initially focus on
a linear version of the problem, in which both the objective function and constraints in the first-
and second-stages are affine functions of the decision variables, the uncertain parameters effect
the second-stage objective function, and the uncertainty set is polyhedral. However, we later
show how the algorithm that we propose can be adapted to solve other variants of the problem.
Formally, the linear K-adaptability problem under consideration is formulated as follows:

min
x∈X ,{yk}k∈[K]

c′x + max
ξ∈Ξ

min
k∈[K]

{
ξ′Qyk : Tx + Wyk ≤ b

}
(1a)

s.t. yk ∈ Y, k ∈ [K], (1b)

where X ⊂ {0, 1}n and Y ⊂ {0, 1}m where their continuous relaxations are polyhedral,
Ξ ⊂ Rq is a polyhedral set, c ∈ Rn, Q ∈ Rq×m, T ∈ Rs×n, W ∈ Rs×m, b ∈ Rs, and
[K] = {1, . . . ,K}. In this formulation, elements of the vector x denote the here-and-now
(first-stage) decision variables, ξ ∈ Ξ are the uncertain parameters, and y are the wait-and-see
(second-stage) decision variables.

A special case of the K-adaptability problem, known in the literature as the min-max-min
robust combinatorial optimization (MMMRCO) problem arises when the only decision that is
made under uncertainty is the pre-selection of theK recourse action, i.e., the problem does not
have the actual first-stage decision. The MMMRCO problem has many practical applications,
such as parcel delivery and finding routes in hazardous situations, that are discussed in Arslan
et al. (2022). The basic MMMRCO problem (without constraint uncertainty) is formulated as
follows:

min
yk∈Y

max
ξ∈Ξ

min
k∈[K]

{ξ′Qyk : Wyk ≤ b}. (2a)

So far, only two solution methods have been developed for the K-adaptability problem.
Hanasusanto et al. (2015) proposed a mixed-integer linear programming approximation, de-
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rived using linear programming duality, which leads to a monolithic formulation involving
bilinear terms. A McCormick envelope is used to linearize the bilinear terms, which requires
a large number of new variables to be introduced. Moreover, the number of binary variables
increases as K is increased. Consequently, this approach hardly solves the shortest path in-
stances with more than 25 nodes. In another attempt to solve the K-adaptability problem,
Subramanyam et al. (2020) proposed a branch-and-bound algorithm that enjoys asymptotic
convergence in general, but has finite convergence under specific conditions. This algorithm
works by generating a relevant subset of uncertainty realizations and enumerating over their
assignment to the K solutions. Nevertheless, it is also inefficient for solving shortest path
instances with more than 25 nodes.

Besides the aforementioned methods that can handle the general case (i.e., with first-stage
decisions), a few approaches to solve variants of (2) have been proposed. Chassein et al.
(2019) developed a branch-and-bound algorithm that can solve large instances of the MMM-
RCO problem, yet only with budget uncertainty sets. They also proposed a heuristic solution
algorithm based on the formulation of Hanasusanto et al. (2015). However, instead of using the
McCormick linearization approach to handle the bilinear terms, they used the block-coordinate
descent algorithm, which has no optimality guarantee. Moreover, their algorithms hardly solve
any instance of the shortest path problem when K grows above 3. Goerigk et al. (2020) de-
veloped a heuristic algorithm based on an integer programming formulation and a row-and-
column generation algorithm to solve it. Yet, this algorithm has no performance guarantee,
which means this algorithm does not guarantee convergence in a finite number of iterations.
Recently, Arslan et al. (2022) proposed a solution approach that iteratively generates scenar-
ios of the uncertain parameters and assigns them to solutions by solving a p-center problem.
However, this algorithm works well only if there is an effective way to restrict and enumerate
the search space.

In this paper, we present a new approach to solve the K-adaptability problem with binary
or integer first-stage decisions. The scenario generation step in the proposed approach enjoys
finite convergence when the uncertainty set is polyhedral, but the approach can be used with
any convex uncertainty set. Although we focus initially on problems with affine functions,
the proposed algorithm can be extended to nonlinear objective function and constraints with
respect to the decision variables for second-stage problem.

The proposed approach uses a logic-based (also referred to as combinatorial) Benders al-
gorithm to handle the first-stage decisions such that the remaining subproblem is a MMMRCO
that is solved iteratively to generate optimality cuts. To solve this subproblem, we propose
a double-oracle algorithm that iterates between solving an adversary problem to iteratively
generate worst-case scenarios for a K-subset of feasible solutions and determine the scenario-
solution assignment, and solving a decision-maker’s problem to find the optimal K-subset of
solutions for all the scenarios generated so far. Although the way scenarios are generated and
assigned to solutions is similar to that proposed by Arslan et al. (2022), our approach uses a
more efficient way (i.e., by solving an optimization problem) to identify the optimal K-subset
of recourse solutions in every iteration.

We note that the K-adaptability problem formulation provided in (1) is based on that in-
troduced by Bertsimas & Caramanis (2010), i.e., with a first-stage problem that is not subject
to uncertainty, whereas Hanasusanto et al. (2015) addressed an extended version in which
both stages are affected by the same uncertain parameters. Hence, we show how the pro-
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posed algorithm can be extended to handle K-adaptability problems with uncertainty in both
stages (whether the two stages depend on the same or different uncertain parameters). Finally,
extensive numerical experiments are conducted on benchmark instances of several classical
optimization problems, and the computational superiority of the proposed approach vis-á-vis
state-of-the-art solution methods is demonstrated.

The remainder of this paper is organized as follows. Section 2 presents the approach pro-
posed to solve problem (1) (i.e., with linear objective function and constraints and with un-
certainty affecting only the recourse objective function). Section 3 studies the convergence
properties of the proposed algorithm and proves its finite convergence. In section 4, we show
how the proposed algorithm can be modified to solve different variants of the K-adaptability
problem, namely, problems with integer first-stage decision variables, problems with nonlinear
functions, and problems affected by uncertainty in the first and second-stages. The numerical
experiments conducted to test the proposed algorithm on benchmark problems, and a detailed
discussion of their results, are presented in section 5. Finally, section 6 provides some conclu-
sions and suggests future research directions.

Notation. We use upright lower and upper case letters, respectively, for vectors and matrices.
Individual elements of these vectors and matrices are denoted using italic versions of the same
letters. For example, elements of the J-dimension vector x are denoted as xj . Depending on
the context, upper case letters might be used also to denote scalars (e.g., J), whereas lower
case letters might denote also functions (e.g., g(·)). [J ] is used as a shorthand for the set of
integers {1, 2, . . . , J} and a partial set of a given set [J ] is denoted as [J ′]. We use the symbol
e to denote an all-ones vector of appropriate size. The calligraphic font is used for sets (e.g.,
X ).

2 The Proposed Solution Approach
In this section, we present the proposed approach to solve the K-adaptability problem (1) with
binary first-stage decision variables and recourse objective uncertainty. First, we show how
a logic-based Benders decomposition is applied to deal with the discrete first-stage variables.
Then, we describe a double oracles algorithm to solve the subproblem.

2.1 A Logic-based Benders Decomposition
We apply Benders decomposition by projecting the model onto the subspace defined by the
first-stage variables x to get the master problem (MP):

min
x∈X∩V

c′x + ν(x), (3)

where V :=
{

x : Wyk ≤ b− Tx for some yk ∈ Y, k ∈ [K]
}

. For a given x̄ ∈ X ∩ V , ν(x̄) is
the optimal value of the sub-problem (SP)

min
{yk}k∈[K]

max
ξ∈Ξ

min
k∈[K]

ξ′Qyk (4a)

s.t. yk ∈ Y, Wyk ≤ b− Tx̄ ∀k ∈ [K]. (4b)
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We note that since x ∈ X ∩ V , MP enjoys relatively complete recourse, i.e., it has feasible
solutions for all x̄ ∈ X ∩ V , and ξ ∈ Ξ. Without this property, the SP might be infeasible for
some x̄, thus requiring feasibility cuts to be generated.

The basic idea of the classical Benders algorithm is to approximate the function ν(x) using
hyper-planes (referred to as optimality cuts) generated by solving the dual SP for fixed values
of x. However, since SP has binary decision variables, it is not possible to use the duality
theory to generate cuts. Assuming that we have an oracle to solve SP, in any iteration r, the
r-th feasible solution xr is used to define the sets Sr := {i ∈ [n] : xri = 1} and to evaluate its
corresponding worst-case second-stage objective function value θr. We use this solution and
value to generate the valid combinatorial cut, first proposed by Laporte & Louveaux (1993),

θ ≥ (θr − Lr)(
∑
i∈Sr

xi −
∑
/∈Sr

xi)− (θr − Lr)(|Sr| − 1) + Lr,

where |Sr| is the cardinality of Sr, L is a lower bound on the optimal value of the SP and θ is
a MP decision variable that defines the epigraph of ν(x). Hence, MP can be written as follows:

min
x∈X ,θ

c′x + θ (5a)

s.t. θ ≥ (θr − Lr)(
∑
i∈Sr

xi −
∑
/∈Sr

xi)− (θr − Lr)(|Sr| − 1) + Lr ∀r, (5b)

The Logic-based Benders decomposition algorithm is summarized as follows:

Algorithm 1: Logic-based Benders decomposition algorithm for solving K-adaptability
problem
1 Initiate with an arbitrary feasible x̄, set UB =∞, LB = −∞, r = 1
2 while UB − LB ≥ ε do
3 Solve SP (4) with x̄ and find θr
4 Find a lower bound Lr for SP (4) as will be explained later
5 Generate the optimality cut: θ ≥ (θr −Lr)(

∑
i∈Sr xi−

∑
i/∈Sr xi)− (θr −Lr)(|Sr| − 1|) +Lr

6 Update the upper bound: UB = min (UB, c′x̄ + θr)
7 Solve MP (5) with the new optimality cut added
8 Set LB equal to the optimal value of MP (5)
9 Extract the optimal partial solution x∗ and use it as x̄ in the next iteration and set r = r + 1

10 end
11 Return:Declare the pair

(
x∗, yk

∗)
as the optimal solution

We note that SP (4) is a MMMCRO problem. In the next section, we propose a novel
approach to solve it and also to obtain the lower bound Lr.

2.2 Double-oracle for Solving SP
We define the partial sets Y ′ ⊆ Y with |Y| ≥ K and Ξ′ ⊂ Ξ and use j ∈ [J ] ([J ′]) and
h ∈ [H] ([H ′]) to index the elements of Y (Y ′) and the vertices of Ξ (Ξ′), also referred to
as “scenarios”, respectively. SP (4) can be reformulated over these partial sets as the p-center
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problem P(Y ′,Ξ′) (Arslan et al., 2022):

min
{zj}j∈[J′],{vjh}j∈[J′],h∈[H′],w

w (6a)

s.t. w ≥
∑
j∈[J ′]

ξ′hQyjvjh ∀h ∈ [H ′] (6b)

∑
j∈[J ′]

vjh = 1 ∀h ∈ [H ′] (6c)

∑
j∈[J ′]

zj = K (6d)

vjh ≤ zj ∀j ∈ [J ′],∀h ∈ [H ′] (6e)

vjh, zj ∈ {0, 1} ∀j ∈ [J ′], ∀h ∈ [H ′]. (6f)

The binary variable zj takes value 1 if the feasible solution yj is selected to be among the
K “prepared” solutions, and vjh takes value 1 if scenario ξh is assigned to solution yj , and
0 otherwise. Constraint (6b) finds the scenario-solution pair with the worst cost among all
assignments. Constraint (6c) ensures that each scenario is assigned to exactly one solution,
whereas (6d) and (6e), respectively, stipulate that K solutions are selected and that scenarios
can be assigned to selected solution only.

To solve (6), the following algorithm is proposed:

1. Solve the problem P(Y ′,Ξ), i.e., the problem with the subset Y ′ of all recourse solutions
generated so far (carried forward from Step 2 in the previous iteration) and all scenarios
in Ξ to obtain an upper bound UB. To solve this problem, we begin with a subset Ξ′ of
scenarios and perform the following steps.

(a) Solve the problem P(Y ′,Ξ′) (i.e., Problem (6)) to find z∗, v∗ and w∗. Identify the
optimal K-subset of recourses as

{
yk ∈ Y ′ : z∗k = 1

}
(b) Given the current optimal K-subset

{
yk
}
k∈[K]

of recourses, try to find a scenario
ξ|H′|+1 ∈ Ξ that violates (6b) by solving the problem

max
ξ∈Ξ,η

η (7a)

s.t. η ≤ ξ′Qyk k ∈ [K] (7b)

(c) If η∗ > w∗, add the new scenario to Ξ′ and repeat steps (a) and (b). Otherwise, stop
and move to Step 2.

2. In this step, we find the optimal K-subset
{

yk
∗
}
k∈[K]

of recourses that minimizes the
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worst-case loss for the discrete scenario set Ξ′ by solving the problem P(Y,Ξ′):

min
{yk}k∈[K],γ,{ukh}k∈[K],h∈[H′]

γ (8a)

s.t. ξ′hQyk ≤ γ +M(1− ukh) ∀k ∈ [K], ∀h ∈ [H ′] (8b)∑
k∈[K]

ukh = 1 ∀h ∈ [H ′] (8c)

yk ∈ Y ∀k ∈ [K] (8d)

Wyk ≤ b− Tx̄ ∀k ∈ [K] (8e)

ukh ∈ {0, 1} ∀k ∈ [K], ∀h ∈ [H ′]. (8f)

In problem (8), ukh is a binary assignment variable which takes value 1 if scenario h is
assigned to recourse k. We update the solution pool as Y ′ ← Y ′ ∪

{
yk
∗
}
k∈[K]

, where{
yk
∗
}
k∈[K]

is the partial optimal solution of problem (8). Moreover we set LB = γ.

3. Iterate between steps (1) and (2) untilUB−LB < ε. Declare the incumbent
{

yk
∗
}
k∈[K]

as the optimal solution.

Algorithm 2: The Double-Oracle algorithm for solving SP (4)
1 initialization: y′,Ξ′, LB = −∞, UB = +∞
2 while UB − LB ≥ ε do
3 while Scenario-added=true do
4 Compute w∗, z∗, v∗, and yk

∗ by solving (6)
5 Compute ξ|H|+1 ∈ Ξ, and η∗ by solving (7)
6 if η∗ > w∗ then
7 Ξ′ ← Ξ′ ∪

{
ξ|H|+1

}
k∈[K]

8 Scenario-added=true
9 else

10 Ξ′ ← Ξ′

11 Scenario-added=false
12 end
13 end
14 Return: Ξ′, UB = w∗

15 Compute {yk∗}k∈[K], γ∗ by solving (8)

16 Y ′ ← Y ′ ∪
{

yk
∗
}
k∈[K]

17 LB = γ∗

18 end
19 Return: {yk∗}k∈[K]

To generate an optimality cut, the logic-based Benders decomposition algorithm explained
in the previous section requires a valid lower bound (L) on the optimal value of the second-
stage problem. A valid lower bound should be L ≤ min

x
{ν(x)| x ∈ X}. In every iteration
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of the proposed algorithm, we calculate a lower bound on the optimal value of SP for a fixed
first-stage decision x̄ by solving (8). However, a lower bound on the optimal value of SP for
all x ∈ X is required, which can be obtained by solving the following problem:

min
{yk}k∈[K],γ,{ukh}k∈[K],h∈[H′],x

γ (9a)

s.t. ξ′hQyk ≤ γ +M(1− ukh) ∀k ∈ [K], ∀h ∈ [H ′] (9b)∑
k∈[K]

ukh = 1 ∀h ∈ [H ′] (9c)

yk ∈ Y ∀k ∈ [K] (9d)

Wyk ≤ b− Tx ∀k ∈ [K] (9e)

x ∈ X (9f)

ukh ∈ {0, 1} ∀k ∈ [K], ∀h ∈ [H ′]. (9g)

Note that the lower bond (Lr) changes at each Benders iteration since we solve problem (9) in
each iteration by using an updated subset of scenarios Ξ′. We also suggest “warm-starting” the
SP in every Benders iteration by re-using some of the y variables generated in previous itera-
tions. Given a subset {yj}j∈[J ′] of recourse solutions, one can “filter” them using constraint
(8e) and reuse the ones that satisfy this constraint for the new x̄ in problem (6) right away.
Likewise, the scenarios (vertices of Ξ) generated in an iteration can be re-used in subsequent
iterations of the Benders algorithm vertices since they do not depend on x̄. Such warm-staring
techniques can substantially improve the performance of the proposed algorithm, even though
we have not use them in our numerical tests. Figure 1 illustrates the proposed algorithm:

 

Solve MP (5) 

Initial �̅� 

 �̅�, 𝐿𝐵 

𝜃𝑟 , 𝐿𝑟 , 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑢𝑡 (5b) 

𝑈𝐵 = min(𝑈𝐵, 𝑐′�̅� + 𝜃𝑟) 

While 𝑈𝐵 − 𝐿𝐵 > 𝜖 

While 𝑈𝐵2 − 𝐿𝐵2 > 𝜖 

Solve solution generation 

problem (8) 

 

 

Solve p-center 

(6)  

Solve scenario 

generation (7) 

Ξ′, 𝒴′   

𝑦𝑘∗
 Ξ′ ∪  𝜉 𝐻 +1 𝑘∈𝐾

 

Ξ′, 𝑈𝐵2 
𝒴′ ∪  𝑦𝑘∗

 
𝑘∈𝐾 

, 

𝐿𝐵2 

Figure 1: Double-oracle, Logic-based Benders decomposition algorithm
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3 Finite Convergence
The proposed algorithm consists of three loops. The outer loop handles the first-stage decision
variables by using logic-based Benders decomposition. The other two loops are used for solv-
ing SP, which is a MMMRCO problem. The inner loop has two step: scenario generation and
solution generation. We show that the outer and the scenario generation loops terminate in a
finite number of iterations, and the solution generation loop leads to convergence of LB and
UB. These lemmas do not exploit the linearity of the cost and recourse constraint functions in
problem (1).

Lemma 1. Given that X is bounded, the number of optimality cuts (5b) generated and, thus,
the number of iterations of the outer loop are finite.

Proof. Since X is bounded and x are binary, there is a finite number of feasible solutions x̄
for the first-stage problem (5). Each first-stage solution corresponds to a single optimality cut
(5b), generated by solving the the SP to obtain xr, θr and L. Hence, the number of optimality
cuts is finite, and so is the number of outer loop iterations.

Lemma 2. The maximum number of scenarios {ξh}h∈H that can be generated through the
double oracle algorithm is finite, and equal to |J |!

K!(|J |−K)! .

Proof. Given that Y is a bounded discrete set, its elements (feasible solutions) are finite and
thus can be enumerated. The p-center problem (6) selects K solutions and assigns those se-
lected solutions to scenarios. Moreover, those K selected solutions are used to generate worst-
case scenarios through problem (7); and if the generated scenario violates constraint (6b), it
is added to the set of scenarios. However, if all possible worst-case scenarios of all feasible
(x̄, yk) assignment in our subset of scenarios are available, then no generated scenario from
problem (7) can violate (6b) and the iteration between (6) and (7) will terminate. If all combi-
nation of K out of |Y| are selected and used in problem (7), all possible worst-case scenarios
for all feasible (x̄, yk) are generated. Since Y is a bounded discrete set, there are exactly
|J |!

k!(|J |−k)! possible ways to select K elements from the set Y . Consequently, at most there are(|J |
k

)
= |J |!

k!(|J |−k)! possible solutions for (6). Hence, in the worst-case situation, with the finite
number of iterations between the p-center problem, (6), and the scenario generation problem,
(7), all possible worst-case scenarios are generated. therefore, no new scenario can violate (6b)
and then, this step terminates.

Lemma 3. The upper and lowed bounds, obtained respectively by solving problems P (Y ′,Ξ)
and P (Y,Ξ′), will converge.

Proof. The upper bound is achieved by solving P(Y ′,Ξ). In order to get the optimal assign-
ment, problem (6) withY ′ must be solved. However, the optimal value of its objective function,
which is the upper bound, can be achieved by solving UB = maxh∈[H] minj∈[J ′] ξ

′
hQyj , the

proof of the reformulation is provided in the appendix A. On the other hand, By using the fixed
set of scenarios, a set ofK solutions are generated by solving (8), which can be reformulated as
LB = maxh∈[H′] minyk∈Y ξ

′
hQyk, the detail of this reformulation is provided in the appendix

A. There are two cases.
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First: The optimal solutions yk
∗ already exist in the subset of solutions Y ′, in this case, the

optimal pair of solutions and scenarios will be found by solving (6) and its objective value is
equivalent to UB = maxh∈[H] minj∈[J ′] ξ

′
hQyj . On the other hand, the optimization problem

related to lower bound, (8), will generate yk
∗ as optimal solution since the scenarios are fixed

for both the lower and upper bound problems. In this case LB = UB and the algorithm will
terminate.

Second: The optimal solutions yk
∗ are not in the subset of solutions Y ′. In this case, by

using fixed scenarios and solving (8) a set of K solutions are generated that includes yk
∗. This

set of solutions are added to the subset of solutions in the p-center problem (6). Consequently,
the optimal pair of solutions and scenarios will be in the Y ′, and Ξ′, respectively. Hence, by
solving the p-center problem (6), the optimal pair of solutions and scenarios will be selected.
Consequently, LB = UB and the algorithm will terminate.

Based on above mentioned lemmas, we can conclude that all three loops in proposed algo-
rithm will terminate in finite number of iterations. Consequently, the proposed algorithm will
converge in finite number of iterations.

4 Extensions
So far, we focused on theK-adaptability problem with linear objectives and constraints, binary
decision variables in the first- and second-stage that can be extend to integer second-stage
decision variables, and with objective uncertainty only in the second-stage. In this section,
we show how the proposed algorithm can be extended to more general cases beyond the basic
setting outlined earlier.

4.1 Second-stage Constraint Uncertainty
Similar to the algorithm proposed by Arslan et al. (2022) to solve the MMMRCO problem,
our approach can be extended to the case when uncertainty affects both the objective function
and constraints of the recourse problem. The extended problem can be formulated as follows:

min
x∈X ,{yk}k∈[K]

c′x + sup
ξ∈Ξ

min
k∈[K]

{ξ′Qyk : Tx + W(ξ)yk ≤ b} (10a)

s.t. yk ∈ Y, k ∈ [K], (10b)

where W(ξ) is an affine mapping of uncertain parameters. Note the dependency of the SP

constraints on ξ. To solve this problem, we use the same iterative algorithm explained earlier
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but with a modified p-center problem P′(Y ′,Ξ′) by adding (11f), as follows:

min
{zj}j∈[J′],{vjh}j∈[J′],h∈[H′],w

w (11a)

s.t. w ≥
∑
j∈[J ′]

ξ′hQyjvjh ∀h ∈ [H ′] (11b)

∑
j∈[J ′]

vjh = 1 ∀h ∈ [H ′] (11c)

∑
j∈[J ′]

zj = K (11d)

vjh ≤ zj ∀j ∈ [J ′], ∀h ∈ [H ′] (11e)

vjh = 0 ∀j ∈ [J ′], h ∈ [H ′] : ∃s ∈ [S]

s.t. e′s(W(ξh)yj − b + Tx̄) > 0 (11f)

vjh, zj ∈ {0, 1} ∀j ∈ [J ′], ∀h ∈ [H ′]. (11g)

In this formulation, there are s constraints with uncertain parameters, i.e., b ∈ Rs, and es de-
notes the s-th column of the identity matrix Is. Constraint (11f) prevents infeasible assignment
of solution-scenario pairs. Moreover, problem (7) is modified by adding (12c) as follows:

max
ξ∈Ξ,η,λ∈{0,1}K

η (12a)

s.t. η ≤ ξ′Qyk +Mλk k ∈ [K] (12b)

W(ξ)yk ≥ b− Tx̄−M(1− λk) + ε k ∈ [K], (12c)

where λk = 1 if the scenario ξ is such that yk is infeasible for any of the s uncertain constraints,
thus enforces that we do not consider ξ′Qyk for calculating the upper bound on η. In the case
where W(ξ)yk = b − Tx̄, we would want λk = 0. Consequently, the small ε on the RHS
of (12c) prevents λk = 1 for equality case. Moreover, the solution generation problem (8) is
modified by considering constraint (13e) with uncertain parameters.

min
{yk}k∈[K],γ,{ukh}k∈[K],h∈[H′]

γ (13a)

s.t. ξ′hQyk ≤ γ +M(1− ukh) ∀k ∈ [K], ∀h ∈ [H ′]
(13b)∑

k∈[K]

ukh = 1 ∀h ∈ [H ′] (13c)

yk ∈ Y ∀k ∈ [K] (13d)

W(ξ′h)yk ≤ b− Tx̄ +M(1− ukh) ∀k ∈ [K],∀h ∈ [H ′]
(13e)

ukh ∈ {0, 1} ∀k ∈ [K], ∀h ∈ [H ′].
(13f)

One should note that, even though V can be modified to ensure that MP satisfies relatively
complete recourse, it might happen that for some x̄ ∈ X ∩ V , there exist no set of K solutions
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{yk}Kk=1 that ensure that some yk is always feasible under all ξ ∈ Ξ. For this reason, at the r-th
iteration of the the logic-based Benders decomposition algorithm, SP might become infeasible
for xri , which is identified when problem (13) becomes infeasible for some Ξ′. At this point,
Algorithm 1 should be modified to returns to the MP a feasibility cut of the form:∑

i∈Sr

xi −
∑
/∈Sr

xi ≤ |Sr| − 1,

in order to discard xri from the set of feasible candidates, instead of producing an optimality
cut of the form (5b).

4.2 First-stage Integer Decision Variables
The outer loop in the proposed algorithm depends on the first-stage variables being binary (i.e.,
x ∈ {0, 1}n) to generate logic-based Benders cuts of the type (5b). However, if the first-stage
integer variables are not binary, but rather general integer, i.e., X ∈ Zn+, one can simply apply
the transformation xi =

∑Pi
pi=0 2puipi , i = 1, . . . , n, where uipi ∈ {0, 1}, and Pi depends on

upper bound of xi. Clearly, this generalization comes at the expense of increasing the number
of variables in the first-stage problem, thus it might be efficient only for small values of P .
It should be noted that the basic algorithm described in Section 2 can handle general integer
recourse decisions since none of the algorithm steps depends on yk being binary.

4.3 First-stage Objective Uncertainty
Even though Bertsimas & Caramanis (2010) defined K-adaptability such that the first-stage
objective is deterministic, we extend our algorithm to the case when there is first-stage ob-
jective uncertainty, similar to Hanasusanto et al. (2015). A practical example of the K-
adaptability problem with uncertainty in the first-stage is the multi-period portfolio selection
problem where decisions about the allocation of budget among assets have to be made at the
beginning of the investment horizon, thus are first-stage decisions. Indeed, asset returns are
uncertain even at the outset, and the initial capital allocation decision cannot be postpone until
this uncertainty is revealed. Hence, the here-and-now decisions are directly affected by the
uncertain parameters. In this section, we differentiate between two cases of first-stage objec-
tive uncertainty: when it is independent from the second-stage uncertainty, and when some
(or all) uncertain parameters affect both stages, i.e., dependent uncertainty. We show how the
proposed approach is tailored for each case.

4.3.1 Independent Uncertainty

Let us consider the following K-adaptability problem:

min
x∈X

max
ξ∈Ξ,ω∈Ω

min
k∈K
{ω′Cx + ξ′Qyk : Tx + Wyk ≤ b} (14a)

s.t. yk ∈ Y, k ∈ [K], (14b)

where ω ∈ Rc, C ∈ Rc×n, and Ω is a compact and convex uncertainty set. Other variables
and parameters are the same as those used in formulation (1). We assume that ω and ξ are
disjoint sets of uncertain parameters. In this case, MP (5) is modified as follows:
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min
x∈X , θ

max
ω∈Ω

ω′Cx + θ (15a)

s.t. θ ≥ (θr − L)(
∑
i∈Sr

xi −
∑
/∈Sr

xi)− (θr − L)(|Sr| − 1) + L, (15b)

which is a static RO problem that can be tractably reformulated by applying convex duality
on the inner maximization. The SP does not change, and we can apply the double-oracle
algorithm described in Section 2.2 to solve it.

4.3.2 Dependent Uncertainty

Next, we consider theK-adaptability problem variant addressed by (Hanasusanto et al., 2015),
where the same uncertain parameters affect both stages, formulated as follows:

min
x∈X ,{yk}k∈[K]

max
ξ∈Ξ

min
k∈K

ξ′Cx + ξ′Qyk (16a)

s.t. yk ∈ Y, Tx+ Wyk ≤ b, k ∈ [K], (16b)

where C ∈ Rq×n and the rest of parameters and variables are the same as in (1). This case can
be reformulate as second stage uncertainty.

Let Q̄ = [C,Q] ∈ Rq×(n+m), T̄ =

 I
I
T

, W̄ =

−I 0
I 0
0 W

, and b̄ =

0
0
b

. We have that

problem (16) can be equivalently formulated as:

min
x∈X ,{ȳk}k∈[K]

max
ξ∈Ξ

min
k∈K

ξ′Q̄ȳk (17a)

s.t. ȳ ∈ {0, 1}n × Y, T̄x+ W̄ȳk ≤ b̄, k ∈ [K]. (17b)

4.4 Nonlinear Objective and Constraint Functions
Our algorithm can handle nonlinear K-adaptability problems of the form:

min
x∈X

f(x) + max
ξ∈Ξ

min
k∈K
{g(ξ, yk) : h(ξ, x, yk) ≤ b} (18a)

s.t. yk ∈ Y, k ∈ [K], (18b)

where f : X 7→ R is convex in x, g : Ξ×Y 7→ R is affine in ξ and convex in y, and h : Ξ×X×
Y 7→ R is affine in ξ and jointly convex in x and y. In this case, MP (5) is modified by using
f(x) instead of c′x. Moreover, the p-center problem (11) is modified by replacing ξ′hQyjvjh
and ξ′Wy + Tx̄ with g(ξh, yj) and h(ξh, yj , x̄), respectively. In the p-center problem, vjh and
zj are decision variables while yj , ξh, and x̄ are constant. Consequently, regardless of the type
of functions g(·, ·) and h(·, ·, ·), the p-center problem finds the optimalK solutions and assigns
them to scenarios. Moreover, the scenario generation problem (7) is rewritten as follows:

max
ξ∈Ξ,η,λ∈{0,1}K

η (19a)

s.t. η ≤ g(ξ, yk) +Mλk k ∈ [K] (19b)

h(ξ, yk, x̄) ≥ b−M(1− λk) + ε k ∈ [K], (19c)
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which again takes the form of a mixed integer LP given our assumption that g(·, ·) and h(·, ·, ·)
be affine in ξ. Finally, the solution generation problem (8) is changed by replacing ξ′hQyk and
Wyk + Tx̄ with g(ξh, y

k) and h(ξh, y
k, x̄), respectively.

5 Numerical Results
This section presents and discusses the numerical results obtained by implementing the pro-
posed algorithm to solve three problems: the shortest path problem, the knapsack problem,
and a generic K-adaptability problem. These results are compared to those obtained from
state-of-the-art algorithms proposed in (MILP reformulation of Hanasusanto et al. (2015), the
iterative algorithm (IA) of Chassein et al. (2019), the row-and-column generation (RCG) al-
gorithm proposed by Goerigk et al. (2020), the scenario generation (SG) approach developed
by Arslan et al. (2022), and Branch-and-Bound (BB) method proposed by Subramanyam et al.
(2020)). The proposed algorithm, Double-Oracle (DO), MILP, IA, and RCG were coded on
Python 3.10.4 using Jupyter, SG is available here, and BB is also available here). The sub-
problems were solved using CPLEX called through CPLEX-CMD on a Linux laptop with an
8th generation Intel Core i7 7700 processor and 16 GB RAM. The time limit and the relative
optimality gap were set, respectively, to two hours (7200 seconds) and 5%.

5.1 Shortest Path Problem
The first problem used to evaluate the proposed algorithm is the adaptive shortest path problem,
previously studied in Hanasusanto et al. (2015), Chassein et al. (2019). This problem aims to
select a subset of network arcs with the least total cost to form a path from a source s to a
destination t when arc costs are uncertain. In the K-adaptability variant of the problem, K
paths are pre-formed and the shortest (least costly) among them is selected once the actual
costs ate realized. We used test instances from Arslan et al. (2022), available here.

Formally, the problem can be described as follows: A network (V,A) has the cost of each
arc (i, j) ∈ A characterized as cij = c̄ij + ξij ĉij , where c̄ij is the nominal cost and ĉij is the
maximal deviation. The primary uncertain parameter ξ belongs to the budgeted uncertainty set
Ξ = {ξ ∈ [0, 1]|

∑
(i,j)∈A ξi,j ≤ Γ}, where Γ is an “uncertainty budget” that controls the size

of uncertainty set. With that, the problem is formulated as follows:

min
xij∈[0,1]n

∑
(i,j)∈A

cijxij (20a)

s.t.
∑

(i,j)∈δ+(i)

xij −
∑

(i,j)∈δ−(i)

xij = bi, ∀i ∈ V, (20b)

where bs = −1, bt = 1, and bi = 0 for i ∈ V/ {s, t} and the sets δ+
i and δ−i represent the

forward and backward starts of node i ∈ V , respectively.
We solve the problem in different sizes of |V| ∈ {20, 25, 40, 50}. For each problem size,

we considered k ∈ {2, 3, 4, 5, 6}. Finally, each instance is solved based on different Γ ∈
{3, 6}. Ten randomly-generated instances were solved for each combination of ν, k, and
Γ. We compare the results of our algorithm with those based on the MILP reformulation
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of Hanasusanto et al. (2015), the row-and-column generation (RCG) algorithm proposed by
Goerigk et al. (2020), the iterative algorithm (IA) of Chassein et al. (2019) and the scenario
generation (SG) approach developed by Arslan et al. (2022).

Figure 2: Percentage of solved instances of the shortest path problem

Figure 2 shows the percentage of instances solved by each algorithm within the cut-off time
of two hours. Intuitively, as the problem size increases (in terms of both |V| and K), fewer
instances are solved to optimality by all algorithms. Nevertheless, our proposed algorithm,
labeled “Double-oracle”, shows better performance than all other algorithms. For example,
our proposed algorithm solved all instances with Γ = 3 and k ∈ {2, 3, 4, 5}, while none
of the other algorithms could solve all of these instances within the cut-off time. Moreover,
the proposed algorithm solved 30 − 60% of the instances with |V| = 50, Γ = 3, and k ∈
{2, 3, 4, 5, 6}, while the next best algorithm is the scenario generation method proposed by
Arslan et al. (2022) that could not solve any instances with size 50 and K > 3. Details of the
results can be found in Tables 1 and 2 in Appendix B.

The comparison results for Γ = 6, shown in Figure 2, exhibit the same pattern. Our
algorithm has a significant performance over the benchmark algorithms, except the iterative
approach proposed by Chassein et al. (2019), when the uncertainty budget Γ is doubled. The
iterative approach solved 100% of instances with |V| = 40, k ∈ {2, 3, 4}, and Γ = 6, while
our algorithm solved 80% to 90% of instances with the same size. However, for |V| = 50, per-
formance of the iterative algorithm deteriorates, as it could only solve 0−10% of the instances,
whereas the double-oracle algorithm solved 10− 50% of these instances. These results clearly
show the performance advantage of the proposed algorithm over other algorithms proposed in
the literature, especially for large-size problems. It is worthy to note that the iterative approach
of Chassein et al. (2019), unlike ours, cannot guarantee global optimality since it uses a fixing
heuristic to handle a bilinear term in each iteration.
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Figure 3: Average CPU times for the solved instances of the adaptive shortest path problem

Another important performance measure for comparing algorithms is the processing (CPU)
time. We compare the CPU time of our algorithm to those of the iterative algorithm by Chas-
sein et al. (2019) and the scenario generation approach by Arslan et al. (2022). Based on
preliminary results, the other algorithms were too slow in comparison to the ones selected,
thus they were excluded. Figure 3 illustrate the average CPU times for different algorithms of
the instanced solved within the cut-off time for different problem sizes and with Γ = 3 and
Γ = 6. It can be seen that the iterative algorithm had better performance than our algorithm in
small-size instances (with an average difference of about 2 seconds). However, for the largest
problem size (V = 50), the iterative algorithm could not solve any instance with K > 3 within
the cut-off time, whereas our approach solved instances of the same size with K = 6 in less
than 20 seconds. We observe that the double-oracle algorithm has much smaller CPU times
for large instances in comparison to the iterative algorithm, which also does not guarantee
optimality. The average CPU times for the double-oracle algorithm and the scenario gener-
ation algorithm of Arslan et al. (2022) are almost identical. For example, the average CPU
times of our algorithm for instances with V ∈ {20, 25, 40}, Γ = 3, and K = {2, 3, 4, 5, 6}
were between 1.55 and 86.95 seconds, while those for the scenario generation algorithm were
1.62 − 82.07 seconds. However, the scenario generation algorithm could not solve any in-
stances with V = 50, and K > 3, while our algorithm solved some of these instances within
the cut-off time.

5.2 Adaptive Knapsack Problem
We then tested on the adaptive knapsack problem, for which the objective is to prepare K dif-
ferent combinations of items that respect the capacity constraint without exact knowledge of
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their profit. Let n ∈ {1, ..., n} be the set of items, wi and pi, respectively, be the weight and
profit of item i ∈ n, and b is the available budget. The feasible set is defined as X = {x ∈
{0, 1}n|

∑
i∈N wixi ≤ b}. The goal is to find the best combination of items that maximizes

the profit p′x. The uncertain parameter pi is assumed to follow pi = (1 +
∑

j∈m
Φijξj

2 )p̄i,
where p̄i is the nominal profit, |m| is the number of uncertain factors and Φ ∈ R|n|×|m| is the
factor loading matrix. The i-th row of Φ is characterized by the set {Φi ∈ [−1, 1]|m| |

∑
j∈m |Φij | =

1}. As a result, the realized profit of each object i ∈ n remains within the interval [p̄i− p̄i
2 , p̄i+

p̄i
2 ]. We solve the problem in different sizes n ∈ {100, 150, 200, 300} and different values of
K ∈ {2, 3, 4, 5, 6}. Ten instances of each combination of n, and K are solved, and the results
obtained from our algorithm are compared to those of the the IA of Chassein et al. (2019), the
MILP reformulation of Hanasusanto et al. (2015), and the SG method of Arslan et al. (2022).
These results are summarized in Tables 3 and 4.

Figure 4: Percentage of solved instances of the adaptive knapsack problem
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Figure 5: Average CPU times for the solved instances of the adaptive knapsack problem

Figure 4 shows the percentage of problems solved to proven optimality by each algorithm.
It can be seen that for different problem sizes, our algorithm and the scenario generation
method were able to solve almost the same percentage of test instances. However, MILP
and IA algorithms could not solve any instances with n = 100 and K > 2. By increasing n
and K, the percentage of solved instances by SG and DO dropped to 50 − 60%, showing the
significant impact of n and K on their performance. Figure 5 shows the average CPU times
for the algorithms with different problem sizes. Since the MILP reformulation and IA could
not solve large-size instances, we only compared against the SG algorithm in this round of
experiments. It can be seen that the average CPU times of our algorithm and SG approach are
very close, with no clear advantage for either algorithm. However, our algorithm is faster than
IA and MILP reformulation.

5.3 Problems with Actual First-Stage Decisions
Finally, we tested on binary K-adaptability problems with actual first-stage decisions of the
form:

min
x,{yk}k∈[K]

max
ξ∈Ξ

min
k∈[K]

∑
i

aixi +
∑
j

cjy
k
j (21a)

s.t.
∑
i

xi = b, (21b)∑
i

dixi +
∑
j

fjyj ≥ l, (21c)
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where x ∈ {0, 1}n, y ∈ {0, 1}m are the first- and second-stage decision variables, respectively.
Moreover, we set cj = c̄j − ξj ĉj , where c̄j is the nominal value that is drawn at random from
the uniform distribution U(8, 12) and ĉj is the maximal deviation, set equal to 25% of the
nominal value. Moreover, ai, di fj are generated randomly based on the uniform distributions
U(8, 12), U(50, 100) and U(80, 90), respectively. Finally, we set b = 10, and l = 0. The
uncertain parameter ξj follows Ξ = {ξ ∈ [0, 1]|

∑
j ξj ≤ Γ}. 10 random instances of each

size and uncertainty budget combination were solved. We compared the results of our algo-
rithm to those of the MILP reformulation of Hanasusanto et al. (2015) and Branch-and-Bound
(BB) approach of Subramanyam et al. (2020), which is adapted to each application using the
authors’ implementation available here, for different instance sizes n ∈ {20, 30, 40, 50} and
m ∈ {20, 30, 40, 50}. Complete results are presented in Tables 5 and 6 in Appendix B.

Figure 6: Percentage of solved instances of the two-stage problem
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Figure 7: Average CPU times for the solved instances of the two-stage problem

Figure 6 shows the percentage of instances solved by each algorithm. For small problem
sizes (i.e., n = m = 20, 30), all algorithms were able to solve all instances. However, as
the problem sizes were increased, the performance advantage of our algorithm became clear,
especially for large values of K. For example, the MILP reformulation could solve 60% of
instances of size n = m = 50 only with K = 2, but none when K > 2. In contrast, our
algorithm solved the vast majority of instances of the same size to proven optimality within
the cut-off time even with K = 6. Similar insights could be drawn from Figure 7, which
shows the CPU times of all algorithms for the problems that were solved within the cutoff time.
Again, it is clear that while the MILP reformulation could solve small instances with small K
values efficiently, our algorithm significantly outperforms it in large instances. Furthermore,
the proposed algorithm scales well in K, thus can result in high adaptability in the face of
parameter uncertainty.

6 Conclusion
In this paper, we proposed a new algorithm for solving K-adaptability problems, possibly in-
volving constraint and objective function uncertainty and non-linear functions. The algorithm
combines discrete scenario generation and p-center assignment problem with Logic-based
Benders decomposition, where the sub-problem is a MMMRCO. Numerical experiments on
benchmark test instances demonstrated that the proposed algorithm performs well with large-
size instances and for large K values. It was able to solve larger instances to optimality and
produce the result faster than the state-of-the-art algorithms from the existing K-adaptability
and MMMRCO literature. The proposed algorithm could solve instances of adaptive knapsack
problem with up to 300 items with k up to 6, while the existing algorithms could solve only a
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small percentage of the instances with up to 100 items and 250 items with k up to 4. We also
showed that the proposed algorithm can solve the shortest path problem with up to 50 nodes
while the existing algorithm barely can solve this problem with more than 50 nodes.

The proposed algorithm dominates the iterative scheme of Chassein et al. (2019) from
different points of view. First, our algorithm is faster than the iterative algorithm in large-scale
adaptive Knapsack and shortest path problems. Second, The iterative scheme of Chassein et al.
(2019) reaches its limit with K = 2 with 50 nodes for the shortest path problem while our
algorithm easily solves problems with larger K values up to 6. Our algorithm also performs
better than the RCG algorithm of Goerigk et al. (2020) that is tailored solely for budgeted
uncertainty sets. The RCG algorithm still cannot handle the shortest path problem with n > 40
and K > 3, whereas results show that our algorithm works efficiently for n > 50. Our
algorithm also dominates the MILP reformulation of Hanasusanto et al. (2015) that cannot
solve the shortest path problem with 40 nodes and K > 3. Moreover, the MILP reformulation
cannot handle the knapsack problem with more than 100 items. Our algorithm also shows
better performance with respect to the percentage of solved instances and processing time than
the SG method of Arslan et al. (2022) for the shortest path problem. However, the proposed
double-oracle algorithm and the SG method have almost the same performance on the adaptive
Knapsack problem.

Finally, the proposed algorithm leverages a logic-based Benders decomposition to solve
the K-adaptability faster than any algorithm in the literature. It can handle instances with up
to 50 binary decision variables in each of the first- and second-stage problems. Consequently,
we can conclude that not only is our algorithm more efficient with regard to solving large-
scale problems in the reasonable time, but also the algorithm is generic and can be extended to
tackle different variants of the problems such as nonlinear objective functions and constraints,
uncertain parameters in constraints and first-stage objective function.

For future research, we plan to investigate how the proposed algorithm can be extended
to general RO problems with combinatorial recourse and to K-adaptability problems with
continuous first-stage variables. We also propose using efficient methods to solve the p-center
problem for future research to increase the efficiency of the proposed algorithm. Another
important future research can be improving the lower bound used in optimality cut, a better
lower bound can lead to faster convergence to optimal solution in our proposed algorithm.
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A Proofs
Proposition 4. The objective function value, w, of the p-center problem (6) can be achieved
by solving w∗ = maxh∈[H] minj∈[J ′] ξ

′
hQyj

Proof. There are |H| constraints in the form of (6b) while constraints (6c) force the prob-
lem to select one pair of scenario and solution in each constraint (6b). The objective value
should be minimum of w that is greater than selected pairs of scenarios and solutions in each
h constraint (6b). To find the optimal value of w, minimum of ξ′hQyj for each h ∈ [H ′]
is selected, then optimal w∗ will be maximum of selected pairs of scenarios and solutions in
each constraint (6b). If w∗ > maxh∈[H] minj∈[J ′] ξ

′
hQyj , then it cannot be optimal because

there is a feasible solution with lower objective value which is maxh∈[H] minj∈[J ′] ξ
′
hQyj . On

the other hand, if w∗ < maxh∈[H] minj∈[J ′] ξ
′
hQyj , then some of constraints (6b) whose pair

of solutions and scenarios are greater than w will be violated. Consequently, UB = w∗ =
maxh∈[H] minj∈[J ′] ξ

′
hQyj .

Proposition 5. The objective function value, γ, of the problem (8) can be achieved by solving
γ∗ = maxh∈[H′] minyk∈Y ξ

′
hQyk.

Proof. Let us assume that yk
∗

is the optimal solution of problem (8). There are |K| × |H ′|
constraints of (8b). For each h ∈ [H ′] there are |K| constraints in form of (8b). Constraints
(8c) force the problem to select one pair of scenarios and solutions for each h ∈ [H ′]. The
objective function is minimization, consequently, minimum of (yk

∗
, ξ′h) for each h ∈ [H ′]

are selected. Since γ should be greater than ξ′hQyk
∗
, then maximum of selected pairs will be

optimal objective value γ∗. Consequently, the optimal value of objective function, γ∗ can be
achieved by solving γ∗ = maxh∈[H′] minyk∈Y ξ

′
hQyk.

B Results
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Table 1: Percentage of solved shortest path instances for Γ = 3

Size Algorithms k = 2 k = 3 k = 4 k = 5 k = 6

20

Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 100% 100% 80% 80% 80%
IA Chassein et al. (2019) 90% 90% 70% 70% 60%
RCG Goerigk et al. (2020) 40% 30% 10% 10% 10%
SG Arslan et al. (2022) 100% 100% 80% 80% 80%

25

Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 100% 100% 40% 10% 10%
IA Chassein et al. (2019) 100% 100% 80% 40% 40%
RCG Goerigk et al. (2020) 50% 20% 10% 0% 0%
SG Arslan et al. (2022) 100% 100% 100% 100% 100%

40

Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 90% 80% 40% 0% 0%
IA Chassein et al. (2019) 100% 100% 100% 80% 70%
RCG Goerigk et al. (2020) 10% 10% 0% 0% 0%
SG Arslan et al. (2022) 100% 100% 80% 80% 80%

50

Double-Oracle 60% 40% 30% 30% 30%
MILP Hanasusanto et al. (2015) 10% 0% 0% 0% 0%
IA Chassein et al. (2019) 20% 10% 0% 0% 0%
RCG Goerigk et al. (2020) 0% 0% 0% 0% 0%
SG Arslan et al. (2022) 30% 10% 0% 0% 0%
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Table 2: Percentage of solved shortest path instances for Γ = 6

Size Algorithms k = 2 k = 3 k = 4 k = 5 k = 6

20

Double-Oracle 100% 100% 100% 100% 90%
MILP Hanasusanto et al. (2015) 100% 100% 80% 70% 70%
IA Chassein et al. (2019) 90% 80% 70% 60% 60%
RCG Goerigk et al. (2020) 40% 30% 10% 0% 0%
SG Arslan et al. (2022) 80% 80% 60% 60% 50%

25

Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 100% 100% 40% 10% 0%
IA Chassein et al. (2019) 100% 100% 100% 60% 40%
RCG Goerigk et al. (2020) 40% 10% 0% 0% 0%
SG Arslan et al. (2022) 90% 90% 70% 70% 70%

40

Double-Oracle 90% 90% 80% 80% 80%
MILP Hanasusanto et al. (2015) 80% 70% 10% 0% 0%
IA Chassein et al. (2019) 100% 100% 100% 90% 50%
RCG Goerigk et al. (2020) 10% 0% 0% 0% 0%
SG Arslan et al. (2022) 80% 80% 60% 50% 50%

50

Double-Oracle 50% 40% 10% 10% 10%
MILP Hanasusanto et al. (2015) 0% 0% 0% 0% 0%
IA Chassein et al. (2019) 10% 0% 0% 0% 0%
RCG Goerigk et al. (2020) 0% 0% 0% 0% 0%
SG Arslan et al. (2022) 30% 10% 0% 0% 0%
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Table 3: Average CPU time for solved shortest path instances for Γ = 3

Size Algorithms k = 2 k = 3 k = 4 k = 5 k = 6

20

Double-Oracle 1.55 1.56 1.69 1.82 1.99
MILP Hanasusanto et al. (2015) 0.46 0.96 3.09 6.54 433.08
IA Chassein et al. (2019) 0.35 0.41 0.38 0.40 0.43
RCG Goerigk et al. (2020) 1749.49 2569.55 2955.92 3491.93 3564.87
SG Arslan et al. (2022) 1.62 1.59 1.77 1.85 1.99

25

Double-Oracle 2.87 2.80 3.26 3.70 7.23
MILP Hanasusanto et al. (2015) 12.69 53.75 524.45 2.50 16.55
IA Chassein et al. (2019) 3.44 3.42 3.23 4.08 4.36
RCG Goerigk et al. (2020) 4373.73 6423.87 7129.75 NA NA
SG Arslan et al. (2022) 2.93 2.95 3.07 3.94 6.52

40

Double-Oracle 8.63 7.50 9.04 11.97 86.95
MILP Hanasusanto et al. (2015) 90.61 299.26 873.76 NA NA
IA Chassein et al. (2019) 68.45 81.99 79.13 65.68 77.08
RCG Goerigk et al. (2020) 3498.99 5139.10 NA NA NA
SG Arslan et al. (2022) 6.91 6.51 8.93 10.85 82.07

50

Double-Oracle 9.00 17.04 17.15 15.36 17.78
MILP Hanasusanto et al. (2015) 355.99 NA NA NA NA
IA Chassein et al. (2019) 102.68 118.69 NA NA NA
RCG Goerigk et al. (2020) NA NA NA NA NA
SG Arslan et al. (2022) 28.93 NA NA NA NA
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Table 4: Average CPU time (s) for solved shortest path instances for Γ = 6

Size Algorithms k = 2 k = 3 k = 4 k = 5 k = 6

20

Double-Oracle 1.54 1.54 1.54 1.61 1.85
MILP Hanasusanto et al. (2015) 0.72 1.26 3.31 7.21 119.40
IA Chassein et al. (2019) 0.28 0.35 0.36 0.40 0.42
RCG Goerigk et al. (2020) 1766.99 2595.24 2985.48 NA NA
SG Arslan et al. (2022) 1.55 1.57 1.61 1.64 1.93

25

Double-Oracle 4.43 4.47 5.08 8.19 9.23
MILP Hanasusanto et al. (2015) 14.31 75.40 151.24 389.98 NA
IA Chassein et al. (2019) 3.39 4.34 4.84 5.28 14.11
RCG Goerigk et al. (2020) 4417.47 6488.11 NA NA NA
SG Arslan et al. (2022) 4.40 4.66 4.91 8.16 10.10

40

Double-Oracle 10.59 11.27 14.58 22.20 26.96
MILP Hanasusanto et al. (2015) 70.59 664.92 1044.60 NA NA
IA Chassein et al. (2019) 54.03 73.24 74.91 81.40 85.20
RCG Goerigk et al. (2020) 3533.98 NA NA NA NA
SG Arslan et al. (2022) 11.41 11.81 12.20 20.76 24.96

50

Double-Oracle 10.46 15.45 15.70 18.01 22.08
MILP Hanasusanto et al. (2015) NA NA NA NA NA
IA Chassein et al. (2019) 81.04 NA NA NA NA
RCG Goerigk et al. (2020) NA NA NA NA NA
SG Arslan et al. (2022) 33.67 48.21 NA NA NA
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Table 5: Percentage of solved knapsack problem instances

Size Algorithms k = 2 k = 3 k = 4 k = 5 k = 6

100

Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 20% 0% 0% 0% 0%
IA Chassein et al. (2019) 20% 10% 0% 0% 0%
SG Arslan et al. (2022) 100% 100% 100% 100% 100%

150

Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 10% 0% 0% 0% 0%
IA Chassein et al. (2019) 10% 0% 0% 0% 0%
SG Arslan et al. (2022) 100% 100% 100% 100% 100%

200

Double-Oracle 70% 70% 70% 60% 60%
MILP Hanasusanto et al. (2015) 0% 0% 0% 0% 0%
IA Chassein et al. (2019) 0% 0% 0% 0% 0%
SG Arslan et al. (2022) 70% 70% 70% 60% 60%

300

Double-Oracle 60% 60% 50% 50% 50%
MILP Hanasusanto et al. (2015) 0% 0% 0% 0% 0%
IA Chassein et al. (2019) 0% 0% 0% 0% 0%
SG Arslan et al. (2022) 60% 50% 60% 50% 40%

Table 6: Average CPU time (s) of solved knapsack problem instances

Size Algorithms k = 2 k = 3 k = 4 k = 5 k = 6

100

Double-Oracle 16.29 25.92 49.01 49.60 128.35
MILP Hanasusanto et al. (2015) 3829.95 NA NA NA NA
IA Chassein et al. (2019) 999.12 1460.23 NA NA NA
SG Arslan et al. (2022) 22.60 28.85 70.23 118.96 212.19

150

Double-Oracle 83.93 92.21 93.19 93.45 110.52
MILP Hanasusanto et al. (2015) 4072.81 NA NA NA NA
IA Chassein et al. (2019) 70.94 NA NA NA NA
SG Arslan et al. (2022) 72.73 88.41 82.61 102.92 124.05

200

Double-Oracle 457.84 515.72 545.24 567.05 574.33
MILP Hanasusanto et al. (2015) NA NA NA NA NA
IA Chassein et al. (2019) NA NA NA NA NA
SG Arslan et al. (2022) 537.63 548.42 573.13 622.36 630.55

300

Double-Oracle 1734.74 2129.96 2673.10 3382.99 4875.86
MILP Hanasusanto et al. (2015) NA NA NA NA NA
IA Chassein et al. (2019) NA NA NA NA NA
SG Arslan et al. (2022) 1733.66 2138.93 2638.38 3468.43 5233.18
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Table 7: Percentage of solved generic K-adaptability instances

Size Algorithms k = 2 k = 3 k = 4 k = 5 k = 6

n=20,m=20
Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 100% 100% 100% 100% 100%
BB Subramanyam et al. (2020) 100% 100% 100% 100% 100%

n=30,m=30
Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 100% 100% 100% 100% 100%
BB Subramanyam et al. (2020) 100% 100% 100% 100% 100%

n=40,m=40
Double-Oracle 100% 100% 100% 100% 100%
MILP Hanasusanto et al. (2015) 100% 80% 80% 0% 0%
BB Subramanyam et al. (2020) 100% 100% 80% 80% 70%

n=50,m=50
Double-Oracle 100% 80% 80% 70% 70%
MILP Hanasusanto et al. (2015) 60% 0% 0% 0% 0%
BB Subramanyam et al. (2020) 100% 60% 50% 20% 10%

Table 8: Average CPU time (s) of solved generic K-adaptability instances

Size Algorithms k = 2 k = 3 k = 4 k = 5 k = 6

n=20,m=20
Double-Oracle 12.17 16.51 22.11 28.48 37.52
MILP Hanasusanto et al. (2015) 0.82 1.47 0.50 21.93 70.54
BB Subramanyam et al. (2020) 12.47 17.75 24.29 26.62 35.78

n=30,m=30
Double-Oracle 31.84 41.69 42.13 57.68 58.45
MILP Hanasusanto et al. (2015) 1.10 2.78 128.62 325.99 402.52
BB Subramanyam et al. (2020) 32.62 44.82 96.30 153.90 355.75

n=40,m=40
Double-Oracle 50.67 62.05 73.02 189.71 294.91
MILP Hanasusanto et al. (2015) 1.50 112.55 196.46 NA NA
BB Subramanyam et al. (2020) 81.91 660.71 800.25 1077.28 NA

n=50,m=50
Double-Oracle 74.63 86.93 186.54 308.29 530.35
MILP Hanasusanto et al. (2015) 3.87 NA NA NA NA
BB Subramanyam et al. (2020) 176.47 930.46 1205.01 NA NA
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