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Chapter 1

Why a Surge of Interest in Robust
Optimization?

1.1 A production problem example

Let’s start our discussion with a simple example.

Example 1.1. :A simple production problem (See Example 1.1.1 in [10])

A company produces two kinds of drugs, DrugI and DrugII, containing a specific
agent A, which is extracted from raw materials purchased on the market. The related
production, cost, and resource data are given in the table below. The goal is to find
the production plan that maximizes the profit of the company. Below the data for this
problem is presented.

3
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Table 1.1: Drug production data

Drug production data
Parameter Drug I Drug II

Selling price,
$ per 1000 packs

6,200 6,900

Content of agent A,
g per 1000 packs

0.500 0.600

Manpower required,
hours per 1000 packs

90.0 100.0

Equipment required,
hours per 1000 packs

40.0 50.0

Operational costs,
$ per 1000 packs

700 800

Table 1.2: Contents of raw materials

Raw material Purchasing price,
$ per kg

Content of agent A,
g per kg

Raw I 100.00 0.01
Raw II 199.90 0.02

Table 1.3: Resources

Resources
Budget,
$

Manpower,
hours

Equipment,
hours

Capacity of raw materials,
storage, kg

100,000 2,000 800 1,000

Actually, one can easily think of a linear programming model that could help iden-
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tify a well motivated production plan. Take for instance the following one.

maximize
RI,RII,DI,DII

6200DI + 6900DII− (100RI + 199.90RII + 700DI + 800DII)

subject to RI + RII ≤ 1000 (Storage)

90DI + 100DII ≤ 2000 (Manpower)

40DI + 50DII ≤ 800 (Equipment)

100RI + 199.9RII + 700DI + 800DII ≤ 100000 (Budget)

0.01RI + 0.02RII− 0.5DI− 0.6DII ≥ 0 (Agent A)

RI ≥ 0,RII ≥ 0,DI ≥ 0,DII ≥ 0,

where RI and RII are respectively the amount (in kg) of raw material of type 1 and 2
ordered, while DI and DII are respectively the amount (in 1000 packs) of drug 1 and
2 produced.

The solution of this mathematical model can be found easily and will suggest the
following : order 438 kg of raw material 2 (no raw material 1) and produce 17 552 packs
of drug 1 for a total profit of 8820$. Yet, we might realize that our solution is quite
sensitive to the choice of parameters that we made. In particular, since the constraint
(Agent A) is active at this solution (i.e. there are no extra amount of agent A after
performing the production), a small perturbation of the coefficients that describe this
constraint could make the current solution infeasible (i.e. impossible to implement). In
particular, assume that after ordering the raw material and starting the production of
some agent A, we realize that their was a 2% error in the estimation of the conversion
rate of this raw material, namely that only 0.0196 g can be extracted per kg of raw
material 2. This means that instead of producing 17 552 packs of drug 1, we will only
be able to produce 17 201 packs. Hence, the profit will drop from 8820$ to 6889$
(i.e. a 22% drop). In fact, in practice the repercussions might be more severe if the
company had for instance committed to the delivery of exactly 17 552 packs of drugs.
Hypothetically, it might mean that a number of sick patients won’t be able to pursue
their drug treatment and will need to start over on a new one for which the side effects
are unknown, etc.

This raises the question: “What could we have done better in order to protect
ourselves from potential estimation errors? ”

In fact, if we had considered that there was a chance that the conversion rates for
raw materials 1 and 2 could potentially be off by 0.5% and 2% respectively. We could
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have instead solved the following linear program:

maximize
RI,RII,DI,DII

6200DI + 6900DII− (100RI + 199.90RII + 700DI + 800DII)

subject to RI + RII ≤ 1000 (Storage)

90DI + 100DII ≤ 2000 (Manpower)

40DI + 50DII ≤ 800 (Equipment)

100RI + 199.9RII + 700DI + 800DII ≤ 100000 (Budget)

0.00995RI + 0.0196RII− 0.5DI− 0.6DII ≥ 0 (Agent A)

RI ≥ 0,RII ≥ 0,DI ≥ 0,DII ≥ 0.

This would have motivated using the production plan : order 878 kg of raw material
1 (no raw material 2) and produce 17 467 packs of drug 1 for a total profit of 8295$.
This solution can be considered “immuned” to a respective 0.5% and 2% perturbation
of the conversion rates of raw material 1 and 2. The immunization has to do with the
guarantee that the production plan will be implementable and that it will generate this
amount of profit no matter what the conversion rate ends up being, as long as it falls
within the specified range.

1.2 A generalized need for robust optimization

In the above example, we observed that the solution of an optimization problem can
quickly become infeasible (i.e. impossible to implement) when some parameters of the
problem are slightly different than what had been initially planned. We also saw an
example of modification that can be applied to the model to identify decisions that
are “robust” to such perturbation. This observation is not merely a simple coincidence
that appears on some oddly constructed models. In fact, in [13], the authors present
an exhaustive study that confirmed that for many realistic decision problems :

“ quite small (just 0.1%) perturbations of “obviously uncertain” data coef-
ficients can make the “nominal” optimal solution x∗ heavily infeasible and
thus practically meaningless. ”

Their case study involved the NETLIB library, a library of about 90 realistic deci-
sion problems from different applications of operations research. The average number
of decision variables in the library is around 2500 while they include around 1000 con-
straints on average. The authors considered that any coefficient that could not be
described using a fraction p/q with q = 1, ...100 was most likely a coefficient that was
subject to estimation error. Given such an “uncertain” coefficient ãij they considered
that it might be perturbed such as ãij = (1+ϵξij)aij where ξij is distributed on [−1, 1].
Given a constraint

∑
j ãijxij ≤ bi, they considered a solution x “unreliable” with re-

spect to constraint i if there was more than a 2% chance that the constraint would
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be violated by a relative factor of more than 5%; in other words, that the ϵ-reliability
index

Reliϵ(x) :=
98th-Percentile

(
max

(
0,
∑

j ãijxij − bi

))

max(1, |bi|)
× 100%

was above 5%.

Some of the results are summarized in the Table 2 of [13] reproduced below.

The authors then conclude that:

“ In applications of LP, there exists a real need of a technique capable of
detecting cases when data uncertainty can heavily affect the quality of the
nominal solution, and in these cases to generate a “reliable” solution, i.e.
one which is immuned against uncertainty. ”

1.3 A portfolio selection example

We follow with a second example which illustrates the need for robust optimization
even in contexts where it is the objective function that is affected by uncertainty.

Example 1.2. : A simple portfolio optimization problem (See Portfolio Example in [31])

We consider a portfolio construction problem consisting of n stocks. We consider
that stock i has future return ri and are looking for the portfolio composition that will
maximize total return on our investment. This can be done by solving the following
linear program:

maximize
x∈Rn

n∑

i=1

rixi

subject to
n∑

i=1

xi = 100%

xi ≥ 0 , ∀ i = 1, ..., n ,

where xi is the proportion of the budget invested in stock i, the first constraint implies
that we wish that all the budget be invested, and where xi ≥ 0 implies that we wish
to avoid short selling a stock.

Actually, this is a fairly trivial problem to solve and it is usually a useless one to
pose. It is trivial because the optimal solution is necessarily to invest all the budget in
the stock which has largest final return ri. It is useless because in an efficient financial
market, it should only be possible to obtain a larger return with an investment by
being exposed to larger risk. This fails to be captured by the model above given that
the largest return is considered guaranteed.
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Table 1.4: NETLIB problems with bad nominal solutions. “Nbad” refers to the num-
ber of unreliable constraints while “Index” refers to the largest relative violation, i.e.
maxiRel

i
ϵ(x

∗) (in %)

Problem Size ϵ = 0.01% ϵ = 0.1% ϵ = 1%

Nbad Index Nbad Index Nbad Index

80BAU3B 2263× 9799 37 84 177 842 364 8420
25FV47 822× 1571 14 16 28 162 35 1620
ADLITTLE 57× 97 2 6 7 58
AFIRO 28× 32 1 5 2 50
BNL2 2325× 3489 24 34
BRANDY 221× 249 1 5
CAPRI 272× 353 10 39 14 390
CYCLE 1904× 2857 2 110 5 1100 6 11 000
D2Q06C 2172× 5167 107 1150 134 11 500 168 115 000
E226 224× 282 2 15
FFFFF800 525× 854 6 8
FINNIS 498× 614 12 10 63 104 97 1040
GREENBEA 2393× 5405 13 116 30 1160 37 11 600
KB2 44× 41 5 27 6 268 10 2680
MAROS 847× 1443 3 6 38 57 73 566
NESM 751× 2923 37 20
PEROLD 626× 1376 6 34 26 339 58 3390
PILOT 1442× 3652 16 50 185 498 379 4980
PILOT4 411× 1000 42 210 000 63 2 100 000 75 21 000 000
PILOT87 2031× 4883 86 130 433 1300 990 13 000
PILOTJA 941× 1988 4 46 20 463 59 4630
PILOTNOV 976× 2172 4 69 13 694 47 6940
PILOTWE 723× 2789 61 12 200 69 122 000 69 1 220 000
SCFXM1 331× 457 1 95 3 946 11 9460
SCFXM2 661× 914 2 95 6 946 21 9460
SCFXM3 91× 1371 3 95 9 946 32 9460
SHARE1B 118× 225 1 257 1 2570 1 25 700

In reality, we would need to consider that there is uncertainty about the return
obtained from stock i. We call this uncertain return r̃i and characterize it using

r̃i = µi + σizi ,

where µi is the expected return, and σi describes the volatility of the return, finally zi
captures the source of the uncertainty about r̃i. You may for example, think of each
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zi as being independently distributed according to a standard normal distribution.

We will consider the following, problem instance with n = 150:

µi := 0.15 + i
0.05

150
σi :=

0.05

450

√
2in(n+ 1) , zi ∈ [−1, 1] .

Note that µi increases with i but at the price of an increased risk portrayed by σi. Note
also that our model assumes that each return r̃i, lies in the following interval (see also
table 1.5 for some examples).

r̃i ∈
[
0.15 + i

0.05

150
− 0.05

450

√
2in(n+ 1), 0.15 + i

0.05

150
+

0.05

450

√
2in(n+ 1)

]

Table 1.5: Table of return intervals and expected return for different stocks in the
model

Stock id Return interval Expected return
#1 [12.67%, 17.40%] 15.03%
#2 [11.72%, 18.41%] 15.06%
#3 [11.00%, 19.20%] 15.10%
#4 [10.40%, 19.86%] 15.13%
#5 [9.88%, 20.45%] 15.16%
. . . . . . . . .
#147 [−8.77%, 48.57%] 19.90%
#148 [−8.84%, 48.70%] 19.93%
#149 [−8.90%, 48.83%] 19.97%
#150 [−8.96%, 48.96%] 20.00%

We can also quantify our tolerance toward risk by assuming that at most Γ number
of stocks will have their return diverge from their expected value. By controlling the
value of Γ one can capture the idea that he is more or less risk averse. Setting Γ = 0
would justify investing in the stock with the highest estimated return no matter how
risky it is, namely the stock with index 150 whose return might be between -8.96% and
48.96%. Conversely, by setting Γ = 150 the robust solution would simply invest all of
the budget in the stock for which the lowest return achievable is the highest, namely
stock #1 which has a worst-case return of 12.67%.

For illustrative purposes, let’s assume we are worried of the case were up to four
stock returns diverge from their expected value. Then, when investing in stock i = 150,
we are at risk of loosing 8.96% of our investment although we expect to achieve 20%
return. Alternatively, we could attempt to solve the following optimization problem
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that only worries about the worst-case return:

maximize
x∈Rn

min
z:|zi|≤1,

∑
i |zi|≤Γ

n∑

i=1

(µi + σizi)xi

subject to
n∑

i=1

xi = 100%

xi ≥ 0 , ∀ i = 1, ..., n .

We will later find out that the portfolio that is obtained using this model achieves an
expected return of 18.62%, while it is guaranteed to generate a return above 17.38%
as long as at most four stock returns diverge from there expected value.

1.4 Defining robust optimization

The two examples above illustrate perfectly what are the premises of robust optimiza-
tion. The methodology is applied on a decision model for which we wish to identify
solutions that are immuned with respect to the actual realization of some of the pa-
rameters within a given uncertainty region. In other words, let one be interested in an
optimization model of the type:

(Nominal problem) maximize
x

h(x, z)

subject to gj(x, z) ≤ 0 , ∀ j = 1, ..., J ,

where x is a vector of decision variables, z is a vector of parameters that affect the
outcomes of our decision and which we might be uncertain about, h(·, ·) is a profit
function, and gj(·, ·) captures a constraint that might be affected by z. The robust
optimization framework will suggest identifying solutions that are immuned to any
realization that z might take in some uncertainty set Z by solving the following robust
counterpart

(Robust counterpart) maximize
x

min
z∈Z

h(x, z) (1.1a)

subject to gj(x, z) ≤ 0 , ∀ z ∈ Z, , ∀ j = 1, ..., J .(1.1b)

As was seen in the production problem, the modification to the constraints plays the
role of identifying solutions that are implementable no matter what the realization of z
is. Alternatively, the modification to the objective function plays the role of identifying
solutions for which the worst-case profit is as high as possible.

One can also interpret the robust counterpart problem as robustifying the con-
straints of the nominal problem presented in epigraph form:.

(Nominal in epigraph form) maximize
x,t

t

subject to t ≤ h(x, z)

gj(x, z) ≤ 0 , ∀ j = 1, ..., J ,
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for which the robust counterpart takes the form:

(Robust counterpart in epigraph form) maximize
x,t

t

subject to t ≤ h(x, z) , ∀ z ∈ Z
gj(x, z) ≤ 0 , ∀ z ∈ Z, , ∀ j = 1, ..., J .

which is equivalent to the robust counterpart presented above. Through this derivation
of the robust counterpart we can clearly observe that the robust counterpart maximizes
an amount t that is guaranteed to be superseded by the true profit no matter what set
of values the vector of parameters z takes.

1.5 A rise in popularity of the methodology

The idea of using a “maximin” model to identify good decisions is not a new one. It
originally appeared in the work of Abraham Wald [49] who got his inspiration from
the concept of zero-sum games in game theory. Indeed, he envisioned that decisions
could be made assuming that nature was an adversarial player that would select the
values of parameters after the decision was made. Later on, Allen L. Soyster introduces
in [46] the idea of a robust constraint and applies it to linear programs. The idea did
not initially gain much in popularity since it was considered too conservative. Indeed,
A. L. Soyster was proposing that each parameter be defined in its own interval thus
each would be allowed to take its respective worst-case value (similarly to what was
presented in the production problem of section 1.1).

Actually, in the meantime, Herbert Scarf also proposed in [41] to employ a form of
robust optimization which he called minimax stochastic programming as it was applied
to evaluate the worst-case expected value of a function in cases where the distribution
is unknown apart from its mean and variance statistics. He suggested optimizing this
new measure and gave as example a simple newsvendor problem which he was able to
solve analytically. Unfortunately, the approach was a little hard to generalize at the
time to larger decision models.

One has to wait until the turn of the century to see a real enthusiasm catch on
for the robust optimization method. Indeed, in their seminal paper [12], Ben-Tal and
Nemirovski reintroduced the notion of robust optimization for convex optimization
problems. The success of this paper lies in the fact that they were able to reduce the
level of conservatism of the method by proposing the use of an ellipsoid as uncertainty
set and to demonstrate that the robust counterpart model was often computationally
tractable. Indeed, one can observe in the figure below that the ellipsoid (e.g. the circle
in R2) does not allow all parameters to take on their worst-case value simultaneously.
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-1

-1

 1

 1
✓

1p
2
,

1p
2

◆

The figure below presents the rise in popularity of the methodology between 1998
and 2015. In particular, the two graphs present a surprising growth of the annual
number of new publications and new citations associated to this topic. We have es-
timated that these statistics indicate an average 20% yearly increase in productivity
around this topic between 2005 and 2014. In addition, during this period, according
to Proquest there has been 201 thesis and dissertation published and 715 abstracts
using the keyword “robust optimization” at INFORMS annual meetings (127 actually
in 2014).

Figure 1.1: Rise in popularity of “robust optimization” in the scientific literature.

It is generally believed that the main reasons of the significant rebirth of robust
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optimization are the following:

• The discovery that if the structure of the uncertainty set is well chosen, then the
robust counterpart model can be shown to reduce to an equivalent mathematical
program that is not much harder to solve than the original problem.

• The development of more powerful computers and in particular of fast interior
point methods that can be employed to solve convex optimization models that
have richer structure than linear programs.

• Studies such as [19] which proposed simple uncertainty sets that could be used
and which reinforced the connection with the stochastic programming literature.
In particular, many now consider robust optimization as being a tractable approx-
imation method that can address a number of stochastic programming models
considered impossible to solve.

1.6 RSOME : A RO library for Python (and Mat-

lab)

During this course, we will employ a Python library developed by Zhi Chen, Melvyn
Sim and Peng Xiong in order to facilitate the application of robust optimization on
decision problems that can be modelled using linear programming. The library was first
introduced in [24] and all its documentation can be found on the official website (url).

https://xiongpengnus.github.io/rsome/about

The package can already be used to describe in algebraic form the details of a
linear programming model. We will later show how to describe a robust optimization
problem.

Looking back at our production problem one might wonder how to describe the
nominal problem using “Robust and Stochastic Optimization Made Easy” (RSOME,
pronounced “Aresome”). In fact, once the package is imported (“from rsome im-
port ro”) this is done using a set of simple commands that enables one to create a
model (“model = ro.Model”), to define each decision vector (“x=model.dvar”), the
objective function (“model.max”), each constraint (“model.st”), and then solve the
model (“model.solve()”) and retrieve the optimal value and solution (“model.get()” and
“x.get()” respectively). The solver that is used by default when calling “model.solve()”
is “linprog()” from the “scipy.optimize” package. One needs to know however that
linprog() cannot solve robust optimization problems that employ more sophisticated
uncertainty set (such as the ellipsoidal set). In this course, we will rather use Mosek
which needs to be imported (“from rsome import msk solver as my solver”) and called
at the moment of solving (“model.solve(my solver)”).

https://xiongpengnus.github.io/rsome/about
https://xiongpengnus.github.io/rsome/about
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Below you will find the models we developed for the nominal production planning
and portfolio selection problems. The implementations are available in Google Colab.

Using RSOME to solve the nominal production problem (see Google Colab)

https://colab.research.google.com/drive/11N9LmKGqxn71tI-PjQ_GpUkthzbTax_E?usp=sharing
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Using RSOME to solve the nominal portfolio selection (see Google Colab)

In order to tap into the true purpose of RSOME, namely solving a robust optimiza-
tion problem, one needs to define a vector of uncertain parameters (“model.rvar”), an
uncertainty set (e.g. “boxSet = (abs(z) ≤ 1)”), and implicate the uncertain vector in the
objective function and constraints, while ensuring to link the uncertainty set in the ob-
jective function call (“model.maxmin(. . . ,boxSet)”) or the constraint (“model.st((. . . ).forall(boxSet))”).1

See for example the robust portfolio selection problem below which employs a budgeted
uncertainty set. Namely, that each zi must be between -1 and 1 and that the sum of
absolute deviation of the z vector from zero must be less than Γ.

1Note that with if only the model.maxmin(. . . ,boxSet) command is used, then every objective
function and constraint where the uncertain parameters appear will be internally replaced by its
robust counterpart.

https://colab.research.google.com/drive/14K0BOt_oDxbIKcOQHiVMaBiN5uUjdlFY?usp=sharing
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Using RSOME to solve the robust portfolio selection (see Google Colab)

When Γ = 4, one obtains with this model the robust portfolio that was proposed in
the example of section 1.3 which guarantees a return above 17.38% as long as the return
vector z satisfies the specified constraints. This protection is achieved at the price of
a lower performance if the expected return values end up being reached. Specifically,
this would mean a drop from 20% to 18.62% return, a difference of 1.38% which is
often referred as the “price of robustness”[19].

1.7 Applications

While one can find in [15] a number of references to interesting applications of robust
optimization in statistics, supply chain management, integrated circuit design, antenna
design, structural design, finance, etc. We describe briefly below some interesting
applications that we have been exposed to.

1.7.1 Robust congestion minimization

In [26], we considered the problem of routing packets on a telecommunication network
with congestion. While in routing problems, delays of packets that travel on different
links of such networks are typically modelled using M/M/1 queuing system, there
are strong empirical evidence indicating that a number of factors cause the realized
transmission time to often suffer substantial deviations from these theoretical estimates
(see [29] as portrayed in the figure below).

https://colab.research.google.com/drive/14K0BOt_oDxbIKcOQHiVMaBiN5uUjdlFY?usp=sharing
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Delay uncertainty on a link of a telecommunication network

Delage, Gianoli and Sansó: Practicable Robust Optimization for Decomposable Functions
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upper bound on link delay when
employing TSEA

Parameter Description Value
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Table 4 Functions used in Figure 5(b).
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Figure 5 Comparison of uncertainty regions produced through di↵erent approaches. (a) presents measurements

of congestion while (b) presents the uncertainty regions captured by the di↵erent methods.

Question: What is a good routing strategy to employ when one wishes to guarantee
a certain level of Quality of Service (i.e. maximum packet delays) while what we know
of the delay that might be encountered on each link given different amount of traffic
takes the shape of historical observations that do not fit any predetermined theoretical
model?

Our answer: We propose to encapsulate the uncertainty about the link delay be-
tween two convex functions, namely a nominal function ĥi(xi) (diamonds ♦) and an
upper bounding function h+i (xi) (squares ■) as portrayed in the following figure.
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Bounding functions for delay uncertainty

Delage, Gianoli and Sansó: Practicable Robust Optimization for Decomposable Functions
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xP

d2D ⇢
d

!
Function that approximates the
upper bound on link delay according
to our parameterized weighted link
delay function

Upper-fixed-
additive

✓P
d2D ⇢

d

x

◆
·
 

d̂
(1 + x)1+â � 1
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We then replaced the nominal objective function calculating total weighted conges-
tion

minimize
x∈X

n∑

i=1

ĥi(xi) ,

where X is the set of feasible routing strategy to satisfy the packet transmission de-
mand, with the following robust counterpart

minimize
x∈X

max
z∈Z

n∑

i=1

ĥi(xi) + zi(h
+
i (xi)− ĥi(xi)) ,

where Z is the set of all zi ∈ [0, 1] such that
∑n

i=1 zi ≤ Γ. In other words, while we
expect that some of the delay incurred might be as large as what is described by the
upper bounding functions, we do not expect that more than Γ of these delay actually
do.

With this solution scheme, RO has the potential to help Internet Service Providers
(ISPs) to provide the requested Quality of Service (QoS) to incoming traffic. We
experimented with an exhaustive set of realistic network management conditions in
order to illustrate what type of trade-off can be achieved between the amount of total
congestion that is expected versus the amount that is at risk of being achieved under
less favourable conditions.
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Trade-off between average (x-axis) and 95th percentile (y-axis) of total congestion

Robust formulation

1.7.2 Robust Partitioning for Multi-Vehicle Routing

Consider being the operations director of a large parcel delivery service company. You
need to divide a planar region into K subregions, each serviced by a different delivery
vehicle, so that the total workload be most evenly distributed among the fleet.

Step #1: Identify the territory and where the parcel depot is located
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Step #2: Divide the territory into as many sectors as there are vehicle

Step #3: On a given morning, find out where parcels need to be delivered
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Step #4: Each vehicle will deliver parcels to the locations in its own sector

Question: Given that you don’t know yet where will the next batch of parcel need
to be delivered but only know that some areas are more likely to receive parcels than
others, how would you divide the space into sectors? Consider especially the fact that
a driver will become frustrated if the sector he is assigned to always has a longer route
to traverse than the sectors assigned to other drivers. Finally, how would you divide
the territory if you did not have a “distribution” of parcel delivery locations but rather
only some historical reports of where parcels were delivered at similar periods of time?

Our answer:

1. If we knew the distribution of parcel delivery locations, then we would probably
need to divide the territory so that the largest workload among the different
drivers is as small as possible

minimize
{R1,R2,...,RK}

max
i

E[RouteLength({ξ1, ξ2, ..., ξN} ∩ Ri)] ,

2. Since we don’t know the distribution, we instead use the historical data to identify
a set D which we believe contains the true distribution of parcel delivery location.

3. Given D, we divide the territory so that the largest workload over the worst
distribution of delivery locations is as small as possible

minimize
{R1,R2,...,RK}

sup
F∈D

{
max
i

E[RouteLength({ξ1, ξ2, ..., ξN} ∩ Ri)]
}

,
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4. A side product is to characterize for any sector what is a worst-case distribution
of demand locations

We simulated three partition schemes on a set of randomly generated parcel delivery
problems where the territory needed to be divided into two regions and the delivery
locations are drawn from a mixture of truncated Gaussian distributions.
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We employed the same method to suggest how to divide the territory of USA-Mexico
border among a set of seven border patrol cars.



1.7. APPLICATIONS 23

1.7.3 Robust Aircraft Fleet Composition

In some joint work with The Boeing Cie we were asked to help develop a software
that would allow airline companies to account for uncertain passenger demand at the
moment of acquiring new aircraft. Note that these acquisitions are typically done 10
to 20 years ahead of schedule at a moment where many factors are still unknown to the
airline company: e.g., passenger demand, fuel prices, etc. Yet, most airline companies
sign these acquisition contracts based on a single scenario of what the future may be.

Question: Are these airline companies being neglectful in not considering a larger
number of future scenarios for the different influencing factors?

Our answer: Not necessarily under two assumptions: 1) a reasonable model is used
for what are the recourse actions that can be employed when the passenger demand is
known and 2) the single scenario that is used is “well” chosen.

Here is our mathematical model (a stochastic mixed integer linear program) for this
fleet composition problem:

(SP ) maximize
x

E [− oTx︸︷︷︸
ownership cost

+h(x, p̃, c̃, L̃)︸ ︷︷ ︸
future profits

] ,
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with h(x, p̃, c̃, L̃) :=

max
z≥0,y≥0,w

∑

k

(
∑

i

flight profit︷ ︸︸ ︷
p̃kiw

k
i −

rental cost︷ ︸︸ ︷
c̃k(zk − xk)

++

lease revenue︷ ︸︸ ︷
L̃k(xk − zk)

+ )

subject to wki ∈ {0, 1} , ∀ k, ∀ i &
∑

k

wki = 1 , ∀ i } Cover

ykg∈in(v) +
∑

i∈arr(v)
wki = ykg∈out(v) +

∑

i∈dep(v)
wki , ∀ k, ∀ v } Balance

zk =
∑

v∈{v|time(v)=0}
(ykg∈in(v) +

∑

i∈arr(v)
wki ) , ∀k } Count

where x captures how many aircraft of each type will initially be acquired, then z,
y, and w are the possible recourse actions available once demand is known. First, w
captures what type of aircraft serves each flight leg, y accounts for aircraft that are
parked in airports between different flight, and z captures how many aircraft of each
type is actually needed to serve the demand. Note that here we modelled the fact that
the airline could both borrow some additional aircraft or lease out aircraft that it does
not use.

This is in general a hard optimization problem to solve for the following reasons:

• One needs to identify and motivate a joint distribution model for the future flight
leg profits achieved by each available aircraft.

• One needs to generate a large number of scenarios from the distribution model
in order for the mathematical model to have finite dimensions.

• Current algorithms are inefficient at optimizing such stochastic programs because
they involve integer decision variables.

What we realized is that if one has reliable information about the expected values
p̄ := E[p̃], c̄ := E[c̃], and L̄ := E[L̃], and wishes to be robust with respect to other
properties of the distribution, then the robust optimization model

(DRO) maximize
x

min
F∈D

EF [− oTx︸︷︷︸
ownership cost

+h(x, p̃, c̃, L̃)︸ ︷︷ ︸
future profits

] ,

simply reduces to
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max
x,z≥0,y≥0,w

− oTx︸︷︷︸
ownership cost

+
∑

k

(
∑

i

flight profit︷ ︸︸ ︷
p̄kiw

k
i −

rental cost︷ ︸︸ ︷
c̄k(zk − xk)

++

lease revenue︷ ︸︸ ︷
L̄k(xk − zk)

+ )

subject to wki ∈ {0, 1} , ∀ k, ∀ i &
∑

k

wki = 1 , ∀ i } Cover

ykg∈in(v) +
∑

i∈arr(v)
wki = ykg∈out(v) +

∑

i∈dep(v)
wki , ∀ k, ∀ v } Balance

zk =
∑

v∈{v|time(v)=0}
(ykg∈in(v) +

∑

i∈arr(v)
wki ) , ∀k } Count

We experimented with three test cases :

1. 3 types of aircraft, 84 flights, σp̃i/µp̃i ∈ [4%, 53%]

2. 4 types of aircraft, 240 flights, σp̃i/µp̃i ∈ [2%, 20%]

3. 13 types of aircraft, 535 flights, σp̃i/µp̃i ∈ [2%, 58%]

Results:
Test CPU Time DRO sub-optimality
cases DRO SP ∀ F ∈ D
#1 0.6 s 3 min < 6%
#2 1 s 14 min < 1%
#3 5 s 21 h < 7%

Our conclusion here was that in the three cases, it was wasteful to invest more than
7% of the expected profits in the development and resolution of models that would
account for the uncertainty about factors such as passenger demand, fuel prices, etc.
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Part II

Fundamental Theory
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Chapter 2

Robust Counterpart of Linear
Programs

In this chapter, we assume that the functions that need to be “robustified” are linear
functions of both the decision variables and the vector of parameters. Namely, we
investigate the robust counterpart model presented in problem (1.1) and repeated below

(Robust counterpart) maximize
x

min
z∈Z

h(x, z)

subject to gj(x, z) ≤ 0 , ∀ z ∈ Z, , ∀ j = 1, ..., J .

and assume that the different functions that compose this model can be expressed as

h(x, z) := c(z)Tx+ d(z)

gj(x, z) := aj(z)
Tx− bj(z) ,

where x ∈ Rn, z ∈ Rm, and where each function c(z), d(z), aj(z) and bj(z) is an affine
function of z. In other words, it must be possible to describe each of these functions
using the following forms

c(z) := (P0z + p0) & d(z) = qT0 z + r0 ,

aj(z) := (Pjz + pj) & bj(z) = qTj z + rj ,

for some Pj ∈ Rn×m, some pj ∈ Rn, some qj ∈ Rm and some rj ∈ R.
The robust counterpart would then take the form:

(LP-RC) maximize
x

min
z∈Z

zTP T
0 x+ qT0 z + pT0 x+ r0 (2.1a)

subject to zTP T
j x+ pTj x ≤ qTj z + rj , ∀ z ∈ Z, , ∀ j = 1, ..., J .(2.1b)

This model is not amenable to readily available mathematical programming res-
olution software as it is not yet described in finite dimensional form. Indeed, each
constraint indexed with j must be checked for all realization of z in Z. Similarly, the

29
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objective function is not expressed in closed form; in order to evaluate it, one must
search for the instance of z that achieves the minimum value.

For simplicity, we will start with a single robust constraint so that we have in hand
a constraint that takes the form:

zTP Tx+ pTx ≤ qT z + r , ∀ z ∈ Z

where we dropped the indexed notation for simplicity.

Let’s initially look at the case where P = I, p = a, q = 0, r = b. This reduces to

(a+ z)Tx ≤ b , ∀ z ∈ Z , (2.2)

which is perhaps the most famous version of a robust constraint.

The difficulty associated to treating this constraint is now entirely linked to the
structure of Z. Indeed, given a fixed x, we are asked to verify whether or not

∃z ∈ Z, zTx > b− aTx

if so then x would be infeasible. For a general uncertainty set Z (and in particular
those that impose that z be integer), this question is known to be NP-hard (see NP-
completeness of integer programming in [30]), meaning that we cannot expect to tackle
problems where the vector of parameters would have a size larger than 10 or 20. On
the other hand, if Z is simply a set of K scenarios for z, namely z ∈ {z̄1, z̄2, ..., z̄K},
then this verification is straightforward as shown in the following example.

Example 2.1. : Consider the case where Z := {z̄1, z̄2, ..., z̄K} and we wish to retrieve
a tractable representation of the constraint:

zTx ≤ b− aTx , ∀ z ∈ Z .

In this case, one simply need to check each member of Z. Consequently, in this simple
situation, the robust counterpart constraint (2.2) can be reformulated as:

z̄Ti x ≤ b− aTx , ∀i = 1, ..., K ,

or similarly

(a+ z̄i)
Tx ≤ b , ∀i = 1, ..., K .

Note that in most practical contexts, we are interested in more than a finite set of
scenarios (or if so it would be in a set of scenario of very large size). For this reason,
we will first assume that Z is a bounded polyhedron and later work with convex
uncertainty sets that are defined with a single convex inequality.
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2.1 Polyhedral Uncertainty

In this section, we consider that uncertainty about the vector of parameters takes the
form of a polyhedral set defined as follows.

Assumption 2.2. : The uncertainty set Z is a non-empty and bounded polyhedron
that can be defined according to

Z := {z ∈ Rm |wTi z ≤ vi , ∀ i = 1, ..., s} ,

where for each i = 1, ..., s, we have that wi ∈ Rm and vi ∈ R capture a facet of the
polyhedron through the expression wTi z = vi. Moreover, since Z is non-empty, there
must exist a z0 ∈ Z and since it is bounded there must exist some M > 0 such that
Z ⊆ {z ∈ Rm | −M ≤ z ≤M}.

Under assumption 2.2, verifying whether a fixed x satisfies constraint (2.2) is equiv-
alent to verifying whether the optimal value of the following LP is smaller or equal to
b− aTx.

maximize
z

xT z (2.3a)

subject to Wz ≤ v (2.3b)

where W = [ w1 . . . ws ]T is the matrix in Rs×m which rows are composed of each
wi.

Theorem 2.3. :(LP Duality see Chapter 4 of [21]) Under assumption 2.2, the optimal
value of linear program (2.3) is equal to the optimal value of the following dual problem

minimize
λ

vTλ (2.4a)

subject to W Tλ = x (2.4b)

λ ≥ 0 (2.4c)

where λ ∈ Rs. Moreover, problem (2.4) has a feasible solution.

Proof. Here is how one generally applies duality to replace a maximization problem
with a minimization problem. Let us call Ψ the optimal value of problem (2.3). First,
we will demonstrate how to obtain the dual problem which always achieves a larger
value than Ψ, then we will employ Farkas lemma to guarantee that the two values are
the same, and furthermore that the dual problem is feasible.

Step #1: Obtaining the dual problem Let’s express a relaxed version of problem
(2.3), where we have moved the constraints to the objective function:

Υ(λ) := max
z

xT z + λT (v −Wz) .
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It is important to realize that as long as λ ≥ 0 then Υ(λ) ≥ Ψ. This is the case because
for any z that was feasible in problem (2.3) we will have

xT z + λT (v −Wz) ≥ xT z ,

since λ ≥ 0 and v −Wz ≥ 0 for those z. Hence,

max
z∈Z

xT z ≤ max
z∈Z

xT z + λT (v −Wz) ≤ max
z

xT z + λT (v −Wz) = Υ(λ) .

The problem minλ≥0Υ(λ) therefore returns the lowest upper bound for Ψ. Yet, when
studying more carefully the expression associated with Υ(λ), we can observe that

Υ(λ) =

{
λTv if x−W Tλ = 0
∞ otherwise

.

The problem minλ≥0Υ(λ) therefore reduces to problem (2.4).

Step #2: Introducing Farkas lemma The most critical step of this proof relies
on Farkas lemma which states the following.

Lemma 2.4. : Let W be a real s×m matrix and x be an m-dimensional vector. Then,
exactly one of the following two statements is true:

1. There exists a λ ∈ Rs such that W Tλ = x and λ ≥ 0.

2. There exists a ∆ ∈ Rm such that W∆ ≤ 0 and xT∆ > 0.

w1

w2

w3

w4

ws

CW xin

xout


>

�

H�,0

Let us consider the convex cone CW := {y ∈ Rm | ∃λ ∈ Rs, λ ≥ 0, y = W Tλ}.1
Geometrically, the cone CW is the conic hull of the points in Rm defined by the rows
of W , i.e. { w1 w2 . . . ws }. From this perspective, Condition 1 simply states that

1The cone CW is convex since given any y1 and y2 in CW (with their associated λ1 and λ2) and
any θ ∈ [0, 1], we have that: θλ1+(1− θ)λ2 ≥ 0 and θy1+(1− θ)y2 = WT (θλ1+(1− θ)λ2). So that,
θy1 + (1− θ)y2 ∈ CW .
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x ∈ CW . Alternatively, Statement 2 appears more complex but can also be stated
more simply. First note that it states that there exists a vector ∆ ∈ Rm such that
the hyperplane H∆,0 := {y ∈ Rm |∆Ty = 0} strictly separates x from the points
{w1, w2, . . . , ws}: i.e.

∆Tx > 0 & ∆Twi ≤ 0 , ∀ i = 1, . . . , s .

Looking at the definition of our cone, Statement 2 is also equivalent to stating that
H∆,0 strictly separates x from all of CW . Indeed, one can see that

W∆ ≤ 0 ⇒ ∆Twi ≤ 0∀ i = 1, . . . , s ⇒ ∀λ ≥ 0, ∆TWλ =
∑

i

λi∆
Twi ≤ 0 .

It is therefore clear that both statements of Farkas lemma cannot be true simultane-
ously: x cannot be both a member of CW and be separated from it by some hyperplane
H∆,0. Yet, based on convex analysis it is also impossible that both statements are false.
Indeed, the strict separating hyperplane theorem (see Appendix 10.1.1) states that it
must be possible to strictly separate any point x /∈ CW from CW using a hyperplane.
We further argue that since CW is a cone, it must always be possible to do so with a
hyperplane such as H∆,0. To demonstrate this, let x be strictly separated using some
H∆,γ := {y ∈ Rm |∆Ty = γ}. It must first be the case that γ ≥ 0 since 0 ∈ CW so
that ∆T0 = 0 ≤ γ. Now let’s assume that for all y ∈ CW we would have that ∆Ty ≤ 0,
well then it is clear that H∆,0 also strictly separates x from CW . In the case that there
exists some y0 ∈ CW such that ∆Ty0 > 0 (thus implying that γ > 0) then the point
y′0 := (2γ/∆Ty0)y0 should also be a member of CW . But, this leads to a contradiction
since we would have

∆Ty′0 ≤ γ < 2γ = (2γ/∆Ty0)∆
Ty0 = ∆Ty′0 .

We conclude that either x ∈ CW or there is a ∆ such that H∆,0 strictly separates x
from CW which is equivalent to say that exactly one among Statement 1 or Statement
2 is true.

Step #3: Verifying strict duality when 0 ∈ Z We first assume that the point 0
is a member of the uncertainty set Z which implies that v ≥ W0 = 0. Now, let us for
any fixed value t, consider the polyhedron Pt described as

Pt := {z ∈ Rm |Wz ≤ v & xT z ≥ t} .

Notice how any t for which Pt is empty provides an upper bound for Ψ while any t for
which Pt is non-empty leads to a lower bound for Ψ, we must therefore have that

Ψ = inf{t ∈ R | Pt = ∅} .
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Z
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<latexit sha1_base64="4MF6TI0ul0+cb6b+EQ54FN/kcoU="></latexit>

Yet based on Farkas lemma, exactly one of the following statement is true:

1. Pt ̸= ∅, i.e. there exists z+ ∈ Rm,z− ∈ Rm,s ∈ R, and y ∈ Rm such that

[
xT −xT −1 0
−W W 0 −I

]



z+

z−

s
y


 =

[
t
−v

]
&




z+

z−

s
y


 ≥ 0

2. There exists γ ∈ R and λ ∈ Rs, such that




x −W T

−x W T

−1 0
0 −I



[
γ
λ

]
≤ 0 & [ t −vT ]

[
γ
λ

]
> 0 .

Hence, the condition Pt = ∅ can be equivalently replaced with the condition that
there exists γ and λ such that

xγ −W Tλ = 0 & γ ≥ 0 & λ ≥ 0 & tγ > vTλ .

However, since we made the assumption that 0 ∈ Z so that v ≥ 0, these conditions
can only be satisfied if tγ > vTλ ≥ 0 so that γ ̸= 0. Because γ > 0, we can exploit the
replacement of variable λ′ := λ/γ to get the equivalent condition

∃λ′ ≥ 0, x = W Tλ′ & λ′ ≥ 0 & t > vTλ′ .

We are left with the statement that:

Ψ = inf{t ∈ R | ∃λ ∈ Rs, λ ≥ 0, x = W Tλ, t > vTλ} .

When studying closely the right-hand side of this equation, we realize that the infimum
returns exactly the optimal value of problem (2.4).
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Step #4: Verifying strict duality when 0 /∈ Z Now, let’s generalize our previous
conclusion to models where 0 /∈ Z. This can be done by by reformulating problem (2.3)
as

Ψ = max
∆

xT (z0 +∆)

subject to W (z0 +∆) ≤ v ,

where we let z be parametrized as z := z0+∆ with ∆ ∈ Rm and with z0 as any feasible
point in the set Z. Next, some simple algebraic manipulations give us:

Ψ = xT z0 + max
∆

xT∆

subject to W∆ ≤ v −Wz0 .

In this form, it is clear that ∆ := 0 is feasible since the constraint then becomes
0 ≤ v −Wz0 ⇔ Wz0 ≤ v which is satisfied since z0 ∈ Z. We can therefore apply the
result from Step #3 to obtain

Ψ = xT z0 + min
λ∈Rs

(v −Wz0)
Tλ

subject to W Tλ = x

λ ≥ 0 .

By reintegrating the first term of the summation inside the minimization operation,
we get an objective that looks like

(v −Wz0)
Tλ+ xT z0 = vTλ+ (x−W Tλ)T z0 = vTλ ,

where the last equality is true for any feasible λ since those must satisfy W Tλ = x.

Step #5: Feasibility of problem (2.4) The final step of this proof consists in
showing that Farkas lemma can once again be used to guarantee that the dual problem
(2.4) is feasible. Well, indeed if it was not feasible then the lemma states that since
condition 1 is not satisfied there must exist a ∆ that satisfies W∆ ≤ 0 and xT∆ > 0.
Looking back at the primal problem (2.3), one can now construct a solution z0 + α∆,
with α ≥ 0 which necessarily satisfies the constraint

W (z0 + α∆) = Wz0 + αW∆ ≤ Wz0 ≤ v

and allows to reach an arbitrarily large objective value

lim
α→∞

xT (z0 + α∆) = lim
α→∞

xT z0 + αxT∆ = ∞ ,

since xT∆ > 0. But this is a contradiction since we assumed the polyhedron defined by
Wz ≤ v was bounded thus that problem (2.3) cannot be unbounded. We can therefore
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conclude that the dual problem is feasible. In particular, there must exist a λ0 that is
feasible according to the dual problem (2.4).

This completes our proof of Theorem 2.3, namely that there are no gap between
the optimal values of the primal and dual problems, and that the latter problem has a
feasible solution.

□

Theorem 2.3 is important as it allows us to state that verifying the robust constraint
(2.2) is equivalent to verifying whether the optimal value of problem (2.4) is lower or
equal to b− aTx. Yet, this verification is equivalent to identifying a feasible realization
of λ for which vTλ ≤ b− aTx. Hence, one should consider a λ that satisfies

vTλ ≤ b− aTx

W Tλ = x

λ ≥ 0

to constitute a “certificate” that x actually satisfies

zTx ≤ b− aTx , ∀ z ∈ Z .

This is easily verifiable, since for such a λ we have that

zTx = zTW Tλ ≤ vTλ ≤ b− aTx since Wz ≤ v and λ ≥ 0 .

The aspect that is more surprising is that searching through these types of certificates
is sufficient, i.e. if no such λ certificate is found than x must be infeasible, in other
words “it is not robust”.

Example 2.5. : Consider the robust optimization problem:

maximize
x

cTx (2.5a)

subject to (a+ z)Tx ≤ b , ∀ z ∈ Z (2.5b)

0 ≤ x ≤ 1 , (2.5c)

where Z follows assumption 2.2. This problem is equivalent to solving

maximize
x,λ

cTx

subject to aTx+ vTλ ≤ b

W Tλ = x

λ ≥ 0

0 ≤ x ≤ 1 .

In this problem, we are searching for both an x that achieves large objective value, and
for a certificate λ that guarantees that x satisfies the robust constraint. Note that this
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problem has the same numerical structure as a problem in which we would consider z
to be known, namely a linear program of slightly larger dimension.

In particular, say we are interested in the following “box” uncertainty set:

Z := {z ∈ Rn | z̄− ≤ z ≤ z̄+} ,

then we need to consider that

W =

[
I
−I

]
, v =

[
z̄+

−z̄−
]
.

Hence, the reformulated problem will look like:

maximize
x,λ+,λ−

cTx

subject to aTx+ z̄+Tλ+ − z̄−Tλ− ≤ b

λ+ − λ− = x

λ+ ≥ 0 λ− ≥ 0

0 ≤ x ≤ 1 .

This reformulation is implemented using RSOME in the following Colab file.

Remark 2.6. : Indeed, most modern application of robust optimization will involve
solving a reformulation of the robust counterpart in which the decision vector x is
optimized jointly with a set of certificates λ, issued from applying duality to each
robust constraint. Each certificate that is returned guarantees that for the selected x
the robust constraint associated to the certificate is satisfied.

Getting back at our robust linear program in general form, namely problem (2.1),
the process of reformulating the problem would go as follows.

First, we would reformulate the problem in “epigraph” form (actually the hypo-
graph form given that this is a maximization problem):

maximize
x,t

t

subject to t− (zTP T
0 x+ qT0 z + pT0 x+ r0) ≤ 0 , ∀ z ∈ Z

zTP T
j x+ pTj x ≤ qTj z + rj , ∀ z ∈ Z, , ∀ j = 1, ..., J .

For each of the constraint indexed by j, one would be interested in reformulating
the following worst-case analysis.

maximize
z

xTPjz − qTj z

subject to Wz ≤ v

https://colab.research.google.com/drive/1hcv0wBjFBtFgwYE9TjfpVaKhHwLQyWZv?usp=sharing
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The dual problem would then take the form

minimize
λ

vTλ

subject to W Tλ = P T
j x− qj

λ ≥ 0

This requires us to identify a certificate λ(j) for each constraint indexed by j, that
will satisfy the following properties

pTj x+ vTλ(j) ≤ rj

W Tλ(j) = P T
j x− qj

λ(j) ≥ 0

After some manipulation of signs a similar conclusion is drawn for the epigraph
constraint which is replaced with

t+ vTλ(0) − pT0 x− r0 ≤ 0

W Tλ(0) = −P T
0 x− q0

λ(0) ≥ 0

Overall, we get the following theorem.

Theorem 2.7. : The LP-RC problem, with a polyhedral Z described through Wz ≤ v
(as in assumption 2.2), is equivalent to the following linear program

maximize
x,{λ(j)}Jj=0

pT0 x+ r0 − vTλ(0)

subject to W Tλ(0) = −P T
0 x− q0

pTj x+ vTλ(j) ≤ rj , ∀ j = 1, . . . , J

W Tλ(j) = P T
j x− qj , ∀ j = 1, . . . , J

λ(j) ≥ 0 , ∀ j = 0, . . . , J

where λ(j) ∈ Rs are additional certificates that need to be optimized jointly with x.

2.2 General Uncertainty Sets

We now extend our discussion to the question of identifying tractable reformulations
to problems that involve general convex uncertainty sets. To do so, for simplicity we
look again at the special case of example 2.5 with an uncertainty set now defined as
follows.
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Assumption 2.8. : The uncertainty set Z is a bounded convex set defined by

Z := {z ∈ Rm | f(z) ≤ 0 , Wz ≤ v} ,
for some convex function f(z). Moreover, there exists a realization z0 ∈ Z that satisfies
the nonlinear constraint strictly, namely f(z0) < 0.

When we focus on the robust constraint we seek a way of validating for a fixed x
the fact that the optimal value Ψ of the following optimization problem is smaller or
equal to b− aTx:

Ψ := max
z

xT z (2.6a)

subject to f(z) ≤ 0 (2.6b)

Wz ≤ v . (2.6c)

Traditionally, in this case the dual problem is assembled based on Lagrangian du-
ality (see Chapter 5 of [22]), which states that the optimal value of the problem above
is equal to

Ψ = max
z

min
γ≥0,λ≥0

L(z, γ, λ) := xT z − γf(z) + λT (v −Wz) .

The intuition behind this “constraint-free” reformulation is that for any fixed z, if z
does not satisfy a constraint then the internal minimization problem can simply apply
an arbitrarily large penalty through γ or λ so that L(z, γ, λ) reaches −∞, which is
considered equivalent to being infeasible.

As was the case for linear program, the optimal value of problem (2.6) or equiva-
lently of the maxminL(z, γ, λ) is bounded above by

Υ∗ := min
γ≥0,λ≥0

max
z

xT z − γf(z) + λT (v −Wz) ≥ Ψ .

This can be again validated by considering that for any γ ≥ 0 and λ ≥ 0, evaluating
L(z, γ, λ) at a feasible z will return a larger amount than xT z. Note that we once again
associate the notation Υ∗ to the optimal value of the upper bounding problem.

We can simply manipulate the upper bounding problem to obtain

Υ∗ = min
γ≥0,λ≥0

vTλ+max
z

(
(x−W Tλ)T z − γf(z)

)
,

which can be redefined as the optimal value of the following dual problem

minimize
λ,γ

vTλ+ f ∗
p (x−W Tλ, γ) (2.7a)

subject to λ ≥ 0 (2.7b)

γ ≥ 0 . (2.7c)

where f ∗
p (y, γ) = maxz y

T z−γf(z) and can somehow be interpreted as the adjoint (or
perspective) function of the conjugate function of f(z).

The question is now whether Υ∗ = Ψ or not. To this end, we will employ a
constraint qualification known as Slater’s condition.
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Lemma 2.9. :(Strong duality see section 5.2.3 of [22]) Given a convex optimization
problem of the form:

maximize
z

f0(z)

subject to fj(z) ≤ 0 , ∀ j = 1, ..., J ,

where f0(z) is a concave function of z, fj(z) are affine functions of z for j = 1, ..., k,
and fj(z) are convex functions of z for j = k + 1, ..., J . If there exists some z0 that
satisfies the following conditions :

(Slater’s condition fj(z0) ≤ 0 , ∀ j = 1, . . . , k & fj(z0) < 0 , ∀ j = k + 1, . . . , J

then the optimal value of the dual problem, which can be expressed as

minimize
λ

sup
z

(f0(z)−
J∑

j=1

λjfj(z))

subject to λ ≥ 0 ,

is equal to the optimal value of the primal problem.

One can employ the above lemma in the context of problem (2.6) where Wz ≤ v
can be expressed as a series of constraints wTi z ≤ vi, and where there would be a single
non-linear convex constraint f(z) ≤ 0. In this case, the dual problem described in
the theorem would be equivalent to problem (2.7). Moreover, the Slater’s condition
reduces to our assumption 2.8, namely that there exists a z0 that satisfies Wz ≤ v and
satisfies the nonlinear constraint with strict inequality, i.e. f(z0) < 0.

To complete the tractable reformulation of the robust counterpart problem pre-
sented in example 2.5, one starts by replacing the robust constraint (2.5b) with its
equivalent representation

maximize
x,λ,γ

cTx (2.8a)

subject to vTλ+ f ∗
p (x−W Tλ, γ) ≤ b− aTx (2.8b)

λ ≥ 0, γ ≥ 0 (2.8c)

Note that to consider the optimization model above tractable, one needs to have an
analytical expression that evaluates f ∗

p (y, γ).

We generalize this “tractable” reformulation to the the general LP-RC model in
the following theorem.

Theorem 2.10. : The LP-RC problem with an uncertainty set Z that satisfies as-
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sumption 2.8 is equivalent to the following linear program

maximize
x,{λ(j)}Jj=0,{γ(j)}Jj=0

pT0 x+ r0 − vTλ(0) − f ∗
p (−P T

0 x− q0 −W Tλ(0), γ(0)) (2.9a)

subject to vTλ(j) + f ∗
p (P

T
j x+ qj −W Tλ(j), γ(j)) + pTj x ≤ rj , ∀ j = 1, . . . , J(2.9b)

λ(j) ≥ 0 , ∀ j = 0, . . . , J (2.9c)

γ(j) ≥ 0 , ∀ j = 0, . . . , J (2.9d)

(2.9e)

where γ(j) ∈ R and λ(j) ∈ Rs are additional certificates that need to be optimized jointly
with x.

2.2.1 Example: Ellipsoidal Uncertainty

Let us assume that one is interested in the robust counterpart of example 2.5 with Z
taking the following shape:

Z := {z ∈ Rm | zTΣ−1z ≤ 1}
with Σ ∈ Rm×m such that Σ ≻ 0, meaning that it is a positive definite matrix.

We are interested in identifying a tractable form for the reformulation presented in
equation (2.8) in the specific context where f(z) := zTΣ−1z − 1, W = 0, and v = 0.
Namely, we need to simplify the problem:

maximize
x,γ

cTx

subject to f ∗
p (x, γ) ≤ b− aTx

γ ≥ 0

To do so, one needs to identify an analytical expression that evaluates f ∗
p (y, γ).

This can be done by identifying a closed form solution of the problem

f ∗
p (y, γ) := max

z
yT z − γ(zTΣ−1z − 1) .

In the case that γ = 0, f ∗
p (y, 0) reduces to the following function

f ∗
p (y, 0) :=

{
0 if y = 0
∞ otherwise

Thus the robust constraint (2.8b) is equivalent to

0 ≤ b− aTx & x = 0 .

Otherwise, if γ > 0 then since the function that is maximized is concave and
differentiable everywhere. One can identify the optimal solution by setting the first
derivatives to zero.

∇z

(
yT z − γ(zTΣ−1z − 1)

)
= y − 2γΣ−1z∗ = 0
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Hence, z∗ = (2γ)−1Σy, which indicates that

f ∗
p (y, γ) =

1

2γ
yTΣy − 1

4γ
yTΣy + γ =

1

4γ
yTΣy + γ

Thus, the robust constraint (2.8b) can be reduced to

1

4γ
xTΣx+ γ ≤ b− aTx

Since the limit of this constraint as γ → 0 is equivalent to the constraint we obtained
for the case γ = 0, it is equivalent to state the reformulated optimization problem in
terms of:

maximize
x,γ

cTx

subject to
1

4γ
xTΣx+ γ ≤ b− aTx

γ ≥ 0 ,

where we interpret y2/γ as equal to 0 when both γ = 0 and y = 0, and as equal to
infty when y ̸= γ = 0 (also known as the recession function of y2). Although this
reformulation is a convex optimization problem, it is worth attempting to simplifying
its form. To do so, we can observe that it might be possible to perform the optimization
in γ analytically, considering that the problem is equivalent to

maximize
x

cTx

subject to inf
γ≥0

1

4γ
xTΣx+ γ ≤ b− aTx .

Looking first at the case where x = 0, we get that γ∗ = 0. Otherwise, we can set to
zero the first derivative with respect to γ of 1

4γ
xTΣx + γ, an expression that is both

convex and differentiable everywhere (with the exception of γ = 0 where it is infinite).
We obtain that

− 1

4γ2
xTΣx+ 1 = 0

From which we conclude that γ∗ = (1/2)(xTΣx)1/2, which also retrieves the optimal γ
when x = 0. After replacing this expression in our problem, we obtain

maximize
x

cTx (2.10a)

subject to aTx+ (xTΣx)1/2 ≤ b . (2.10b)

This convex optimization problem is known as a second-order cone program for which
there are a number of solvers readily available.
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Remark 2.11. : It is worth highlighting the fact that reformulation presented in (2.10)
could have been obtained by exploiting Cauchy-Schwartz inequality which states that
aT b ≤ ∥a∥2∥b∥2 with equality achieved when a and b are colinear (i.e. parallel). Indeed,
by this inequality we have that:

xT z = xTΣ1/2Σ−1/2z = (Σ1/2x)T (Σ−1/2z) ≤ ∥Σ1/2x∥2∥Σ−1/2z∥2 ≤ ∥Σ1/2x∥2 ,

for all z ∈ Z since the constraint that describes this set imposes that ∥Σ−1/2z∥22 ≤ 1.
Note that equality is achieved in the above expression when Σ−1/2z = Σ1/2x/∥Σ1/2x∥2
hence when z := Σx/∥Σ1/2x∥2 ∈ Z. In this case, we can confirm that

xT z = xTΣx/∥Σ1/2x∥2 = ∥Σ1/2x∥2 .

This implies that
max
z∈Z

xT z = ∥Σ1/2x∥2 ,

which confirms once again the result presented in equation (2.10).

2.3 Exercises

For each of the robust counterparts models presented below, derive a tractable linear
programming reformulation and implement in RSOME (using Google Colab) both in
its reduced and unreduced form. In your implementations, assume that n = 150 and
that

ci := 0.15 + i
0.05

n
ai := 0 , Aij :=

{
0.05
450

√
2in(n+ 1) if i=j
0 otherwise

b := 0.02 .

Also, for exercises 2.1 and 2.3 consider that each z̄i ∈ Rn, i = 1, . . . , 150 is composed
as follows:

z̄i =
0.05

450

√
2in(n+ 1)ei ,

where each ei refers to the i-th column of the identity matrix, and that Γ = 4 in exercise
2.2 while α = 0.5 in exercise 2.3.

Exercise 2.1. Convex Hull Set
Derive a finite dimensional LP formulation for the robust counterpart of the following
problem:

maximize cTx

subject to (a+ z)Tx ≤ b , ∀ z ∈ Z
0 ≤ x ≤ 1
n∑

i=1

xi ≤ 1 ,

https://colab.research.google.com/drive/1gpB0P6hbW-II9ZzIU2ijHcZmFpX_L-O7?usp=sharing
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where

Z :=

{
z ∈ Rn

∣∣∣∣∣ ∃θ ∈ RK , z =
K∑

i=1

θiz̄i, θ ≥ 0,
K∑

i=1

θi = 1

}
,

for some predefined set of scenarios {z̄1, z̄2, . . . , z̄K}?
Exercise 2.2. Budgeted Uncertainty Set
Derive a finite dimensional LP formulation for the robust counterpart of the following
problem:

maximize cTx

subject to (a+ z)Tx ≤ b , ∀ z ∈ Z(Γ)

0 ≤ x ≤ 1
n∑

i=1

xi ≤ 1 ,

where Z(Γ) is the budgeted uncertainty set parametrized by Γ ≥ 0 and defined as

Z(Γ) :=

{
z ∈ Rm

∣∣∣∣∣−1 ≤ z ≤ 1,
∑

i

|zi| ≤ Γ

}
?

Note that to use the material presented in this section, you might need to employ the
following equivalent representation:

Z(Γ) :=

{
z ∈ Rm

∣∣∣∣∣∃s ∈ Rm,−si ≤ zi ≤ si∀ i = 1, . . . ,m, s ≤ 1,
∑

i

si ≤ Γ

}
.

or

Z(Γ) :=

{
z ∈ Rm

∣∣∣∣∣ ∃λ
+, λ−Rm, z = λ+ − λ−, λ+ ≥ 0, λ− ≥ 0, λ+ + λ− ≤ 1,

∑

i

λ+i + λ−i ≤ Γ

}
.

Exercise 2.3. CVaR Uncertainty Set
Derive a finite dimensional LP formulation for the robust counterpart of the following
problem:

maximize cTx

subject to (a+ z)Tx ≤ b , ∀ z ∈ Z
0 ≤ x ≤ 1
n∑

i=1

xi ≤ 1 ,

where Z is the following uncertainty set parametrized with α ∈]0, 1] (the smaller the
more robust) and defined as

Z :=

{
z ∈ Rn

∣∣∣∣∣ ∃θ ∈ RK , z =
K∑

i=1

θiz̄i, θ ≥ 0,
K∑

i=1

θi = 1, θ ≤ 1

Kα

}
,



Chapter 3

Data-driven Uncertainty Set Design

The fact that the robust optimization perspective requires one to characterize uncer-
tainty through the use of uncertainty sets is both a strength and a limitation of the
method. On the positive side, the idea of an uncertainty set is somewhat easier to
visualize than the notion of a distribution. As we indicated in the last chapter, it is
also often easier to involve in an optimization process because of the property that
there exists simply structured certificates that allows us to verify feasibility1. On the
flip side, potentially because the field is relatively young, the main issue that is often
faced by practitioners is the question of how to create an uncertainty set that captures
accurately the knowledge and risks that are present.

Up to this date, the most documented methods of constructing uncertainty sets are
motivated by the idea of an underlying distribution for the uncertain vector Z, and
robustness can be perceived in terms of protecting the decision maker from scenarios
that are drawn from such a distribution. In what follows, we explain important con-
nections that can be made with chance constraints and to the concept of coherent risk
measures.

3.1 Chance Constraint Approximation

In 1959, Charnes and Cooper in [23] introduced a concept that became very popular in
the field of stochastic programming. Their idea was that when a constraint is affected
by uncertainty, one should try to impose that the constraint be satisfied with high
probability. Namely, a constraint of the type:

a(z)Tx ≤ b(z)

should become the following “chance constraint”

P(a(Z)Tx ≤ b(Z)) ≥ 1− ϵ

1In contrast, verifying the feasibility or the objective value of a function that involves a continuous
distribution requires one to perform integration on high dimensional space which is generally hard to
perform.

45



46 CHAPTER 3. DATA-DRIVEN UNCERTAINTY SET DESIGN

with ϵ > 0 characterizing the amount of probability with which we are comfortable
that the constraint might not be respected. The smaller ϵ is the more protection one
obtains in term of ensuring that the constraint be met.

Another related concept that was introduced by financial institutions and is now a
universal standard as made official in the Basel II Accord is the Value-at-Risk (VaR).
Indeed, it is said that the value-at-risk of an uncertain expense is an amount for which
we are assured with high probability that the expense will not reach. Alternatively,
for an uncertain revenue, the VaR expresses (the negative of) an amount that we have
high confidence the true revenue will surpass.

Definition 3.1. : Mathematically, for a revenue calculated as c(z)Tx+ d(z), it can be
defined as

VaR1−ϵ(c(Z)
Tx+ d(Z)) := − sup{y ∈ R |P(c(Z)Tx+ d(Z) ≥ y) ≥ 1− ϵ}

Hence, when maximizing an uncertain revenue one can formulate a VaR minimization
problem as follows:

minimize
x,y

−y

subject to P(c(Z)Tx+ d(Z) ≥ y) ≥ 1− ϵ

x ∈ X .

One should note here that, given a candidate solution x, both the chance constraint
and the value-at-risk formulation involve verifying whether a constraint is satisfied with
high probability or not. Unfortunately, it is generally intractable to do so, unless the
distribution has a very simple form (see section 3.1.2).

It is not surprising that the community has often interpreted robust constraints in
terms of chance constraints. Indeed, the fact that a solution is said to be “robust” is
understood by many as a statement about how likely it is to perform well. In fact, some
might argue that a robust constraint should be interpreted as P(a(Z)Tx ≤ b(Z)) =
100%. Yet, for many distributions assumptions, this statement is useless. Take for
instance, the case where we would want P(ZTx ≤ 1) = 100% under the hypothesis
that the terms of Z be normally distributed. In this case, the constraint would plainly
require that x = 0 since otherwise there is always some chance that the constraint
would be violated. One must therefore be a bit more realistic and one option is to
consider imposing that P(a(Z)Tx ≤ b(Z)) ≥ 1− ϵ for some ϵ > 0.

The most straightforward way of approximating a chance constraint with a robust
constraint is to calibrate the uncertainty set such that it is large enough to cover a set
of realizations for Z that has more than 1−ϵ chances of containing the true realization.
In other words, one might employ robust optimization as suggested by the following
theorem.

Theorem 3.2. : Given some ϵ > 0 and some random vector Z distributed according
to F , let Z be a set such that

P(Z ∈ Z) ≥ 1− ϵ ,
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then one has the guarantee that any x satisfying the robust constraint

a(z)Tx ≤ b(z) , ∀ z ∈ Z ,

will also satisfy the following chance constraint

P(a(Z)Tx ≤ b(Z)) ≥ 1− ϵ .

Proof. Let x satisfy the robust constraint

a(z)Tx ≤ b(z) , ∀ z ∈ Z ,

then the probability

P(a(Z)Tx ≤ b(Z)) ≥ P(Z ∈ Z) ≥ 1− ϵ .

□

Note that the theorem does not present an “if and only if” statement, which means
that replacing a chance constraint by a robust constraint has the potential of (and has
often the effect of) reducing the feasible region. We are left with the following guideline
for constructing the uncertainty set involved in a robust optimization model.

Corollary 3.3. : Given some ϵ > 0 and some random vector Z distributed according
to F , let Z be a set such that

P(Z ∈ Z) ≥ 1− ϵ ,

then the LP-RC optimization problem (2.1) is a conservative approximation of the
stochastic program

minimize
x

VaR1−ϵ(Z
TP T

0 x+ qT0 Z + pT0 x+ r0)

subject to P(ZTP T
j x+ pTj x ≤ qTj Z + rj) ≥ 1− ϵ , ∀ j = 1, ..., J ,

where VaR1−ϵ(·) is as defined in definition 3.1. Specifically, by conservative approxima-
tion we mean that an optimal solution to the LP-RC problem will be feasible according
to the above stochastic program where it will achieve an objective value that is lower
than what was established by the LP-RC optimization model.

We present a few examples to illustrate how this result might be employed.
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3.1.1 Example: Data-driven return vector uncertainty

You are given a set of historical monthly returns of 10 stocks for year 2000 - 2009, and
are asked to approximate the following “value-at-risk” problem:

minimize
x,y

−y

subject to P(rTx ≥ y) ≥ 1− ϵ
n∑

i=1

xi = 1

x ≥ 0 ,

where ϵ = 5% and the distribution of r is considered as the empirical distribution of
the monthly stock returns over the whole period of 2000-2009, in other words, any
monthly return vector observed in this period is as likely to occur.

Question: Identify a robust optimization problem that can conservatively approxi-
mate this optimization model.

Our answer: Let’s consider the following approximation to the value-at-risk problem
described above:

minimize
x,y

−y (3.1a)

subject to rTx ≥ y , ∀ r ∈ U (3.1b)
n∑

i=1

xi = 1 (3.1c)

x ≥ 0 , (3.1d)

where we will use the uncertainty set:

U(r0, γ) := {r ∈ R10 | ∥r − r0∥2 ≤ γ} ,

which would need to be parametrized such that P(r ∈ U(r0, γ)) ≥ 1− ϵ. We choose to
employ the most natural version of r0, namely r0 = E[r], which centers the uncertainty
set at the expected return values. We are left with calibrating γ. This can be done by
following the procedure:

1. For each monthly return rk in the historical data:

(a) Compute γk := ∥rk − r0∥2 which indicates how large γ needed to be for
rk ∈ U(r0, γ).

2. Choose as γ the (1−ϵ)×K-th largest γ in the list {γk}Kk=1 where K is the number
of months in the study.
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Our implementation in Python (see Google Colab) returns a policy which achieved
a 95% value-at-risk guaranteed below 0.210 (i.e. awith 95% chances of loosing less than
21%), the robust policy actually achieved an in-sample VaR of 0.063 (i.e. loose less
than 6.3%) for the historical data 2000-2009, and an out-of-sample VaR of 0.066 (i.e.
lose less than 6.6%) in the years 2010-2014.

3.1.2 Example: Return vector uncertainty under normal dis-
tribution

Let’s have a look at the reformulation for the robust counterpart presented in example
3.1.1. As presented in section 2.2.1, the tractable reformulation takes the shape:

minimize
x,y

−y

subject to rT0 x− γ∥x∥2 ≥ y
n∑

i=1

xi = 1

x ≥ 0 .

It is interesting to be aware of the following connection there is to make with the
chance constrained problem that would be obtained if r was assumed to be normally
distributed. Note that if r is normally distributed with mean r0 and covariance matrix
σ2I, then it is well known that rTx is also normally distributed with mean rT0 x and
variance σ2∥x∥22. Hence the constraint that states

P(rTx ≥ y) ≥ 1− ϵ

is equivalent to requiring that

rT0 x− Φ−1(1− ϵ)σ∥x∥2 ≥ y ,

where Φ−1(1 − ϵ) is the inverse function of the cumulative density function of the
standard normal distribution.

This analysis allows us to conclude that when r is normally distributed, one can
select γ such that the robust counterpart model present in (3.1) is exactly equivalent to
the chance constraint. In particular, γ should be equal to Φ−1(1− ϵ)σ. Unfortunately,
when calibrating the size of the ellipsoidal set so that it contains the realized Z with
some given probability, one would not obtain the optimal γ but a rather larger one,
namely the calibrated γ would take a value of 2.445 instead of the “optimal” 1.645
when ϵ = 5% and σ = 1.

This difference can be explained by the fact that for any given x, if infr∈U(r0,γ) r
Tx ≥

y then it is also the case that infr∈U ′(r0,γ) r
Tx ≥ y where U ′(r0, γ) := {r′ ∈ Rm | r′Tx ≥

infr∈U(r0,γ) r
Tx}. In fact, U ′(r0, γ) is a half-space that has much larger volume and

actually covers U(r0, γ) thus providing a protection that is more than necessary (see the

https://colab.research.google.com/drive/117hrrdjCa60Ook1_PmNJYKEI6_z92kXz?usp=sharing
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figure below for an illustration of this over-protection). This effect is often interpreted
by practitioners as the over-conservatism of the robust optimization framework. In
section 3.3, we will explain how one might search through the spectrum of sizes for an
uncertainty set until he has identified a size for which the solution satisfies the level
of protection that is needed. Such a search in this example could potentially identify
γ = 1.645 as the right size to use.
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3.1.3 Example: Data-driven expected return uncertainty

You are given a set of historical monthly returns of 10 stocks for years 2000 - 2009, and
are asked to identify a sphere that will include the expected monthly return over the
months of 2010. This uncertainty set is useful as it would allow to identify a portfolio
of the ten stocks that maximizes the robust counterpart of the following model:

maximize
x

µTx

subject to
n∑

i=1

xi = 1

x ≥ 0 ,

where µ is the vector of expected returns for each stock. One could estimate this vector
µ using the average monthly return achieved in 2009; however, there are many reasons
to believe that this estimate would be inaccurate and that we need to account for a
confidence region.
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The robust counterpart is therefore interesting and could be expressed as

maximize
x,y

y

subject to µTx ≥ y , ∀µ ∈ U

where U would capture the confidence region of µ. In particular, we will use the
following form:

U(µ0, γ) := {µ ∈ R10 | ∥µ− µ0∥2 ≤ γ} ,

where µ0 is the average monthly return achieved in 2009.

Question: How should we calibrate γ using the historical data from 2000-2009?

Our answer: In order to identify a γ such that we have high confidence that µ ∈
U(µ0, γ), we need a distribution for µ. Unfortunately, confidence regions proposed from
statistical theory are hard to employ here because :1) the number of samples used for
estimation is small (12 samples), 2) we have good reasons to believe that the returns
of 2010 are not distributed according the returns in 2009. For this reason, in [28] we
employed a method that is based on “bootstrapping” to characterize what the joint
distribution of (µ0, µ) might be and choose γ such that, for some ϵ > 0:

P(µ ∈ U(µ0, γ)) ≥ 1− ϵ .

Effectively, the idea was to quantify, based on the historical data, the likelihood
that the average return in a given year is some distance away from the average return
in the following year.

Here is the procedure that can achieve this purpose:

1. For any year k in the historical data:

(a) Compute the average monthly return µk in year k

(b) Compute the average monthly return µk+1 in year k + 1

(c) Compute γk := ∥µk − µk+1∥2 which indicates how large γ needed to be in
year k for µk+1 ∈ U(µk, γ).

2. Choose as γ the (1−ϵ)×K-th largest γ in the list {γk}Kk=1 where K is the number
of years in the study.

The implementation that is presented in the Python code on Google Colab suggests
using γ = 0.367. When we verified in 2010, we observed that ∥µ − µ0∥2 had actually
been equal to 0.094 < 0.367, hence that U(µ0, 0.367) was indeed large enough.

https://colab.research.google.com/drive/1SgjfP5rCo9w6sK_zK6UeXAPzzNUzt7G9?usp=sharing
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3.2 Ambiguous Chance Constraint Approximation

It appears to be in [13] that the authors identify for the first time a connection between
robust constraints and a form of chance constraint referred as “ambiguous chance
constraint”. Indeed, one of the main strengths of robust optimization is the idea that
the approach is distribution-free. For this reason, it could be more interesting to relate
the robust optimization formulation to a form of chance constraint that is distribution-
free. Namely, many authors have considered the following assumption.

Assumption 3.4. : Let Z ∈ Rm be a random vector for which the distribution is not
known, yet what is known of the random vector is that all Zi’s are independent from
each other and that each of them is symmetrically distributed on the interval [−1, 1].

Theorem 3.5. : Given some ϵ > 0 and some random vector Z that satisfies assump-
tion 3.4, one has the guarantee that any x satisfying the robust constraint

a(z)Tx ≤ b(z) , ∀ z ∈ Zell(γ) ,

where

Zell(γ) := {z ∈ Rm | ∥z∥2 ≤ γ}
and γ :=

√
2 ln(1/ϵ) is guaranteed to satisfy the following chance constraint

P(a(Z)Tx ≤ b(Z)) ≥ 1− ϵ .

even though the distribution of Z is not known.

In order to prove this theorem one must first be aware of the following lemma.

Lemma 3.6. : Let Z ∈ Rm be a random vector with independent symmetrically dis-
tributed entries on the interval [−1, 1] and let a ∈ Rm be such that ∥a∥2 = 1, then for
every γ > 0, one has

P(aTZ > γ) ≤ exp(−γ2/2) .

Proof. The proof goes as follows. Since exp(·) is a strictly increasing function, one can
state that

P(aTZ > γ) ≤ P(aTZ ≥ γ) = P (γaTZ ≥ γ2) = P (exp(γaTZ) ≥ exp(γ2)) .

But then, by Markov inequality which states that P(Y ≥ α) ≤ E[Y ]/α if Y is a positive
random variable, we can infer that

P(exp(γaTZ) ≥ exp(γ2)) ≤ E[exp(γaTZ)]
exp(γ2)

= exp(−γ2)
∏

j

E[exp(γajZj)] ,
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where the last inequality follows from the fact that the Zj are independent. The
question is now to confirm that E[exp(γajZj)] ≤ exp(γ2a2j/2). If it was the case than
we would know that

exp(−γ2)
∏

j

E[exp(γajZj)] ≤ exp(−γ2) exp(γ2
∑

j

a2j/2)

= exp(−γ2 + γ2/2) = exp(−γ2/2) ,

where we used the fact that ∥a∥22 = 1.
We are left with showing that E[exp(γajZj)] ≤ exp(γ2a2j/2). To do so, we first

show that E[exp(γajZj)] ≤ (1/2)(exp(γ|aj|) + exp(−γ|aj|)) this is because among
all symmetric distributions on the [−1, 1] interval, the two-points distribution that
puts half of the weight on each extremities leads to the highest expected value. By
contradiction, assume that there is some mass p at δ < 1 well then by symmetry there
is necessary also some mass p at −δ. Both masses could be pushed to the extremities
to increase the expected value since, letting g(δ) := p(exp(γajδ) + exp(−γajδ)) one
can confirm that

g(δ) = p(exp(γ|aj|δ) + exp(−γ|aj|δ)) ,
and that

g′(δ) = pγ|aj|(exp(γ|aj|δ)− exp(−γ|aj|δ)) ,
which is minimal when δ = 0 so that g′(δ) ≥ 0. We can conclude that increasing δ
increases g(δ).

The final step is to prove that (1/2)(exp(γ|aj|)+exp(−γ|aj|)) ≤ exp(γ2a2j/2). This
can be done by analysing the Taylor series expansion

(1/2)(exp(γ|aj|) + exp(−γ|aj|)) = (1/2)(
∞∑

n=0

(γ|aj|)n
n!

+
∞∑

n=0

(−γ|aj|)n
n!

)

=
∞∑

n=0

(γ|aj|)2n
(2n)!

≤
∞∑

n=0

(γ2a2j/2)
n

n!
= exp(γ2a2j/2) ,

where we used the fact that (2n)! ≥ 2nn!.2 □

We are now able to prove theorem 3.5.

2Shown by induction, since it is obviously true for n = 1, we then look whether when it is true for
n, it is also true for n+ 1. Specifically,

(2(n+1))! = (2n+2)(2n+1)(2n)! ≥ (2n+2)(2n+1)2nn! = (2n+2)(2n+1)/(n+1)2n(n+1)! ≥ 2n+1(n+1)! .
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Proof. We first represent the constraint a(z)Tx ≤ b(z) in terms of the relation to z:

a(x)T z ≤ b(x)

where we overloaded the notation for a(·) and b(·) to represent the following

xTPz − qT z ≤ r − pTx ,

namely with:

a(x) := P Tx− q & b(x) := r − pTx .

With this new notation, we can express the robust constraint as

a(x)T z ≤ b(x) , ∀ z ∈ Z ,

which is equivalent to

γ∥a(x)∥2 ≤ b(x) .

We refer the reader to example 2.2.1 for some details about this reformulation.

Hence, any x that satisfies the robust constraint will be such that γ∥a(x)∥2 ≤ b(x).
Yet, we also now from lemma 3.6 that for a Z distributed according to a distribution
that follows assumption 3.4, it must be the case that

P((a(x)/∥a(x)∥2)TZ > γ) ≤ exp(−γ2/2); .

In other words, it should be that

P(a(x)TZ ≤ γ∥a(x)∥2) ≥ 1− exp(−γ2/2); .

Therefore, for the robust x’s, we have the guarantee that

P(a(x)TZ ≤ b(x)) ≥ P(a(x)TZ ≤ γ∥a(x)∥2) ≥ 1− exp(−γ2/2); ,

and can conclude that the chance constraint is necessarily satisfied since

exp(−γ2/2) = exp(−
(√

2 ln(1/ϵ)
)2
/2) = ϵ .

□

It might not come as a surprise that a similar result can be obtained for the ellip-
soidal set intersected with the known support. We include below the details of this
corollary which can also be found as Proposition 2.3.3 in [10].
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Corollary 3.7. : Given some ϵ > 0 and some random vector Z that satisfies assump-
tion 3.4, one has the guarantee that any x satisfying the robust constraint

a(z)Tx ≤ b(z) , ∀ z ∈ Zell∩box(γ) ,

where
Zell∩box(γ) := {z ∈ Rm | zi ∈ [−1, 1], ∥z∥2 ≤ γ}

and γ :=
√

2 ln(1/ϵ) is guaranteed to satisfy the following chance constraint

P(a(Z)Tx ≤ b(Z)) ≥ 1− ϵ .

even though the distribution of Z is not known.

Proof. First, following theorem 2.10 and the example 2.2.1, one can show that con-
straint

a(z)Tx ≤ b(z) , ∀ z ∈ Zell∩box(γ) ,

can be reformulated as

∃v ∈ Rm, ∥v∥1 + γ∥a(x)− v∥2 ≤ b(x) (3.2)

where v ∈ Rn is an auxiliary decision vector while a(x) and b(x) are defined as in the
proof of theorem 3.5. This being said, let the pair (x∗, v∗) be feasible with respect to
this reformulated constraint. Then we must have that for any z ∈ [−1, 1]m that make
the constraint a(x∗)T z ≤ b(x∗) infeasible, the following also holds:

a(x∗)T z > b(x∗) ⇒ (a(x∗)− v∗)T z + v∗T z > b(x∗)

⇒ ∥v∗∥1 + (a(x∗)− v∗)T z > b(x∗) since ∥z∥∞ ≤ 1

⇒ b(x∗)− γ∥a(x∗)− v∗∥2 + (a(x∗)− v∗)T z > b(x∗) since (x∗, v∗) satisfy (3.2)

⇒ (a(x∗)− v∗)T z > γ∥a(x∗)− v∗∥2 .

This can directly be used to establish that

P(a(x∗)TZ > b(x∗)) ≤ P((a(x∗)− v∗)TZ > γ∥a(x∗)− v∗∥2)

≤ P
(
(a(x∗)− v∗)T

∥a(x∗)− v∗∥2
Z > γ

)
≤ exp(−γ2/2) ,

where we exploited Lemma 3.6, or otherwise is trivially bounded above by zero when
a(x∗) = v∗. The rest of the proof follows easily. □

Finally, making use of the above corollary, we present an analogous result for the
budgeted uncertainty set which possibly contributed to its rise in popularity given
that the reformulation associated to this set preserves the structural complexity of the
constraint (i.e. a linear constraint is replaced with a set of linear constraints instead
of a second order cone constraint).
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Corollary 3.8. : Given some ϵ > 0 and some random vector Z that satisfies assump-
tion 3.4, one has the guarantee that any x satisfying the robust constraint

a(z)Tx ≤ b(z) , ∀ z ∈ Zbudg(Γ) ,

where
Zbudg(Γ) := {z ∈ Rm | zi ∈ [−1, 1],∀i, ∥z∥1 ≤ Γ}

and Γ :=
√

2m ln(1/ϵ) is guaranteed to satisfy the following chance constraint

P(a(Z)Tx ≤ b(Z)) ≥ 1− ϵ .

even though the distribution of Z is not known.

Proof. This can be straightforwardly obtained by considering that a solution x∗ that
satisfies the robust constraint with budgeted uncertainty set Zbudg(Γ), also satisfies the
robust constraint with the uncertainty set Zell∩box(Γ/

√
m). Hence, theorem 3.7 can be

applied to indicate that the guarantee is provided as long as Γ/
√
m =

√
2 ln(1/ϵ). □

Note that in [19], the authors propose two other bounds methods for obtaining
a smaller value for Γ while preserving the same probabilistic guarantees. Since the
motivating arguments are a little more sophisticated, we leave to the reader to go
read the details if he is curious. One can also find in chapter 2.2 of [10] a number of
alternative hypothesis that can be made about the distribution in order for Zell(γ),
Zell∩box(γ), and Zbudg(Γ) to provide conservative (a.k.a. safe) approximations of the
ambiguous chance constraint.

3.3 Risk-return Tradeoff Approximation

While, there are different ways of calibrating the parameters that express the size
of the uncertainty set in order to approximate a certain chance-constraint that the
decision maker has in mind, one should be aware that chance-constraints are themselves
parametrized with ϵ that is potentially ambiguous since it captures the probability of
failure that the decision maker (DM) is comfortable with. In fact, there are many
situations in which this probability is not a firm value. Instead, the DM might be
willing to accept a larger probability of failure as long as the performance is improved
by an amount that is substantial enough. In other words, there is ambiguity regarding
how much risk might be considered acceptable in order to achieve larger returns. In
order to provide support for such DM, perhaps the goal of an optimization model is to
present the DM with a set of solutions that each achieve different level of compromise
between the performance that is expected and the risks of sub-performance. Practically
speaking, this could imply the use of an optimization model that returns solution that
are more or less conservative depending on some control parameter.

Let’s take as example (again!) a portfolio selection problem. When investing in the
stock market, we might be interested in maximizing the return of our investment while
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being worried that our investment leads to a loss. Yet, it might be unclear what type
of trade-off we are willing to make between increased expected return and increased
probability of loss. A model that is based on what was proposed by Markowitz [34]
would propose solving the following optimization problem:

maximize E[rTx]
subject to P(rTx ≥ 0) ≥ 1− ϵ

n∑

i=1

xi = 1

x ≥ 0 .

Now, given that the investor is not committed to a maximum probability of losses and
is willing to be tempted by larger probabilities if the expected returns are significantly
increased, then it becomes relevant to present to him the “Pareto” frontier of alterna-
tives. In other words, we would identify a set of all portfolios that could be obtained
by this optimization model as ϵ is adjusted from 0 to 100%. This is what was done by
Bertsimas and Brown [15] while highlighting how robust optimization could be used to
obtain portfolios that are highly competitive at a much reduced computational cost.

Namely, following the guidelines established in section 3.1, the robust approxima-
tion of this chance constraint would simply takes the form

maximize µTx

subject to rTx ≥ 0 , ∀ r ∈ U
n∑

i=1

xi = 1

x ≥ 0 ,

for some well calibrated set U . Whether the set U be an ellipsoidal set, a budgeted
uncertainty set, or even a CVaR uncertainty set, each have a way of controlling how
conservative (i.e. robust) the solution will be: γ, Γ, or α respectively.

The figure below (originally as Figure 1.1 in [15]) presents the Pareto frontier of
performance pairs, i.e. (expected return, probability of loss) achieved by the stochastic
programming model and its three robust approximations.
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Mean return vs. Loss probability Pareto frontier
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Fig. 1.1 (Top) Expected return-loss probability frontier for RO-based formulations and exact sto-
chastic formulation; numbers are time (sec.) for solving each stochastic program. (Bottom)
Frontier for model with random perturbations bounded by 1% (left) and 2% (right).

conservative. In general, solving the stochastic formulation exactly is difficult, which
is not surprising given its NP-hardness. Though a few of the instances at extreme
return levels are solved in only a few seconds, several of the instances require well over
an hour to solve, and the worst case requires over 2.1 hours to solve. The total time
to solve these 8 instances is about 5.2 hours; by contrast, solving the 600 RO-based
instances takes a bit under 10 minutes in total, or about one second per instance.

The bottom two panels of Figure 1.1 show results for the computed portfolios
under the same return model but with random perturbations. Specifically, we per-
turb each of the N × n return values by a random number uniformly distributed on
[.99, 1.01] in the bottom left figure and [.98, 1.02] in the bottom right figure. At the 1%
perturbation level, the gap in performance between the models is reduced, and there
are regions in which each of the models is best as well as worst. The model based on
RD is least affected by the perturbation; its frontier is essentially unchanged. The
models based on RQ and RT are more significantly affected, perhaps with the effect
on RT being a bit more pronounced. Finally, the stochastic formulation’s solutions
are the most sensitive of the bunch: though the SP solution is a winner in one of the
8 cases, it is worse off than the others in several of the other cases, and the increase
in loss probability from the original model is as large as 5–6% for the SP solutions.

At the 2% level, the results are even more pronounced: here, the SP solutions
are always outperformed by one of the robust approaches, and the solutions based
on RD are relatively unaffected by the noise. The other two robust approaches are
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Note that in comparison on average the solutions of RO methods were obtained in 1 second.

3.4 Uncertainty Set Design based on Risk Mea-

sures

In [2], Artzner et al. introduce for the first time the notion of a family of risk measures
that are rational to employ. He indicates that such measures ρ should satisfy the
following properties when defined in terms of an uncertain income:

• Translation invariance : the risk of a position to which we add a guaranteed
income is reduced by the amount of the income, i.e. ρ(Y + c) = ρ(Y )− c when c
is certain

• Subadditivity: the risk of the sum of risky positions should be lower than the
sum of the risks, i.e. ρ(X + Y ) ≤ ρ(X) + ρ(Y )

• Positive homogeneity : if the consequences of a risky position are scaled by the
same positive amount λ ≥ 0, then the risk should be scaled by the same amount,
i.e. ρ(λY ) = λρ(Y )

• Monotonicity: A risky position that is guaranteed to return larger income than
another risky position should be considered less risky, i.e. X ≥ Y ⇒ ρ(X) ≤
ρ(Y ).

• Relevance : if a risky position has the potential of leading to a loss, then the risk
should be strictly positive, i.e. X ≤ 0&X ̸= 0 ⇒ ρ(X) > 0.
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Based on these five axioms, the authors are able to demonstrate that the risk measure
must be representable in the following form:

ρ(Y ) := sup
F∈D

EF [−Y ] ,

where D is a set of distributions for the random variable Y .
The family of coherent risk measure has caught a lot of attention since the financial

crisis of 2008 as it was recognize that value-at-risk did not satisfy all of the mentioned
axioms. Instead, there is now many arguments promoting the use of an alternative
method for quantifying risk known as Conditional Value-at-Risk (CVaR). Intuitively,
this new measure evaluates the expected value of the revenues under the scenarios that
leads to the p% worst outcomes. For this reason, it obviously always overestimates risks
when compared to the VaR, namely that CVaR1−ϵ(Y ) ≥ VaR1−ϵ(Y ). It is known to be
a coherent risk measure and is now considered by many to be more reasonable to use
than the VaR (see in particular a discussion on this topic in[4]). These considerations
have led to an increase of the use of the CVaR in many disciplines such as healthcare,
supply chain, network design, vehicle routing, energy, etc.

In [14], the authors actually identified an interesting connection between coherent
risk measures and robust linear constraint. They actually established that there is a
one to one correspondence between robust linear constraints and constraint on the risk
measured by a coherent risk measure. In particular, they provide arguments for the
following theorem.

Theorem 3.9. : Given a coherent risk measure ρ(·), there always exists a convex
uncertainty set Z such that the no risk constraint

ρ(b(Z)− a(Z)Tx) ≤ 0

is equivalent to imposing the robust constraint

a(z)Tx ≤ b(z) , ∀ z ∈ Z; .

The converse is also true.

Proof. Given any coherent risk measure ρ(·), we have mentioned that the representation
theorem for this family of risk measure guarantees that the no risk constraint can be
represented as

sup
F∈D

EF
[
−
(
b(Z)− a(Z)Tx

)]
≤ 0 ,

for some set of distribution D. Since the revenue expression is a linear function of the
random vector Z, one can obtain the following equivalent constraint

sup
F∈D

[
a(EF [Z])T b(EF [Z])

] [ x
−1

]
≤ 0 .
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This constraint can be reformulated in simpler terms as

[
a(z)T b(z)

] [ x
−1

]
≤ 0 , ∀ z ∈ Z ′ ,

where
Z ′ := {z ∈ Rm | ∃F ∈ D, z = EF [Z]} ,

which can further be reformulated as

a(z)Tx ≤ b(z) , ∀ z ∈ Z; .

where Z := ConvexHull(Z ′).3 It is clear that this last reformulation is exactly the
robust constraint presented in the theorem.

The converse of this result can be obtained by observing that for any Z, one can
construct the following set of distributions

D := {F | ∃ z ∈ Z, PF (Z = z) = 1} ,
where all distributions in D put all of their mass at a single z ∈ Z, a.k.a. Dirac
distributions, and considering the no risk constraint for the risk measure represented
as ρ(Y ) := supF∈D E[−Y ]. Indeed, we then have that:

sup
F∈D

EF
[
−
(
b(Z)− a(Z)Tx

)]
= sup

z∈Z
a(z)Tx− b(z)

so that ρ(b(Z)− a(Z)Tx) ≤ 0 is equivalent to the robust constraint.
□

The above theorem is interesting as it says that robust constraints are not only use-
ful to approximate some chance constraints or value-at-risk objectives but rather they
can represent any risk attitude that can be characterized as a coherent risk measure.
Alternatively, one can rest assured that when he imposes a robust linear constraint, he
is employing an attitude towards risks that is justified and reasonable given that one
considers that the axioms motivating the coherent risk measures are reasonable.

Remark 3.10. : It is important to note that the connection established between
robust linear constraints and coherent risk measures has not yet been fully extended to
nonlinear robust constraints. The only part of theorem 3.9 that holds more generally
is the fact that any robust constraint can be interpreted as a coherent risk measure.
The converse is not true, namely not all bounded risk constraint can be reformulated
as a robust constraint. We refer curious readers to [18] for a discussion on potential
generalizations. Yet, to this date the most accessible interpretation remains the idea
of approximating chance-constraints.

3Indeed, given any z1 and z2 in Z ′, the fact that a(zi)
Tx − b(zi) ≤ 0 for i = 1, 2 implies that for

all θ ∈ [0, 1], we have that:

a(θz1 + (1− θ)z2)
Tx− b(θz1 + (1− θ)z2) = θ(a(z1)

Tx− b(z1)) + (1− θ)(a(z2)
Tx− b(z2)) ≤ 0 .

More details can be found in Lemma 4.7.
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3.4.1 The Conditional Value-at-Risk Measure

We now take a closer look at the conditional value-at-risk measure and demonstrate
how it is related to the CVaR uncertainty set presented in chapter 2.

Mathematically, the most popular representation for the CVaR measure appeared in
[39] and takes the following form when the random variable Y represents an uncertain
revenue

CVaR1−ϵ(Y ) := inf
t
t+

1

ϵ
E[max(0,−Y − t)] .

Intuitively, it is worth knowing that at optimum the value t∗ will capture the value-
at-risk for the given uncertain revenue so that

CVaR1−ϵ(Y ) = VaR1−ϵ(Y ) + (1/ϵ)E[max(0,−Y − VaR1−ϵ(Y )]

= VaR1−ϵ(Y ) + E[−Y − VaR1−ϵ(Y ) | − Y ≥ VaR1−ϵ(Y )] .

It is perhaps surprising that the most famous representation for CVaR does not
take the shape of ρ(Y ) := supF∈D EF [−Y ]. The reason is potentially that the above
representation is more intuitive. In any case, let’s identify how the CVaR measure can
be represented in the form ρ(Y ) := supF∈D EF [−Y ]. When the distribution is discrete,
this can actually be obtained by employing linear programming duality. In particular,
CVaR can be evaluated by solving the following linear program:

minimize
t,s

t+
1

ϵ

K∑

i=1

pisi

subject to si ≥ −yi − t , ∀ i = 1, . . . , K

si ≥ 0 , ∀ i = 1, . . . , K ,

where s ∈ RK while pi ∈ R and yi ∈ R represents respectively the probability and
realized value of Y under each scenario i = 1, . . . , K. Applying duality we obtain the
following equivalent linear program:

maximize
λ

−λTy
subject to λ ≥ 0

λi ≤ pi/ϵ , ∀ i = 1, . . . , K
K∑

i=1

λi = 1 .

Hence, it takes the shape of supF∈D EF [−Y ] where D := {F |PF (Y = yi) ≤ pi/ϵ∀ i =
1, . . . , K,

∑K
i=1 PF (Y = yi) = 1}.

Following theorem 3.9, we are now aware that given a random vector Z with discrete
distribution described by {pi, z̄i}Ki=1, and any linear revenue function b−a(Z)Tx, using
the set

Z ′ := {z ∈ Rm | ∃F ∈ D, z = EF [Z]} ,
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we are able to construct a robust linear constraint that is equivalent to

CVaR1−ϵ(b(Z)− a(Z)Tx) ≤ 0 .

Such a robust constraint takes the form

a(z)Tx ≤ b(z) , ∀ z ∈ ConvexHull(Z ′) .

Yet, by manipulating Z ′, we obtain

Z ′ = {z ∈ Rm | ∃F, PF (Y = yi) ≤ pi/ϵ,

K∑

i=1

PF (Y = yi) = 1, z = EF [Z]}

= {z ∈ Rm | ∃θ ∈ RK , θ ≥ 0, θi ≤ pi/ϵ,

K∑

i=1

θi = 1, z =
∑

i

z̄iθi} .

Hence, Z ′ is convex and actually takes the shape of the CVaR uncertainty set encoun-
tered in chapter 2.

3.5 Exercises

3.5.1 Data-driven robust portfolio optimization

Consider the portfolio optimization problem studied in example 3.1.1. In Google Colab,
you will find how we are able to manipulate the data in order to characterize the
uncertainty in the return vector as a function of some Z primitive where each Zi can
be assumed to be independently and symmetrically over the [−1, 1] interval. Namely,
you can consider that

r = µ+ PZ .

You can answer all of the exercises below in Google Colab.

Exercise 3.1. Calibration of uncertainty sets using data
For each of the two uncertainty sets below, calibrate the size parameter in order for
Z to include 95% of the observed realization:

1. Budgeted uncertainty set, i.e. Z := {z ∈ Rm | zi ∈ [−1, 1], ∥z∥1 ≤ Γ}

2. Boxed ellipsoidal set, i.e. Z := {z ∈ Rm | zi ∈ [−1, 1], ∥z∥2 ≤ γ}
Note that we already provided the calibration scheme for the boxed ellipsoidal set in
the Google Colab file, hence you are only asked to calibrate the budgeted set.

Exercise 3.2. Calibration of uncertainty sets using distribution hypothesis
For each of the two uncertainty sets below, calibrate the size parameter in order for
Z to be such that a robust linear constraint employing Z is guaranteed to return a
solution that will satisfy the chance constraint with 95% probability as long as the
distribution of Z satisfies assumption 3.4:

https://colab.research.google.com/drive/1K5dHuN0ipbDBDpbLiHZOEzGw0-Q5e-C4?usp=sharing
https://colab.research.google.com/drive/1K5dHuN0ipbDBDpbLiHZOEzGw0-Q5e-C4?usp=sharing
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1. Budgeted uncertainty set, i.e. Z := {z ∈ Rm | zi ∈ [−1, 1], , ∥z∥1 ≤ Γ}

2. Boxed ellipsoidal set, i.e. Z := {z ∈ Rm | zi ∈ [−1, 1], , ∥z∥2 ≤ γ}
Exercise 3.3. Evaluation of performance
Evaluate the performance of the portfolios obtained from the five robust optimization
models below:

1. Robust optimization model that approximates the 95% Value-at-Risk model us-
ing the budgeted uncertainty set calibrated in question 3.1.

2. Robust optimization model that approximates the 95% Value-at-Risk model us-
ing the boxed ellipsoidal uncertainty set calibrated in question 3.1.

3. Robust optimization model that approximates the 95% Value-at-Risk model us-
ing a CVaR uncertainty set with parameter α = 0.05

4. Robust optimization model that approximates the 95% Value at Risk model using
the budgeted uncertainty set calibrated in question 3.2.

5. Robust optimization model that approximates the 95% Value-at-Risk model us-
ing the boxed ellipsoidal uncertainty set calibrated in question 3.2.

The performance of each portfolio obtained should be compared in terms of actual
value at risk achieved under the following four sets of conditions:

1. The best value at risk achievable according to each optimization model

2. Empirical distributions of returns over the years 2000-2009

3. Empirical distributions of returns over the years 2010-2014

4. Distribution that assumes that each Zi is i.i.d. and has 50% chance of achieving
either extreme values of the interval [−1, 1].

Discuss your findings.

3.5.2 Risk averse production problem

Consider a production problem as discussed in chapter 1.1 where both the conversion
rates of raw materials and the profit generated by the assembled products are uncertain.
This gives rise to the risk averse optimization problem:

max
x,y

ρ(p̃Ty − cTx) (3.3a)

subject to dTy ≤ zTx, ∀z ∈ Z (3.3b)

Ax+By ≤ b , (3.3c)

x ≥ 0, y ≥ 0, (3.3d)
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where x ∈ Rn denotes the orders (in kg) of raw material of types i ∈ {1, . . . , n}, y ∈ Rm

denotes the number of boxes (of 1000 packs) of drugs of type j = 1, . . . ,m, constraint
(3.3c) captures K capacity constraints on the other resource needed (e.g. manpower,
equipment, and budget) for production through A ∈ RK×n and B ∈ RK×m and b ∈ RK .
Finally, the model handles uncertainty about raw materials through an uncertainty set
defined as

Z := {z ∈ Rn | ∃∆ ∈ [−1, 1]n, zi = (1 + ∆i)ẑi, ∀i = 1, . . . , n,
n∑

i=1

∆i ≥ −Γ
√
n} ,

which captures an estimated conversion rate denoted by ẑ, and, since the individual
relative rate perturbations are considered i.i.d. with mean zero, the fact that, because
of the central limit theorem, we should have the sum of perturbations converging to a
normal distribution with standard deviation proportional to

√
n (see [3]). Furthermore,

the profit uncertainty is based on a set of scenarios {p̄i}Ni=1 with respective probabilities
{q̄i}Ni=1 and the risk aversion is modeled using the following risk measure: and

ρ(p̃Ty − cTx) := min
q∈Q

N∑

i=1

qip̄
T
i y − cTx

with

Q := {q ∈ RN |
N∑

i=1

qi = 1, γ−1q̄i ≤ qi ≤ γq̄i, ∀i = 1, . . . , N},

for some γ ≥ 1.

Exercise 3.4. Reformulation for risk averse production problem
Derive a finite dimensional LP formulation for problem (3.3) and implement the risk
averse production problem using RSOME (using Google Colab) in its unreduced form
first, then reduced form if you are brave enough.

https://colab.research.google.com/drive/1_MWEmTvNp0c16pYJJffblFE-Yq-PPxSB?usp=sharing


Chapter 4

Adjustable Robust Linear
Programming

There are many situations in which decisions need to be made and implemented at
different points of time. Something peculiar happens in contexts where there is un-
certainty as one needs to model the fact that later decisions might be able to exploit
some information that was initially unavailable. Here is an illustrative example that
highlights many of the difficulties that arise in the modeling stage.

4.1 Why worry about decision sequences?

Consider a simple inventory problem in which a retailer needs to order some goods in or-
der to accommodate his customers while incurring the lowest ordering/holding/backlogging
cost. In a deterministic setting, this might take the shape of the following convex op-
timization problem

minimize
xt,yt

∑

t

ctxt + ht(yt+1)
+ + bt(−yt+1)

+

subject to yt+1 = yt + xt − dt , ∀ t = 1, . . . , T

0 ≤ xt ≤M ,

where xt ∈ R captures the number of goods ordered at time t and received by time
t + 1, yt is the number of goods in stock at the beginning of time t, with y1 as the
initial inventory, then dt is the demand for the good between time t and t+ 1 and the
cost parameters are ct for ordering cost, ht for holding (i.e. storage) cost, and bt for
backlog cost. Finally, the operation (y)+ := max(0, y) is one that returns the value of
y only if it is positive, otherwise returns 0.

65
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It is well known that this problem can be reformulated as a linear program:

minimize
xt,yt,s

+
t ,s

−
t

∑

t

ctxt + hts
+
t + bts

−
t

subject to yt+1 = yt + xt − dt , ∀ t = 1, . . . , T

s+t ≥ 0, s−t ≥ 0

s+t ≥ yt+1

s−t ≥ −yt+1

0 ≤ xt ≤M ,

where s+t ∈ R counts the number of storage spaces to pay for during period t while s−t
counts the number of goods that are missing during period t.

A näıve approach that can be used to “robustify” this problem would be to simply
state the robust counterpart as

minimize
xt,yt,s

+
t ,s

−
t

sup
z∈Z

∑

t

ct(z)xt + ht(z)s
+
t + bt(z)s

−
t

subject to yt+1 = yt + xt − dt(z) , ∀ z ∈ Z , ∀ t = 1, . . . , T

s+t ≥ 0, s−t ≥ 0

s+t ≥ yt+1

s−t ≥ −yt+1

0 ≤ xt ≤M ,

where we simply robustified the objective function and each constraint that involved
some uncertain parameters.

Based on what we know, it sounds fairly straightforward to obtain a tractable
reformulation for this model when Z is polyhedral and ct(z), ht(z), bt(z), and d(z) are
affine functions of z. Unfortunately, there are obvious issues with this formulation.
The first one that would be encountered is infeasibility of the constraint

yt+1 = yt + xt − dt(z) , ∀ z ∈ Z

Indeed, the above constraint is equivalent to

yt+1 = yt + xt − d̃ , ∀ d̃ ∈ {d̃ ∈ R | ∃ z ∈ Z, d̃ = dt(z)} .

Unless the implied uncertainty set for d̃ is an interval of zero length (i.e. no uncertainty
about dt) which is unlikely, this constraint cannot be satisfied. Take for instance any
two possible demand values d̃1 and d̃2 that we would wish to be immuned to. This
would require that the constraint is met for both then

d̃1 = yt + xt − yt+1 = d̃2 .

Yet, this is only possible if there is no uncertainty, i.e. d̃1 = d̃2 and otherwise necessarily
leads to infeasibility.
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A simple way of solving the above issue is to get rid of the equality constraint in
the nominal problem before deriving the robust counterpart. This would lead to the
deterministic model

minimize
xt,s

+
t ,s

−
t

∑

t

ctxt + hts
+
t + bts

−
t (4.1a)

subject to s+t ≥ 0, s−t ≥ 0 (4.1b)

s+t ≥ y1 +
t∑

t′=1

xt′ − dt′ (4.1c)

s−t ≥ −y1 +
t∑

t′=1

dt′ − xt′ (4.1d)

0 ≤ xt ≤M , (4.1e)

The robust counterpart of this model takes the form:

minimize
xt,s

+
t ,s

−
t

sup
z∈Z

∑

t

ct(z)xt + ht(z)s
+
t + bt(z)s

−
t (4.2a)

subject to s+t ≥ 0, s−t ≥ 0 (4.2b)

s+t ≥ y1 +
t∑

t′=1

xt′ − dt′(z) , ∀ z ∈ Z , ∀ t = 1, . . . , T (4.2c)

s−t ≥ −y1 +
t∑

t′=1

dt′(z)− xt′ , ∀ z ∈ Z , ∀ t = 1, . . . , T (4.2d)

0 ≤ xt ≤M . (4.2e)

This is in fact similar to the model that was proposed in [20]. A solution to this
model necessarily exists since one can set xt = 0 for all t. Unfortunately, there are still
two issues with this model. If these issues are not resolved before deriving the robust
counterpart, this might mislead a practitioner to conclude that a robust solution is
necessarily overly conservative.

First, there is the fact that this model makes an important assumption about what
type of policy is used. Namely, it assumes that the policy for xt is predefined at time
t = 1 and never modified even though some information about earlier demand might
be obtained as time progresses. This is fine if the objective is to model for instance a
situation where all orders are made to suppliers at time t = 1 and the type of contract
prevents the company to make future modification to these orders. In general, however
it might be the case that at any point of time it is possible to exploit the information
that was received about past demand in order to adjust the order that is about to
be received. In this case, we need to consider that xt is adjustable with respect to
{dt′}t−1

t′=1. We will show how to do this shortly. Let’s now have a look at the second
issue.
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The second issue is similar but much more subtle. To better understand it, let’s
have a look at a problem instance in which there is only one period of execution,
and where c1 = 0.5 while h1 = b1 = 1. In this context, we would be interested in
robustifying

minimize
x1

0.5x1 + (y1 + x1 − d1)
+ + (−y1 − x1 + d1)

+

subject to 0 ≤ x1 ≤ 2 ,

with y1 = 0 and d1 ∈ [0, 2]. Note here that since the problem only has one stage of
execution, it is unlikely that new information would be obtained by the time that the
decision is implemented. The robust counterpart of this problem instance using the
model described in problem (4.2) will take the form:

minimize
x1,s

+
1 ,s

−
1

0.5x1 + s+1 + s−1 (4.3a)

subject to s+1 ≥ 0, s−1 ≥ 0 (4.3b)

s+1 ≥ x1 − d1 , ∀ d1 ∈ [0, 2] (4.3c)

s−1 ≥ −x1 + d1 , ∀ d1 ∈ [0, 2] (4.3d)

0 ≤ x1 ≤ 2 . (4.3e)

One can easily verify that the optimal solution here suggests x∗1 = 0, s+1
∗
= 0 and

s−1
∗
= 2 and an optimal value of 2. Indeed, it is the case that if x1 = 0 the worst-case

scenario would be that a demand of two units occurs and leads to a backlog cost of 2.
However, is this truly the best that one can do to reduce worst-case inventory costs?

Think for instance about the solution x∗∗1 = 1 which would lead to two equivalent
worst-case scenarios:

1. demand is 0 unit hence the total inventory cost would be 1.5: namely 0.5 in
production cost, and 1 in holding cost

2. demand is 2 units hence the total inventory cost would be 1.5: namely 0.5 in
production cost, and 1 in backlog cost

Overall, x∗∗1 = 1 leads to a worst-case total cost of 1.5 which is smaller than the worst-
case cost of x∗1 = 0 which is 2. So, why did the robust counterpart model obtained
from problem (4.2) not provide the best solution in terms of worst-case cost ?

The reason has to do with the fact that in problem (4.1), s+t and s−t are not authentic
decision variables but rather constitute a set of “auxiliary” decision variables that are
employed by the linearisation scheme, which serves to evaluate the objective function.
Indeed, the true robust counterpart takes the following form

minimize
x1

sup
d1∈[0, 2]

0.5x1 + (y1 + x1 − d1)
+ + (−y1 − x1 + d1)

+

subject to 0 ≤ x1 ≤ 2 .
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This model can in some sense be linearized but only as a two-stage problem:

minimize
x1

sup
d1∈[0,2]

0.5x1 + h(x1, d1)

subject to 0 ≤ x1 ≤ 2 .

where

h(x1, d1) := min
s+1 ,s

−
1

s+1 + s−1 (4.4)

subject to s+1 ≥ 0, s−1 ≥ 0 (4.5)

s+1 ≥ x1 − d1 (4.6)

s−1 ≥ −x1 + d1 . (4.7)

Note that in this linearized formulation the s+1 and s−1 are allowed to depend on the
instance of d1 that is studied. Namely, with x∗∗1 = 1 they will take the values s+1 (d1) :=
(1− d1)

+ and s−1 (d1) := (d1− 1)+. This is unlike the optimization problem (4.2) which
proposed x∗1 = 0 and where the choice of s+1 and s−1 needed to be fixed once before the
realization of d1 was known.

Conclusion: When robustifying a linear program that involves either decisions that
are implemented (i.e. turned into an action) at different point of time (as xt), or
decision variables (called auxiliary decision variables) which only role in the mathe-
matical program is to allow the computation of the objective value or the validation
of a constraint (as s+t and s−t ), one must carefully identify the chronology of decisions
and observations sequence and employ the adjustable robust counterpart framework.
In particular, it is typically the case that auxiliary decision variables can be adjusted
to the whole vector of uncertain parameters z.

4.2 The Adjustable Robust Counterpart Model

As seen in the above inventory problem, it is important before developing a robust
optimization model to clearly layout the chronology of executions and observations as
portrayed in the following diagram.

Chronology of executions xi’s, observations vi’s, and z

x1 v2(z) x2 v3(z) vT(z) xT z

Note that in the above diagram, we represent decisions executed at time t as xt, while
observations made between time t−1 and t is represented by vt (for “visual” evidence).
The observation vt is a function of z the underlying uncertainty that affects the decision
problem as a whole. Finally, after the final decision is implemented, one can observe
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the realized uncertain vector z in its entirety in order to evaluate the objective function
and assess whether all the constraint were met.

To be precise, while when there is no uncertainty a sequential decision problem
might be easily described as

maximize
{xt}Tt=1

T∑

t=1

cTt xt + d

subject to
T∑

t=1

aTjtxt ≤ bj , ∀ j = 1, . . . , J,

where each xt ∈ Rn (without loss of generality), the situation is more complicated when
uncertainty is inserted. Instead, one must consider the following multi-stage adjustable
robust counterpart formulation

(Multi-Stage ARC)

maximize
x1,{xt(·)}Tt=2

inf
z∈Z

c1(z)
Tx1 +

T∑

t=2

ct(z)
Txt(vt(z)) + d(z) (4.8a)

subject to aj1(z)
Tx1 +

T∑

t=2

ajt(z)
Txt(vt(z)) ≤ bj(z) , ∀ z ∈ Z , ∀ j = 1, . . . , J,(4.8b)

where vt : Rm → Rν is a function that describes what is observed of z at time t, xt
is a mapping from the space of observations Rν to Rn. The fact that each xt is not a
vector any more but rather a mapping is important as it enables the decision to react
differently depending on the realized observation. Of course, this flexibility comes at
the price of significant computational challenges.

Example 4.1. : Considering the general inventory problem presented in section 4.1,
namely the following optimization problem

minimize
xt,s

+
t ,s

−
t

∑

t

ctxt + hts
+
t + bts

−
t

subject to s+t ≥ 0, s−t ≥ 0

s+t ≥ y1 +
t∑

t′=1

xt′ − dt′

s−t ≥ −y1 +
t∑

t′=1

dt′ − xt′

0 ≤ xt ≤M ,

three questions clearly arise:
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1. What is the source of uncertainty in this problem? Namely, the vector z which
perfect knowledge would reduce the problem to a deterministic one where we can
predict every outcome

2. What are the observations vt that are made and could contribute to what deci-
sions are executed? One would then need to describe how these observations are
related to z.

3. What is the chronology of each element of the problem: xt’s, yt’s, st’s, and vt’s.

Let’s assume that the uncertainty is limited to the vector of demand d(z). One might
consider that at each point of time, the inventory manager is able to observe all of the
prior demand before making the order for the next period. In this case, we would have
that

vt(d) = d[t−1] := [ I t−1 0t,T−t+1 ]d = [ d1 d2 · · · dt−1 ]T .

We are then left with defining the sequence of decision variables and observations

Chronology of executions and observations in inventory problem

x1 d[1] x2 d[2] d[T]
s+

1:T,

s-

1:T
d

Note that in the above chronology we made explicit that the s+t and s−t variables
are auxiliary variables that are adjustable with respect to the full uncertainty vector
d[T ] = d. In fact, once d[T ] is revealed the uncertainty can be considered reduced to
zero, hence the presence of d in the chronology is somewhat artificial.

This being said we are left with the following multi-stage adjustable robust coun-
terpart model:

minimize
x1,{xt(·)}Tt=2,{s+t (·),s−t (·)}Tt=1

sup
d∈U

c1x1 +
∑

t

ctxt(d[t−1]) + hts
+
t (d) + bts

−
t (d)

subject to s+t (d) ≥ 0, s−t (d) ≥ 0 , ∀ d ∈ U , ∀ t

s+t (d) ≥ y1 +
t∑

t′=1

xt′(d[t′−1])− dt′ , ∀ d ∈ U , ∀ t

s−t (d) ≥ −y1 +
t∑

t′=1

dt′ − xt′(d[t′−1]) , ∀ d ∈ U , ∀ t

0 ≤ xt(d[t−1]) ≤M , ∀ d ∈ U , ∀ t ,

where U captures the set of potential demand vectors.
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4.3 Time consistency issues

Consider a three stage inventory problem with an initial ordering cost of 1$ per unit,
and a larger second stage ordering cost of 4$ per unit. We also assume that there are
no holding cost and that backlog cost are only charged in the final stage at a cost of
10$ per unit. Demand is expected to be of 1 unit for each time steps with a possible
upward deviation of up to 1 unit. In order to control the level of conservatism of the
solution, it is decided to use the budgeted uncertainty set with a budget of 1 (i.e. at
most half of the future total demand deviation could occur). This gives rise to the
following multi-stage ARC:

minimize
x1,x2(·),s(·)

sup
d∈U

x1 + 4x2(d1) + 10s(d)

subject to s(d) ≥ 0 , ∀ d ∈ U
s(d) ≥ d1 + d2 − x1 − x2(d1) , ∀ d ∈ U
x1 ≥ 0

x2(d1) ≥ 0 , ∀ d ∈ U ,

where U := {d ∈ [0, 2]2 | d1 + d2 ≤ 3}. One can easily confirm that an optimal robust
policy consists of ordering 3 units at time t = 1 and nothing at time t = 2. Under
this policy, the worst-case total cost of 3$ occurs for any realization of the pair (d1, d2)
in U . Intuitively, the policy is optimal since we wish to protect against the pair (2, 1)
which would require us to produce 3 units in order to avoid the large backlog cost, yet
there is no reason to delay the purchase since the cost is lower at time t = 1.

The issue we wish to highlight here is the idea that the optimality of the policy
that was identified relies entirely on the hypothesis that at time t = 2, the optimization
problem that will be solved to select x2 once d1 is observed consists of the following:

minimize
x2,s(·)

sup
d2∈U2(d1)

x1 + 4x2 + 10s(d2)

subject to s(d2) ≥ 0 , ∀ d2 ∈ U2(d1)

s(d2) ≥ d1 + d2 − x1 − x2 , ∀ d2 ∈ U2(d1)

x2 ≥ 0 ,

where U2(d1) := {d2 ∈ R | (d1, d2) ∈ U} captures the “slice” of U where d1 is fixed to
what was observed. In particular,

U2(0) := [0, 2]

U2(1) := [0, 2]

U2(2) := [0, 1] .

Although this rule for updating the uncertainty set is implicitly assumed in the
multistage ARC model, it may be more or less applicable from a modeling standpoint,
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depending on the particular application. We provide two examples in which this up-
dating rule comes across as more or less realistic, and we comment on the potential
pitfalls when this rule is violated.

• Time-consistent situation:Consider the owner of a coffee stand that is allowed
to operate for one morning in the lobby of a hotel. The owner plans on selling
coffee during the 7 a.m - 11 a.m period and possibly replenishing with fresh
coffee at 9 a.m. Based on the hotel’s occupancy level and his prior experience, he
estimates that about 100 cups of coffee (one unit) might be purchased during the
7 a.m - 9 a.m interval, and about 100 cups (one unit) might be purchased during
the 9 a.m - 11 a.m interval. He also considers it extremely unlikely that more than
300 cups of coffee (three units) would be needed in a single morning (e.g., since
that happens to be the maximum number of guests at the hotel, and very few
individuals buy two cups of coffee in the morning). This circumstance motivates
an uncertainty set of the form U , and it suggests that it may be reasonable to
not order more coffee even after having sold 200 cups (two units) during the 7
a.m - 9 a.m interval.

• Time-inconsistent situation: Consider the same coffee stand owner that in-
stead plans to move his stand at 9 a.m to a different nearby hotel that has similar
occupancy. In this context, it might still be reasonable to initially assume when
opening the stand at 7 a.m that no more than 300 cups of coffee (three units)
would be needed the whole morning (possibly with the argument that if demands
at the two hotels are independent, it would be unlikely that they are both sig-
nificantly above their expected amounts). However, it seems unreasonable to
assume that the sale of more than 200 cups (two units) in the first hotel by 9
a.m implies without any doubt that no more than 100 cups (one unit) are needed
for customers at the second hotel. Instead, the owner may be tempted to believe
that there might still be enough customers to sell up to 150 cups (1.5 units) in the
second hotel and thus might make an order that departs from what his original
optimal policy suggested.

The second scenario gives rise to time inconsistency in the sense that at time t = 2
the decision is actually taken with respect to a robust optimization model that uses
an uncertainty set that is incoherent with U2(d1). In our example, this would be using
Ũ2(2) := [0, 1.5] instead of U2(2) := [0, 1]. Looking back at the robust first-stage
decision x1 = 3, this would mean that if d1 = 2 then the second ordering decision is
made in order to minimize maxd2∈Ũ2(2)

3 + 4x2 + 10(3 + x2 − 2 − d2)
+ which means

an additional half unit will be ordered to avoid the excessive backlog cost. Under this
scenario, the total cost ends up being 3+4 ·0.5 = 5. Yet, it is clear that if the extra half
unit had been purchased in the initial stage then the total cost would have been 3.5
for this scenario and always lower than this amount as long as the policy implemented
at the second stage policy would be x2(d1) := (d1 + 2− 3.5)+.
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One can actually show that the decisions x1 = 4 and x2(d1) := (d1 + 2− 3.5)+. are
optimal according to the bi-level problem:

minimize
x1,x2(·),s(·)

sup
d∈U

x1 + 4x2(d1) + 10s(d)

subject to s(d) ≥ 0 , ∀ d ∈ U
s(d) ≥ d1 + d2 − x1 − x2(d1) , ∀ d ∈ U
x1 ≥ 0

x2(d1) ∈ argmin
x≥0

max
d′2∈Ũ2(d1)

c2x+ 10(d1 + d′2 − x1 − x)+ , ∀ d1 ∈ U1 ,

where U1 := {d1 ∈ R | ∃d2 ∈ R, [d1 d2]T ∈ U}. This optimization model resolves time
inconsistency in this example by making explicit the fact that the second stage decision
must be coherent with respect to the uncertainty set which will be employed once we
will observe d1. Such bi-level optimization problems are only known to reduce to our
multi-stage ARC when Ũ2(d1) := U2(d1) := {d2 ∈ R | (d1, d2) ∈ U}.

4.4 Difficulty of resolution

Some details about hardness of adjustable robust counterpart models.

Theorem 4.2. : Solving problem (4.8) is NP-hard even when vt(z) := z and Z is
polyhedral.

Proof. This result is obtained by showing that the NP-complete 3-SAT problem can
be reduced to verifying whether the optimal value of the following problem is greater
or equal to zero:

minimize
x(·)

sup
z∈[0,1]m

N∑

i=1

(xi(z)− 1) (4.9a)

subject to xi(z) ≥ aTi,kz + bi,k , ∀ z ∈ Z , ∀ i = 1, . . . , N, ∀ k = 1, . . . , K,(4.9b)

where z ∈ Rm is the uncertain vector, xi : Rm → R is a second stage decision vector,
and where ai,k ∈ Rm, and bi,k ∈ R are known parameters of the model. Note that,
under some easily identifiable conditions, the above problem is the adjustable robust
counterpart of

minimize
x∈RN

N∑

i=1

(xi − 1)

subject to xi ≥ aTi,kz + bi,k , ∀ i = 1, . . . , N, ∀ k = 1, . . . , K .
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3-SAT problem: Let W be a collection of disjunctive clauses W = {w1, w2, ..., wN}
on a finite set of variables V = {v1, v2, ..., vm} such that |wi| = 3 ∀i ∈ {1, ..., N}. Let
each clause be of the form w = vi ∨ vj ∨ v̄k, where v̄ is the negation of v. Is there a
truth assignment for V that satisfies all the clauses in W?

Given an instance of the 3-SAT Problem, we can attempt to verify whether the
optimal value of the following problem is larger or equal to 0

max
z

N∑

i=1

(hi(z)− 1) (4.10a)

subject to 0 ≤ z ≤ 1 , (4.10b)

where z ∈ Rm, and where hi(z) := max{zj1 ; zj2 ; 1 − zj3} if the i-th clause is wi =
vj1 ∨vj2 ∨ v̄j3 . It is straightforward to confirm that {z ∈ Rn | 0 ≤ z ≤ 1} is a polyhedron
and that each hi(z) can be expressed as hi(z) := maxk a

T
i,kz+ bi,k. Hence, we have that

problem (4.10) can be expressed in the form of problem (4.9). Finally, we have that the
answer to the 3-SAT problem is positive if and only if the optimal value of an instance
of problem (4.9) achieves an optimal value greater or equal to 0. □

4.5 No value in delaying decisions

Actually, although the general prognostic of computational tractability of multi-stage
ARC solutions is somewhat negative, there are a few circumstances where these solu-
tions can be obtained easily. Among these circumstances are those where non-adjusted
solutions are optimal thus making the multi-stage ARC model reduce to be equivalent
to a model in which all decisions xt are independent of the observations that were
made, i.e. x∗t (v(z)) = x∗t (v(z

′)) for all z and z′ in Z. Note that these are the situations
in which the robust counterpart

(RC) maximize
{xt}Tt=1

inf
z∈Z

T∑

t=1

ct(z)
Txt + d(z) (4.11a)

subject to
T∑

t=1

ajt(z)
Txt ≤ bj(z) , ∀ z ∈ Z , ∀ j = 1, . . . , J, (4.11b)

can be used to obtain a fixed policy that actually achieves the same worst-case perfor-
mance as an optimally adjusted policy. Here are the conditions that were established
in [11] that can help identify such situations.

Theorem 4.3. : The multi-stage ARC model presented in equation (4.8) is equivalent
to the simpler robust counterpart model (4.11) where each xt ∈ Rn is independent of z,
when there exists a partition of the uncertain vector z as z := [ z0 z1 z2 · · · zJ ]T

such that
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1. There exists nonempty convex compact sets Zj ⊂ Rdim zj such that

Z := Z0 ×Z1 ×Z2 × · · · × ZJ = {z | ∃zi ∈ Zi,∀ i, z = [ z0 z1 z2 · · · zJ ]T}

2. There exists some M > 0 such that any feasible {xt(·)}Tt=1 is such that the con-
dition ∥xt(vt(z))∥∞ ≤M for all z ∈ Z is either explicitly or implicitly imposed

3. The objective function is a function of z0, namely ct(z) = ct(z0) and d(z) = d(z0)

4. The functions involved in defining each constraint j only depend on zj, namely
ajt(z) = ajt(zj) and bjt(z) = bjt(zj)

Note that the theorem above is slightly more general than what is presented in
[11] as it accounts for multi-stage problems. We believe our proof is also simpler to
follow as it exploits a famous theorem that originates from zero-sum games called Sion’s
minimax theorem.

Lemma 4.4. :(Sion’s minimax theorem [44]) Let X ⊂ Rn be a convex set and Z ∈ Rm

be a compact convex set, and let h be a real-valued function on X × Z with

1. h(x, ·) lower semicontinuous and quasi-convex on Z, ∀x ∈ X

2. h(·, z) upper semicontinuous and quasiconcave on X , ∀ z ∈ Z

then
sup
x∈X

min
z∈Z

h(x, z) = min
z∈Z

sup
x∈X

h(x, z) .

In particular, the conclusion is valid if instead of conditions 1 and 2, one can verify
that h(x, ·) is convex on Z for all x ∈ X , and h(·, z) is concave on X for all z ∈ Z.

We are now ready for the proof of theorem 4.3.

Proof. We will restrict our attention to the case where the multi-stage ARC model is
feasible, otherwise the two problems are necessarily infeasible and thus equivalent.

Step #1: Full adjustability In this context, we start our proof by demonstrating
this theorem in the case where vt(z) := z for all t (i.e. all decisions, even x1, can use
the information about the exact realization of z). In this case the multi-stage ARC
model is presented as

maximize
{xt(·)}Tt=1

inf
z∈Z

T∑

t=1

ct(z0)
Txt(z) + d(z0)

subject to
T∑

t=1

ajt(zj)
Txt(z) ≤ bj(zj) , ∀ z ∈ Z , ∀ j = 1, . . . , J

∥xt(z)∥∞ ≤M , ∀ t, ∀ z ∈ Z
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where we made explicit the dependence of ct, d, ajt, and bj on each of the members
of {z0, z1, · · · , zJ}. The optimal value of this model is equivalent to the optimal value
(that we will call ψ) of the following robust two-stage problem

ψ := min
z∈Z

h(z) ,

where h(z) is defined as

h(z) := max
{xt}Tt=1

T∑

t=1

ct(z0)
Txt + d(z0)

subject to
T∑

t=1

ajt(zj)
Txt ≤ bj(zj) , ∀ j = 1, . . . , J

∥xt∥∞ ≤M , ∀ t .
By formulating the Lagrangian function of the inner maximization problem associated
to h(z), we obtain that

h(z) = max
{xt}Tt=1:∥xt∥∞≤M,∀t

inf
λ≥0

T∑

t=1

ct(z0)
Txt + d(z0) +

∑

j

λj(bj(zj)−
∑

t

ajt(zj)xt)

Referring to Sion’s minimax theorem, we can verify that the Lagrangian function pre-
sented here is affine in both {xt}Tt=1 and λ, and that the feasible set for {xt}Tt=1 is
compact. Hence, we can conclude that

h(z) = inf
λ≥0

max
{xt}Tt=1:∥xt∥∞≤M,∀t

T∑

t=1

ct(z0)
Txt + d(z0) +

∑

j

λj(bj(zj)−
∑

t

ajt(zj)xt) .

Since the multi-stage ARC model is feasible, it must be that h(z) is finite hence that
the infimum in λ is achieved1

h(z) = min
λ≥0

max
{xt}Tt=1:∥xt∥∞≤M, ∀t

T∑

t=1

ct(z0)
Txt + d(z0) +

∑

j

λj(bj(zj)−
∑

t

ajt(zj)xt) .

Going once step back we get that

ψ = min
z∈Z

h(z) = min
λ≥0

min
z∈Z

max
{xt}Tt=1:∥xt∥∞≤M, ∀t

T∑

t=1

ct(z0)
Txt+d(z0)+

∑

j

λj(bj(zj)−
∑

t

ajt(zj)xt) ,

since the order of two min operators can always be inverted. Now looking into the
“minz maxx” expression, we can once again apply Sion’s minimax theorem to get that

ψ = min
λ≥0

max
{xt}Tt=1:∥xt∥∞≤M,∀t

min
z∈Z

T∑

t=1

ct(z0)
Txt + d(z0) +

∑

j

λj(bj(zj)−
∑

t

ajt(zj)xt) .

1Notice that the infimum is taken over a lower semi-continuous function.
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Yet, it just so happens that the minimization in z can decompose over the zj’s so that

ψ = min
λ≥0

max
{xt}Tt=1:∥xt∥∞≤M, ∀t

T∑

t=1

min
z0∈Z0

ct(z0)
Txt+d(z0)+

∑

j

λj min
zj∈Zj

(bj(zj)−
∑

t

ajt(zj)xt) .

And as things always comes in threes, a third application of Sion’s minimax will reveal
that

ψ = max
{xt}Tt=1:∥xt∥∞≤M,∀t

min
λ≥0

T∑

t=1

min
z0∈Z0

ct(z0)
Txt+d(z0)+

∑

j

λj min
zj∈Zj

(bj(zj)−
∑

t

ajt(zj)xt) .

Note that this third application is made possible by the fact that the function that
is implicated is affine in λ and concave in xt. This would not be the case if the
minimization in z did not decompose over independent minimizations in each zj.

Observing that the expression we get for ψ takes the shape of a Lagrangian function,
we can reformulate it as

ψ = maximize
{xt}Tt=1

min
z0∈Z0

T∑

t=1

ct(z0)
Txt + d(z0)

subject to
T∑

t=1

ajt(zj)
Txt ≤ bj(zj) , ∀ zj ∈ Zj , ∀ j = 1, . . . , J

∥xt∥∞ ≤M , ∀ t, ∀ z ∈ Z

where the optimization now considers a set of decisions {xt}Tt=1 that is fixed prior to
observing the realization of z ∈ Z. This final optimization model clearly takes the
shape of the simpler robust counterpart form (4.11).

Step #2: Partial adjustability In the case of partial adjustability, i.e. when some
vt(z) :̸= z, it is obviously possible (and possibly sub-optimal) to simply optimize over
policies that do not adjust with respect to vt(z) and which would achieve

maximize
{xt}Tt=1

inf
z∈Z

T∑

t=1

ct(z)
Txt + d(z)

subject to
T∑

t=1

ajt(z)
Txt ≤ bj(z) , ∀ z ∈ Z , ∀ j = 1, . . . , J

∥xt∥∞ ≤M , ∀ t, ∀ z ∈ Z .

However, we just showed that the performance of this policy is exactly the same as the
maximum performance that could be achieved if the policy was fully adjustable. It is
therefore clear that partial adjustability cannot do better then that. This completes
our proof. □
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Remark 4.5. : It is worth being aware that in [33] the authors have further stud-
ied what are conditions under which the adjustable and static solutions are equiva-
lent. Furthermore, in [16] and some follow up work [17], the authors made further
progresses in establishing conditions under which the solution of the non-adjustable
robust counterpart model (4.11) can be considered to perform relatively well compared
to a problem where decision variables are instead considered adjustable. In particular,
they are able to identify general conditions under which the relative sub-optimality of
such here-and-now decisions is bounded by a factor of two.

4.6 Exact solution methods for Robust Two-stage

problems

In this section, we expose some algorithms that have been proposed to obtain exact
solutions to two-stage adjustable robust counterpart model with “relatively complete”
and “fixed” recourse. In particular, we are interested in obtaining the optimal “first-
stage” decision x for the following problem:

maximize
x,y(·)

inf
z∈Z

c1(z)
Tx+ cT2 y(z) + d(z)

subject to aj1(z)
Tx+ aTj2y(z) ≤ bj(z) , ∀ z ∈ Z , ∀ j = 1, . . . , J

x ∈ X ,

where x ∈ Rn is the decision that needs to be initially implemented while y ∈ Rn is
implemented once z is known. Also, one might note that the effect of the recourse
decision variables y(·) is not affected by uncertainty (i.e. c2(z) := c2 and aj2(z) := aj2),
a property commonly referred as “fixed recourse”. For simplicity of exposure, it is also
commonly assumed that the feasible set X is such that it guarantees that it is always
possible to identify a recourse action y that will satisfy all the constraints, a property
commonly referred as “relatively complete recourse”. In other words,

X ⊆ {x ∈ Rn | ∀ z ∈ Z,∃y ∈ Rn, aj1(z)
Tx+ aTj2y ≤ bj(z) , ∀ j = 1, . . . , J} .

In what follows we will mostly refer to the following representation of the model

(TSARC) maximize
x∈X

inf
z∈Z

h(x, z) , (4.12)

where we have that

h(x, z) := max
y

c1(z)
Tx+ cT2 y + d(z)

subject to aj1(z)
Tx+ aTj2y ≤ bj(z) , ∀ j = 1, . . . , J.

This latter form makes explicit the fact that we are solely interested in an optimal
first-stage decision x∗ and its optimal worst-case total revenue infz∈Z h(x∗, z). Note



80 CHAPTER 4. ADJUSTABLE ROBUST LINEAR PROGRAMMING

that once the realized z is known, it is possible to implement an optimal recourse policy
simply by reoptimizing the second stage problem involved in evaluating h(x∗, z).

Although, given the NP-hardness of the problem, there is in general no guarantee
for either of the methods presented below to return an exactly optimal solution in a
reasonable amount of time, some of these algorithms have been applied successfully
to applications of practical sizes. We will later explore approximation schemes that
are considered more tractable then these exact methods yet, before deploying such
approximation schemes on large problems, it is usually interesting to confirm the quality
of approximate solutions on small problem instances where exact solutions can be
identified.

4.6.1 Vertex enumeration method

We first present the most straightforward way of solving two-stage robust counterpart
problems in cases where it is possible to define Z as the convex hull of a certain number
of points: Z := ConvexHull({z̄1, z̄2, . . . , z̄K}).
Theorem 4.6. : Assume that the uncertainty set Z is given as the convex hull of a
finite set:

Z := ConvexHull({z̄1, z̄2, . . . , z̄K}) .
Then, the TSARC presented in problem (4.12) is equivalent to

maximize
x,{yk}Kk=1

min
k

c1(z̄k)
Tx+ cT2 yk + d(z̄k) (4.13a)

subject to aj1(z̄k)
Tx+ aTj2yk ≤ bj(z̄k) , ∀ k = 1, . . . , K, ∀ j = 1, . . . , J (4.13b)

x ∈ X . (4.13c)

To prove this theorem we will need to make use of the following lemma.

Lemma 4.7. : Assume that the uncertainty set Z is given as the convex hull of a
finite set :

Z := ConvexHull({z̄1, z̄2, . . . , z̄K}) .
Then, given a concave function h(z) over Z, the optimal value of minz∈Z h(z) is equal
to mink∈{1,2,...,K} h(z̄k).

Proof. Let z∗ be an optimal value of minz∈Z h(z), then since z ∈ Z it is necessarily the
convex combination of the points in {z̄1, z̄2, . . . , z̄K}. Namely, there must exist θ ∈ RK ,
such that θ ≥ 0 and

∑
k θk = 1, for which

z∗ =
∑

k

z̄kθk .

Since this is the case, by the concavity of h(z) it must also be that

min
z∈Z

h(z) = h(z∗) = h(
∑

k

z̄kθk) ≥
∑

k

θkh(z̄k) ≥ min
k
h(z̄k) ≥ min

z∈Z
h(z) ,
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where we used, in order, Jensen’s inequality for concave functions, the properties of
θ, and the fact the each z̄k is a member of Z. Hence, we have that minz∈Z h(z) =
mink h(z̄k). □

We pursue with the proof of theorem 4.6.

Proof. For any fixed x ∈ X and z ∈ Z, by duality of linear programs, h(x, z) can be
shown equal to the optimal value of

h(x, z) = min
λ

c1(z)
Tx+ d(z) +

∑

j

λj(bj(z)− aj1(z)
Tx)

subject to c2 =
∑

j

aj2λj

λ ≥ 0 ,

where λ ∈ RJ . Strong duality applies here because of our assumption of relatively
complete recourse which ensures that the maximization problem evaluated in h(x, z)
is feasible for any x ∈ X and z ∈ Z. Presented in this form, we realize that h(x, z) is
actually a concave function of z, since it is the minimum of a set of affine functions,
each indexed by a λ in some feasible set. Since h(x, ·) is a concave function by lemma
4.7

min
z∈Z

h(x, z) = min
k
h(x, z̄k) .

But then, in this form, we would only need to be robust with respect to the K scenarios
for z which only imply the recourse action employed under those circumstances. This
is how one obtains that problem (4.13) is equivalent to the TSARC model in terms of
identifying x∗ and its worst-case cost. □

Note that in general the number of vertices of a convex polyhedron might be ex-
ponential with respect to the number of faces that describes it. In particular, the box
uncertainty set in Rm is defined by 2m faces but involves 2m vertices. This observations
therefore limits significantly the use of the vertex enumeration method in order to solve
the TSARC model of realistic sizes. Fortunately, in [53], the authors found a way to
speed up the resolution of this enumeration method when the list of vertices has an
exponential size.

4.6.2 Column-and-constraint generation method

In [53], the authors propose an iterative method that has the potential to identify
a subset of vertices of Z for which a “reduced” vertex enumeration method can be
employed and effectively return an optimal first-stage solution. In particular, the idea
behind the method referred as “column-and-constraint generation” is to approximate
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problem (4.13) with

maximize
x,s,{yk}K′

k=1

s (4.14a)

subject to s ≤ c1(z̄
′
k)
Tx+ cT2 yk + d(z̄′k) , ∀ k = 1, . . . , K ′ (4.14b)

aj1(z̄
′
k)
Tx+ aTj2yk ≤ bj(z̄

′
k) , ∀ k = 1, . . . , K ′, ∀ j = 1, . . . , J (4.14c)

x ∈ X , (4.14d)

where z̄′k are member of Z ′
v := {z̄′1, z̄′2, . . . , z̄′K′}, a set of reasonable size even in large

practical problems.
Note first that if Z ′

v is a subset of the vertices of Z then the optimal value of
problem (4.14) (let’s call it ŝ) is necessarily an upper bound to the optimal value (let’s
call it s∗) of the TSARC problem, i.e. ŝ ≥ s∗. This is due to the fact that the TSARC
problem is equivalent to

maximize
x,s,{yk}Kk=1

s (4.15a)

subject to s ≤ c1(z̄k)
Tx+ cT2 yk + d(z̄k) , ∀ k = 1, 2, . . . , K (4.15b)

aj1(z̄k)
Tx+ aTj2yk ≤ bj(z̄k) , ∀ k = 1, 2, . . . , K, ∀ j = 1, . . . , J(4.15c)

x ∈ X , (4.15d)

where Zv := {z̄1, z̄2, . . . , z̄K} is the set of vertices of Z. Since this problem involves
all vertices which covers the subset Z ′

v involved in problem (4.14) any of its optimal
solution can be used to create an optimal solution for problem (4.14) which achieves
the same objective value. Note that the opposite is not always true.

Now, given an optimal solution (x̂, ŝ, {ŷk}K′

k=1) to problem (4.14), let ẑ := argminz∈Z h(x̂, z)
then one can show that

• either h(x̂, ẑ) = ŝ which would indicate that x̂ is optimal with respect to (4.15)
since s∗ = maxx∈X minz∈Z h(x, z) ≥ minz∈Z h(x̂, z) = ŝ ≥ s∗

• or h(x̂, ẑ) < ŝ and ẑ is a vertex of Z that is not a member of Z ′
v which can be

added to Z ′
v to generate a tighter approximation.2

Based on this analysis, one can design the following procedure:

1. Take any x̂ ∈ X

2. Identify ẑ := argminz∈Z h(x̂, z) and construct Z ′
v := {ẑ}

3. Iterate until algorithm converged:

(a) Solve problem (4.14) to obtain x̂ and ŝ

2Note that theoretically, depending on the solution scheme, ẑ might not be a vertex of Z. However,
whenever it is the case, there always exists an another optimal solution at a vertex.
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(b) Identify ẑ := argminz∈Z h(x̂, z) , if h(x̂, ẑ) = ŝ then the algorithm has
converged, otherwise add ẑ to Z ′

v and iterate

This algorithm is guaranteed to converge in a finite number of iterations since all
bounded polyhedron described by a finite number of linear constraints have a finite
number of vertices thus the algorithm will converge after a number of iterations that is
necessarily lesser or equal to the number of vertices of Z. The hope is that in practice,
one needs much less iterations to obtain an optimal solution.

The difficulty that remains to resolve is how to solve minz∈Z h(x̂, z). This is an
important step as it will most likely be the bottleneck of the algorithm. Hence, although
we suggest a method below, one should invest special efforts in establishing for the
application that interest him whether there is a more efficient procedure to do so. Our
method will exploit what are known as the Karush-Kuhn-Tucker (KKT) conditions of
optimality.

Lemma 4.8. :(Karush-Kuhn-Tucker conditions, see section 5.5.3 of [22]) Given a
convex optimization problem

maximize
x

f(x)

subject to gj(x) ≤ 0 , ∀ j = 1, 2, . . . , J ,

where x ∈ Rn, f(x) is a concave differentiable function, gj(x) are convex differentiable
functions for all j = 1, 2, . . . , J . If this optimization problem satisfies strong duality,
then any primal dual optimal solution pair must satisfy the following conditions

gj(x̃) ≤ 0

λ̃ ≥ 0

λ̃jgj(x̃) = 0 , ∀ j = 1, 2, . . . , J

∇f(x̃) =
∑

j

λ̃j∇gj(x̃)

where ∇f(x̃) refers to the gradient of f(·) at x̃ and similarly for ∇gj(x̃). Conversely,
let x̃ ∈ Rn and λ̃ ∈ RJ be any points that satisfy the above conditions, then x̃ and λ̃
are primal and dual optimal, with zero duality gap.

In case of linear programming the KKT condition can be reformulated as follows.

Corollary 4.9. : Given a linear programming problem

maximize
y

cTy

subject to Ay ≤ b ,
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where y ∈ Rn. If this optimization problem satisfies strong duality, then any primal
dual optimal solution pair must satisfy the following conditions

Aỹ ≤ b

λ̃ ≥ 0

λ̃j(a
T
j ỹ − bj) = 0 , ∀ j = 1, 2, . . . , J

c =
∑

j

λ̃jaj .

Conversely, let ỹ ∈ Rn and λ̃ ∈ RJ be any points that satisfy the above conditions, then
ỹ and λ̃ are primal and dual optimal, with zero duality gap.

Hence, if we look at the optimization problem that evaluates h(x, z) for some x ∈ X
and some z ∈ Z, since relatively complete recourse implies that this optimization model
is feasible, this implies that the duality gap is zero hence that if the optimal value is
finite3 then it is achieved by a primal dual pair of variables that satisfy the KKT
conditions above. In particular,

h(x, z) = c1(z)
Tx+ cT2 y + d(z)

for any pair (y, λ) such that

aj1(z)
Tx+ aTj2y ≤ bj(z) , ∀ j = 1, . . . , J (4.16a)

λ ≥ 0 (4.16b)

λj(aj1(z)
Tx+ aTj2y − bj(z)) = 0 , ∀ j = 1, . . . , J (4.16c)

c2 =
∑

j

aj2λj . (4.16d)

In other words,

min
z∈Z

h(x, z) := min
z∈Z,y,λ,u

c1(z)
Tx+ cT2 y + d(z)

aj1(z)
Tx+ aTj2y ≤ bj(z) , ∀ j = 1, . . . , J

λ ≥ 0

λj ≤Muj , ∀ j = 1, . . . , J

bj(z)− aj1(z)
Tx− aTj2y ≤M(1− uj) , ∀ j = 1, . . . , J

c2 =
∑

j

aj2λj

u ∈ {0, 1}J ,
where M is some large positive constant, and where each uj is a binary variable that
was introduced to linearize the complementarity slackness conditions (4.16c) at the
price of converting the problem into a mixed-integer linear program.

3This is necessarily the case for instance when the TSARC is known not to be unbounded, i.e.
∀x ∈ X , ∃ z ∈ Z, h(x, z) < ∞.
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4.7 Exercise: Facility location problem

In this exercise, you will implement the two solution schemes described above on a
facility location-transportation problem. In particular, we consider a company that
wishes to acquire some warehouses to produce the goods that will be distributed to the
retailers. These retailers are located at a number of locations on a map and a number
of candidate sites have already been selected.

Map indicating retailer locations and possible warehouse sites

Warehouse sites 
Retailers

For simplicity, we will assume that the maximum production that can be achieved
at each site is already predetermined. This leads to a robust two-stage optimization
problem in which the company must first decide which site to acquire, and later decide,
once the local demand for goods is known, how many goods to produce from each sites
and to be delivered to each retailers.

In particular, we will study the following model:

maximize
x,y

−
n∑

i=1

cixi +
n∑

i=1

m∑

j=1

(rij − dij)yij (4.17a)

subject to
n∑

i=1

yij ≤ Dj , ∀ j (4.17b)

m∑

j=1

yij ≤ Pixi , ∀ i (4.17c)

yij ≥ 0 ∀ i, j (4.17d)

x ∈ {0, 1}n , (4.17e)
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where x ∈ {0, 1}n describes which locations are acquired (i.e. xi = 1 if location i is
acquired), yij ∈ R describes how many goods are produced at warehouse i to satisfy
the demand at location j. The objective function accounts for the fact that it costs ci
to acquire the warehouse at site i, a revenue of rij is obtained for delivering one unit
of good to a customer at retailer location j from warehouse i, and dij accounts for the
per unit cost of producing a good at warehouse i and transporting it to retailer j. We
also account in this model for the fact that the production and delivery of goods must
be such that we never hold more goods than there is demand Dj at a retailer site, and
that each warehouse (if acquired) does not produce more than it is able to, namely
Pi units. Tables 4.1, 4.2, and 4.3 below present the detailed parameter values. Note
that all amount are in millions (i.e. installation cost is in million of dollars, capacity
and demand is in million units of goods, while transportation cost and sale price are
in dollars per units.

Table 4.1: Facility locations

Installation
cost

Capacity

Location #1 9.1 23
Location #2 8.0 168
Location #3 4.5 110
Location #4 2.1 295
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Table 4.2: Retailer locations

Nominal Max Retail
demand deviation price

Retailer #1 24 18 2
Retailer #2 12 1 2
Retailer #3 18 14 2
Retailer #4 23 12 2
Retailer #5 24 13 2
Retailer #6 13 5 2
Retailer #7 11 6 2
Retailer #8 9 0 2
Retailer #9 18 4 2
Retailer #10 25 23 2
Retailer #11 25 21 2
Retailer #12 23 20 2

Table 4.3: Transportation costs from facility to retailers

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

#1 2.31 2.37 1.89 1.92 1.98 1.69 2.37 2.14 2.87 2.16 2.15 1.52
#2 1.88 2.36 2.02 2.77 1.17 1.45 3.64 1.45 1.83 1.80 1.74 2.42
#3 2.51 1.73 3.50 2.39 2.51 2.50 3.08 2.36 2.35 1.72 1.47 2.10
#4 1.71 2.99 1.40 0.96 1.79 1.81 1.89 2.01 2.28 1.71 2.98 2.66

The robust counterpart of this model will account for uncertainty about the demand
vector D, and for the fact that each yij can be adapted to the overall demand D.
Specifically, the adjustable robust optimization model takes the form:

maximize
x,y(·)

inf
z∈Z(Γ)

−
n∑

i=1

cixi +
n∑

i=1

m∑

j=1

(rij − dij)yij(z) (4.18a)

subject to
∑

i

yij(z) ≤ D̄j + D̂jzj , ∀ z ∈ Z(Γ) , ∀ j (4.18b)

∑

j

yij(z) ≤ Pixi , ∀ z ∈ Z(Γ) , ∀ i (4.18c)

yij(z) ≥ 0 , ∀ z ∈ Z(Γ) , ∀ i, j (4.18d)

x ∈ {0, 1}n , (4.18e)
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where D̄ is the nominal demand vector, D̂j expresses what is the maximum deviation
in demand one expects to see from the nominal amount at location j, and where Z(Γ)
is the budgeted uncertainty set, in other words

Z(Γ) :=

{
z ∈ Rm

∣∣∣∣∣−1 ≤ z ≤ 1,
m∑

j=1

|zj| ≤ Γ

}
.

Exercise 4.1. Implementing vertex enumeration
Solve with RSOME (using Google Colab) the robust two-stage optimization problem
presented in problem (4.18) using vertex enumeration for the budgeted uncertainty set
when Γ = 1 and Γ = m.

Exercise 4.2. RC = multi-stage ARC under Γ = m
Use theorem 4.3 to demonstrate that when Γ = m problem (4.18) is equivalent to

maximize
x,y

−
n∑

i=1

cixi +
n∑

i=1

m∑

j=1

(rij − dij)yij

subject to
n∑

i=1

yij ≤ D̄j − D̂j , ∀ j

m∑

j=1

yij ≤ Pixi , ∀ i

yij ≥ 0 ∀ i, j
x ∈ {0, 1}n

Exercise 4.3. Implementing column-and-constraint generation
Solve with RSOME (using Google Colab) the robust two-stage optimization problem
presented in problem (4.18) using column-and-constraint generation for the budgeted
uncertainty set when Γ = 4.

https://colab.research.google.com/drive/1rJuWRgkd96i9nY9MwRMtahg_qDU-dBTm?usp=sharing
https://colab.research.google.com/drive/1rJuWRgkd96i9nY9MwRMtahg_qDU-dBTm?usp=sharing


Chapter 5

Value of Flexibility Using Tractable
Decision Rules

Although the exact solution methods described in the previous chapter are valuable,
they are confronted to two limitations. First, it is unclear how such exact methods
might generalize to multi-stage problems as their implementation relies heavily on there
being three level of optimization x→ z → y. The second issue is that one actually has
no guarantees that the exact algorithms will converge in a reasonable amount of time.
For instances, in a computational study that was done in [1], the authors identified
instances where x was fixed, z ∈ R64, y ∈ R64 where the optimal value could not be
obtained in less than a full day on a powerful computer.

These issues highlight the need for some approximation schemes that can easily be
applied on multi-stage problem and for which we can provide guarantees that solutions
will be obtained in a reasonable amount of time (namely in an amount of time that
grows polynomially in terms of the size of the problem) and with some guarantees
in terms of worst-case performance. In what follows, we present the general idea
behind an approximation scheme known to employ “affine decision rules”. Intuitively,
the conjecture behind this scheme is that the difficulty of resolution originates from
the fact that each decision rule xt(·), or y(·) in a two-stage problem, is very hard to
optimize because of the complexity of the structure that we allow it to take when in
fact a simpler structured decision rule might be almost as effective (see the illustration
in figure 5.1).

5.1 Affine decision rules

The idea of using affine decision rules to approximate the multi-stage ARC problem
(4.8) was first proposed in [11] for two-stage problems but can easily be generalized
to the more general setting. We start by being more precise about what we mean by
affine decision rules.

89
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z

y(z)

1 20

y*x=0
y*x=1/2

y*x=1

y*x=3/2

yx=1/2

~

yx=1
~

yx=3/2

~

Z

Figure 5.1: Example of decision rules for simple inventory problem from chapter 4.1.
Note that the worst-case value over Z is the same whether we employ a complicated
piecewise linear function y∗ or a simpler affine function ỹ.

Definition 5.1. : Let each observation mapping vt : Rm → Rν , the decision rule
xt : Rν → Rn is considered an affine decision rule if given any two observation vectors
v̄1 ∈ Rν and v̄2 ∈ Rν and any λ ∈ R, xt(·) has the property that

xt(λv̄1 + (1− λ)v̄2) = λxt(v̄1) + (1− λ)xt(v̄2) .

One can actually show that this is the case if and only if xt can be represented as

xt(v̄) := xt +Xtv̄

for some xt ∈ Rn and Xt ∈ Rn×ν .

The approximation scheme known under the name of Affinely Adjustable Robust
Counterpart (AARC) consists of replacing the multi-stage ARC model with an opti-
mization model that will reduce its search to the space of affine decision rules. Namely,
this scheme will seek the optimal solution to the following model:

(AARC) (5.1a)

maximize
{xt}Tt=1,{Xt}Tt=2

inf
z∈Z

c1(z)
Tx1 +

T∑

t=2

ct(z)
T (xt +Xtvt(z)) + d(z) (5.1b)

subject to aj1(z)
Tx1 +

T∑

t=2

ajt(z)
T (xt +Xtvt(z)) ≤ bj(z) , ∀ z ∈ Z , ∀ j = 1, . . . , J,(5.1c)

where each decision rule xt(·) was replaced with its affine representation xt(v̄) :=
xt + Xtv̄, and where the optimization is now made over the finite dimensional space
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spanned by the set of decision vectors xt ∈ Rn and decision matrices Xt ∈ Rn×ν .
However, it is still necessary to identify a tractable reformulation of this model where
the worst-case analysis z ∈ Z is replaced by a joint optimization of decision variables
and worst-case certificates. To do so, we will need to make the following assumption.

Assumption 5.2. : The multi-stage ARC model has fixed recourse and all observa-
tions are linear functions of z. In other words, mathematically we make the following
assumptions

1. (Fixed recourse) For all t = 2, . . . , T and all j = 1, . . . , J , the affine mappings
ct(z) and ajt(z) are actually constant, i.e. ct(z) = ct and ajt(z) = ajt.

2. (Affine observations) For all t = 2, . . . , T , the observations vt(·) can be de-
scribed as vt(z) := Vtz for some Vt ∈ Rν×m.

Theorem 5.3. : Let the multi-stage ARC model (4.8) satisfy assumption 5.2 and
the uncertainty set Z be a bounded polyhedron that satisfies assumption 2.2, then the
AARC model (5.1) can be described as the robust linear program:

maximize
{xt}Tt=1,{Xt}Tt=2

inf
z∈Z

c1(z)
Tx1 +

T∑

t=2

cTt (xt +XtVtz) + d(z) (5.2a)

subject to aj1(z)
Tx1 +

T∑

t=2

aTjt(xt +XtVtz) ≤ bj(z) , ∀ z ∈ Z , ∀ j = 1, . . . , J,(5.2b)

and can therefore be reformulated as a linear program with finite number of decisions
and finite number of constraints. Furthermore, the optimal affine decision rules and
optimal objective value obtained from the AARC model provide a “conservative” ap-
proximation of the multi-stage ARC model, i.e. the optimal affine decision rules are
necessarily implementable in multi-stage ARC and achieve the approximated objective
value, which thus provide a lower bound on the true optimal value of the multi-stage
ARC.

Proof. The proof for this theorem is fairly straightforward. Problem (5.2) is simply
obtained after replacing both the decision rule xt(·) and the observation mapping vt(·)
with their affine and linear definition. One can then establish that the objective func-
tion and each constraint involve affine functions of the decision variables and of the
perturbation z, hence that it is an instance of robust linear program for which we know
how to obtain a tractable reformulation (see theorem 2.7).

Next, once the optimal solution is obtained in terms of {x∗t}Tt=1 and {X∗
t }Tt=2 it is

possible to construct a decision rule xt(v̄) := x∗t +X
∗
t v̄t which will satisfy all constraints

of the multi-stage ARC model and for which the objective value reduces to

inf
z∈Z

c1(z)
Tx∗1 +

T∑

t=2

cTt (x
∗
t +X∗

t Vtz) + d(z) ,

which is exactly the optimal value of the AARC model. □
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Example 5.4. : Looking back at the inventory problem presented in example 4.1,
where we were trying to identify ordering strategies that are robust to demand uncer-
tainty (as portrayed by d ∈ U ⊂ Rm), we recall formulating the multi-stage adjustable
robust counterpart as follows:

minimize
x1,{xt(·)}Tt=2,{s+t (·),s−t (·)}Tt=1

sup
d∈U

c1x1 +
∑

t

ctxt(d[t−1]) + hts
+
t (d) + bts

−
t (d)

subject to s+t (d) ≥ 0, s−t (d) ≥ 0 , ∀ d ∈ U , ∀ t

s+t (d) ≥ y1 +
t∑

t′=1

xt′(d[t′−1])− dt′ , ∀ d ∈ U , ∀ t

s−t (d) ≥ −y1 +
t∑

t′=1

dt′ − xt′(d[t′−1]) , ∀ d ∈ U , ∀ t

0 ≤ xt(d[t−1]) ≤M , ∀ d ∈ U , ∀ t .

One can observe that this multi-stage ARC model satisfies assumption 5.2. Namely,
that 1) the recourse is fixed as portrayed by the fact that all xt are only multiplied to
coefficients that are certain; and 2) that the observations are a linear function of the
uncertain vector d. Indeed, regarding the latter, we can verify that

d[t−1] =

[
I t−1 0t,T−t+1

0T−t×t−1 0T−t×T−t

]
d =

[
d1 . . . dt−1 0 . . . 0

]T
,

where we padded the unrevealed terms of d with zeros in order to be consistent with
Vt ∈ Rν×m.

The affinely adjustable robust counterpart of this inventory model can be presented
as

minimize
x1, {xt, Xt}Tt=2,

{s+t , S+
t }Tt=1, {s−t , S−

t }Tt=1

sup
d∈U

c1x1 +
∑

t

ct(xt +XtVtd) + ht(s
+
t + S+

t d) + bt(s
−
t + S−

t d)

subject to s+t + S+
t d ≥ 0, s−t + S−

t d ≥ 0 , ∀ d ∈ U , ∀ t

s+t + S+
t d ≥ y1 +

t∑

t′=1

xt′ +Xt′Vt′d− dt′ , ∀ d ∈ U , ∀ t

s−t + S−
t d ≥ −y1 +

t∑

t′=1

dt′ − (xt′ +Xt′Vt′d) , ∀ d ∈ U , ∀ t

0 ≤ xt +XtVtd ≤M , ∀ d ∈ U , ∀ t ,

where eachXt ∈ R1×m, S+
t ∈ R1×m, S−

t ∈ R1×m, and where Vt :=

[
I t−1 0t,T−t+1

0T−t×t−1 0T−t×T−t

]

such that Vtd =
[
d1 . . . dt−1 0 . . . 0

]
. Note that the size of this AARC model

could be reduced by accounting for the fact that the observation vector vt is smaller
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for smaller t. For simplicity of presentation, we choose to leave it this way as we un-
derstand that some terms of Xt will always be multiplied to zero and can therefore be
set arbitrarily.

Figure 5.2 presents how this is implemented in Python using RSOME. Note how
the linear decision rules are defined using the command “splus=model.ldr(T)”, and
how the dependence on the uncertain variables that are observed before implementing
the decision are identified using “splus.adapt(z)”.

observations

Figure 5.2: Python code that implements AARC on the inventory model (see Google
Colab).

Remark 5.5. : Note that the most famous example of linear observation mapping is
simply the one that reveals at each period an additional subset of the terms in z. This
is often referred as the property that “z is progressively revealed”. Mathematically
speaking, let z be composed of T − 1 vectors {zt}T−1

t=1 , with zt ∈ Rm′
such that z :=[

zT1 zT2 . . . zTT−1

]
, we will say that z is “progressively revealed” if Vtz = z[t−1] =[

zT1 zT2 . . . zTt−1 0 . . . 0
]
. In this context, one can consider that the observation

matrix Vt ∈ Rν×m, with ν := m, is described as follows:

Vt :=

[
I(t−1)m′×(t−1)m′ 0(t−1)m′×(T−t)m′

0(T−t)m′×(t−1)m′ 0(T−t)m′×(T−t)m′

]
.

https://colab.research.google.com/drive/11pkdwbByF-Ihw0TDRAon_yKIxpNuBrC_?usp=sharing
https://colab.research.google.com/drive/11pkdwbByF-Ihw0TDRAon_yKIxpNuBrC_?usp=sharing
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In [25], the authors also discuss extensively the notion of “inexact revealed data”
which refers to the idea that at each period of time it is not z[t−1] that is revealed
but rather a measurement ẑ[t−1] ≈ z[t−1]. This framework is also representable in
terms of the multi-stage adjustable robust counterpart model by augmenting the un-
certainty space z ∈ Z to (ẑ, z) ∈ U where U captures the relation between z and
ẑ (e.g. ∥z − ẑ∥2 ≤ γ) and which projection over the z space is equal to Z, namely
Z = {z ∈ Rm | ∃ẑ, (ẑ, z) ∈ U}. It is then possible to model the progressively revealed
measurements using

Vt :=

[
I(t−1)m′×(t−1)m′ 0(t−1)m′×(T−t)m′ 0(t−1)m′×m
0(T−t)m′×(t−1)m′ 0(T−t)m′×(T−t)m′ 0(T−t)m′×m

]
,

such that vt([ẑ
T zT ]T ) := Vt[ẑ

T zT ]T =
[
ẑ[t−1] 0 . . . 0

]
.

5.2 Piecewise affine decision rules through lifting

the uncertainty set

Considering that the application of affine decision rules will generate sub-optimal poli-
cies compared to fully-adjustable ones, one might be tempted to investigate whether it
is possible to obtain tighter conservative approximation by employing more sophisti-
cated (yet tractable) decision rules, in particular nonlinear ones. We will see how this
can actually be achieved for piecewise affine decision rules by employing affine decision
rules on a lifted version of the uncertainty set.

Example 5.6. : In inventory problems, it is well-known that a base stock policy
is a simple policy that can be very effective. Indeed, such a policy takes the form
xt(yt; θt) := max(0, θt − yt), where yt captures the inventory at the very end of the
previous time step, and θt captures the base stock level that needs to be reached before
encountering the demand at step t. Given a set of base stock levels, once we replace
yt by its definition in terms of previous demand and let y1 = 0, we obtain for instance
that the base stock policy for t = 2 is represented as x2(d1) := max(0; θ2 − θ1 + d1)
while at step t = 3 we get x3(d1, d2) := max(0; θ3−max(θ1−d1−d2 ; θ2−d2)). Observe
that these policies are not affine but rather piecewise affine in (d1, d2).

The above example motivates the use a class of piecewise affine policies described
as

xt(vt(z)) := x̄t + X̄tvt(z) +
ν∑

k=1

θ+tkmax(0; vtk(z)) + θ−tkmax(0;−vtk(z))

where vtk(z) captures the k-th observation in z. Without loss of generality we can
assume that each vtk(z) = zi(k) for some mapping i : N → N. Under such assumption,
a piecewise affine decision rule can be expressed as

xt(vt(z); x̄t, X̄
+
t , X̄

−
t ) := x̄t + X̄+

t Vtz
+ + X̄−

t Vtz
− ,
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where z+i := max(0; zi) and z−i := max(0;−zi), and where we omit to include the
adjustment XtVtz since it can be replicated as : XtVtz

+−XtVtz
−. In this formulation,

one can notice that the policy is actually affine with respect to the vector [zT z+
T
z−T ].

Hence, we can establish that optimizing such piecewise affine policies is equivalent to
applying affine policies to the lifted uncertainty set

Z ′ := {(z, z+, z−) ∈ R3m | z ∈ Z, z+i = max(0; zi), z
−
i = max(0;−zi), ∀ i = 1, . . . ,m} .

Specifically, we would be interested in solving the Lifted AARC model:

(LAARC)

maximize
{xt}Tt=1,{X+

t ,X
−
t }Tt=2

inf
(z,z+,z−)∈Z′

c1(z)
Tx1 +

T∑

t=2

ct(z)
T (xt +X+

t Vtz
+ +X−

t Vtz
−) + d(z)

subject to aj1(z)
Tx1 +

T∑

t=2

ajt(z)
T (xt +X+

t Vtz
+ +X−

t Vtz
−) ≤ bj(z) ,

{
∀ (z, z+, z−) ∈ Z ′

∀ j = 1, . . . , J
,

The difficulty that now arises is that Z ′ is not a convex polyhedron so that a constraint
such that

aj1(z)
Tx1 +

T∑

t=2

ajt(z)
T (xt +X+

t Vtz
+ +X−

t Vtz
−) ≤ bj(z) , ∀ (z, z+, z−) ∈ Z ′

cannot be reformulated through a direct application of duality theory for LPs.
One promising direction for tractable solution comes from considering the following

theorem.

Theorem 5.7. : Given that the decision problem has fixed recourse, the Lifted AARC
model is equivalent to

maximize
{xt}Tt=1,{X+

t ,X
−
t }Tt=2

inf
(z,z+,z−)∈Z′′

c1(z)
Tx1 +

T∑

t=2

cTt (xt +X+
t Vtz

+ +X−
t Vtz

−) + d(z) (5.3a)

subject to aj1(z)
Tx1 +

T∑

t=2

aTjt(xt +X+
t Vtz

+ +X−
t Vtz

−) ≤ bj(z) ,

{
∀ (z, z+, z−) ∈ Z ′

∀ j = 1, . . . , J
,(5.3b)

where Z ′′ := ConvexHull(Z ′). Therefore, if the convex hull of Z ′ can be described
with a finite number of linear constraints then the Lifted AARC model can be solved
efficiently.

Proof. The proof simply relies on the fact that since Z ′′ ⊇ Z ′, any feasible solution
of problem (5.3) is necessarily feasible for the LAARC model. Alternatively, since
the functions involved in each constraint are linear in (z, z+, z−), if we take a feasible
solution to LAARC and verify feasibility in problem (5.3), it is necessarily the case that
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there is a worst-case realization for each constraint that occurs at one of the vertices
of Z ′′ which by construction were members of Z ′. This indicates that any feasible
solution of LAARC is also feasible in problem (5.3). Hence, the feasible sets of both
problems are equivalent. Furthermore, a similar argument, based on the linearity of
the functions that are involved, can be used to establish that both objective functions
are equivalent. We can thus conclude that the set of optimal solutions and the optimal
value of both problems are therefore equivalent. □

This result informs us that one might be able to obtain a tractable reformulation
of the LAARC model if he can identify a good representation for the convex hull of Z ′.
In this regard, the following proposition might come in handy.

Proposition 5.8. : Let Z ⊆ [−M,M ]m for some M > 0. Then, the uncertainty set
Z ′ can be represented as

Z ′ =




(z, z+, z−) ∈ R3m

∣∣∣∣∣∣∣∣∣∣

∃u+ ∈ {0, 1}m, u− ∈ {0, 1}m,

z ∈ Z
z = z+ − z−

0 ≤ z+ ≤Mu+

0 ≤ z− ≤Mu−

u+ + u− = 1





.

Proof. One can confirm that given any z ∈ Z, since for any j = 1, . . . ,m, we necessarily
have that u+j +u

−
j = 1, u+j ∈ {0, 1}, and u−j ∈ {0, 1}, thus that either z+j > 0 or z−j > 0.

Hence, if zj > 0 it is necessary that z+j = zj and z
−
j = 0, while if zj < 0 it is necessary

that z+j = 0 and z−j = −zj. Finally, if zj = 0 then the only option is for z+j = z−j = 0.
This is exactly the behaviour that is described by Z ′. □

This proposition is interesting for two reasons. First, by relaxing the binary con-
straints on u+ and u− we instantly obtain a tractable outer approximation of ConvexHull(Z ′).
In particular, this will be especially effective with the budgeted uncertainty set. Sec-
ondly, this representation of Z ′ provides us a way of performing the worst-case analysis
of a fixed multi-stage piecewise affine policies.

Corollary 5.9. : Given that the decision problem has fixed recourse, let {xt}Tt=1 and
{X+

t , X
−
t }Tt=2 define a multi-stage piecewise affine policies. Then, one can verify the

feasibility with respect to any j-th constraint of the LAARC model

aTj1x1 +
T∑

t=1

aTjt(xt +X+
t Vtz

+ +X−
t Vtz

−) ≤ bj(z) , ∀ (z, z+, z−) ∈ Z ′′
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by solving the following mixed integer linear program

maximize
z,z+,z−,u+,u−

aTj1x1 +
T∑

t=2

aTjt(xt +X+
t Vtz

+ +X−
t Vtz

−)− bj(z)

subject to z ∈ Z
z = z+ − z−

0 ≤ z+ ≤Mu+

0 ≤ z− ≤Mu−

u+ + u− = 1

u+ ∈ {0, 1}m, u− ∈ {0, 1}m

to obtain (z∗, z+∗
, z−∗

) and verifying that the optimal value is lower or equal to zero. In
the situation that the multi-stage piecewise affine policy is infeasible, then the constraint

aTj1x1 +
T∑

t=2

aTjt(xt +X+
t Vtz

+∗
+X−

t Vtz
−∗
) ≤ bj(z

∗)

separates the current multi-stage piecewise affine policies from the set of such policies
that are feasible with respect to the j-th constraint of the LAARC model.

We now present a tractable representation of ConvexHull(Z ′) when Z is the bud-
geted uncertainty set.

Proposition 5.10. : Let Z be the budgeted uncertainty set. Then the uncertainty set
ConvexHull(Z ′) can be represented using the following tractable form

ConvexHull(Z ′) =




(z, z+, z−) ∈ R3m

∣∣∣∣∣∣∣∣∣∣

z+ + z− ≤ 1∑m
i=1 z

+
i + z−i ≤ Γ

z = z+ − z−

0 ≤ z+

0 ≤ z−





.

Proof. Let Z ′
2 be the set described in the proposition, i.e.

Z ′
2 :=




(z, z+, z−) ∈ R3m

∣∣∣∣∣∣∣∣∣∣

z+ + z− ≤ 1∑m
i=1 z

+
i + z−i ≤ Γ

z = z+ − z−

0 ≤ z+

0 ≤ z−





.

First, we work on simplifying the representation of Z ′ expressed in proposition 5.8
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when using the budgeted uncertainty set. Indeed, we have that

Z ′ =





(z, z+, z−) ∈ R3m

∣∣∣∣∣∣∣∣∣∣∣∣

∃u+ ∈ {0, 1}m, u− ∈ {0, 1}m,

∥z∥∞ ≤ 1
∥z∥1 ≤ Γ

z = z+ − z−

0 ≤ z+ ≤ u+

0 ≤ z− ≤ u−

u+ + u− = 1





=





(z, z+, z−) ∈ R3m

∣∣∣∣∣∣∣∣∣∣∣∣

∃u+ ∈ {0, 1}m, u− ∈ {0, 1}m,

z+ + z− ≤ 1∑m
i=1 z

+
i + z−i ≤ Γ

z = z+ − z−

0 ≤ z+ ≤ u+

0 ≤ z− ≤ u−

u+ + u− = 1





.

Based on this representation, it is clear that Z ′ ⊆ Z ′
2 since Z ′ has additional con-

straint. It is also clear that ConvexHull(Z ′) ⊆ Z ′
2 since Z ′

2 is convex. We are left with
demonstrating that Z ′

2 ⊆ ConvexHull(Z ′).
Given that a convex hull can be defined as the intersection of all the half spaces

described by the supporting hyperplanes of the points that are covered, we can con-
firm that Z ′

2 is contained in any such constructed half spaces to conclude that Z ′
2 ⊆

ConvexHull(Z ′). For any direction defined by (c, c+, c−) we can identify a supporting
half space as all triplets (z, z+, z−) such that

cT zT + c+
T
z+ + c−

T
z− ≤ β ,

with
β = sup

(z,z+,z−)∈Z′
cT zT + c+

T
z+ + c−

T
z− .

To show that Z ′
2 is in this half space, we need to demonstrate that for all c ∈ Rm,

c+ ∈ Rm, and c− ∈ Rm,

max
(z,z+,z−)∈Z′

2

cT zT + c+
T
z+ + c−

T
z− ≤ max

(z,z+,z−)∈Z′
cT zT + c+

T
z+ + c−

T
z− .

In other words, we should show that the optimal value of

maximize
z,z+,z−

cT zT + c+
T
z+ + c−

T
z−

subject to z+ + z− ≤ 1
m∑

i=1

z+i + z−i ≤ Γ

z = z+ − z−

z+ ≥ 0, z− ≥ 0 ,
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is always smaller or equal to the optimal value of

maximize
z,z+,z−,u+,u−

cT zT + c+
T
z+ + c−

T
z−

subject to z+ + z− ≤ 1
m∑

i=1

z+i + z−i ≤ Γ

z = z+ − z−

z+ ≥ 0, z− ≥ 0

u+ ∈ {0, 1}m, u− ∈ {0, 1}m
0 ≤ z+ ≤ u+

0 ≤ z− ≤ u−

u+ + u− = 1 .

Yet, one can establish that any optimal solution (z, z+, z−) to the first problem can be
used to construct a feasible solution to the second optimization problem that achieves
the same objective value in the second problem. This is done with

u+j
′
:=

{
1 if z+j > 0
0 otherwise

u−j
′
:= 1− u+j

′

z+j
′
:= (z+j + z−j )u

+
j
′

z−j
′
:= (z+j + z−j )u

−
j
′

z′j := z+j
′ − z−j

′
.

The argument repose on realizing that any such optimal solution where both z+j > 0
and z−j > 0 would necessarily have that cj + c+j = −cj + c−j so that it does not matter
how the “weight” is distributed. Specifically,

cjz
′
j + c+j z

+
j
′
+ c−j z

−
j
′
= (cj + c+j )z

+
j
′
+ c−j − cjz

−
j
′

=





(cj + c+j )z
+
j = cjzj + c+j z

+
j + c−j z

−
j if z−j = 0 < z+j

(c−j − cj)z
−
j = cjzj + c+j z

+
j + c−j z

−
j if z+j = 0 < z−j

(cj + c+j )(z
+
j + z−j ) = (cj + c+j )z

+
j + (−cj + c−j )z

−
j if 0 < z−j and 0 < z+j

= cjzj + c+j z
+
j + c−j z

−
j

□

Example 5.11. : Consider our inventory management problem in which we wish to
optimize a policy that is piecewise affine with respect to the positive and negative
deviations of each demand parameter. In particular, at time t = 2 we would like to
design a policy that is parametrized as

x2(d1) := x̄2 + x̄+2 max(0; (d1 − d̄1)/d̂1) + x̄−2 max(0; (d̄1 − d1)/d̂1)
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such that we increase the order by x̄+2 units per “normalized” unit of demand above
the nominal amount, and decrease by x̄−2 units per normalized unit below the nominal
amount. This can be done by working in terms of (z, z+, z−) instead of d. Namely look
for policies of the type:

x2(d1) := x̄2 + x̄+2 max(0; z1) + x̄−2 max(0;−z1) .

An efficient representation for the convex hull of the lifted uncertainty set in terms
of (z, z+, z−) was described in proposition 5.10 for the case where one is interested in
using the budgeted uncertainty set.

This leads to the following Lifted AARC.

minimize
x1, {xt, X+

t , , X
−
t }Tt=2,

{rt, R+
t , R

−
t }Tt=1,

{st, S+
t , S

−
t }Tt=1

sup(z+,z−)∈Z′′ c1x1 +
∑

t ct(xt +X+
t z

+
[t−1] +X−

t z
−
[t−1])

+ht(rt +R+
t z

+ +R−
t z

−) + bt(st + S+
t z

+ + S−
t z

−)

subject to rt +R+
t z

+ +R−
t z

− ≥ 0, st + S+
t z

+ + S−
t z

− ≥ 0 , ∀ (z+, z−) ∈ Z ′′, ∀ t

rt +R+
t z

+ +R−
t z

− ≥ y1 +
t∑

t′=1

xt′ +X+
t′ z

+
[t′−1] +X−

t′ z
−
[t′−1] − dt′(z

+, z−) , ∀ (z+, z−) ∈ Z ′′, ∀ t

st + S+
t z

+ + S−
t z

− ≥ −y1 +
t∑

t′=1

dt′(z
+, z−)− (xt′ +X+

t′ z
+
[t′−1] +X−

t′ z
−
[t′−1]) , ∀ (z+, z−) ∈ Z ′′, ∀ t

0 ≤ xt +X+
t z

+
[t−1] +X−

t z
−
[t−1] ≤M , ∀ (z+, z−) ∈ Z ′′, ∀ t ,

where dt(z
+, z−) := d̄t + d̂t(z

+
t − z−t ) and where

Z ′′ := {(z+, z−) ∈ R2T | z+ ≥ 0, z− ≥ 0, z+ + z− ≤ 1,
T∑

t=1

z+t + z−t ≤ Γ}

is the representation of the convex hull identified in Proposition 5.10. This is imple-
mented in RSOME using the following set of code.

5.3 Exercises : Facility Location Problem II

This set of exercises revisits the model discussed in the exercises of Section 4.

Exercise 5.1. Implementing Static RC
Implement with RSOME (using Google Colab) a static RC approach to the following

https://colab.research.google.com/drive/1254-xKF8dJ44aoSHAcBkPx5QpuEGYJDn?usp=sharing
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Figure 5.3: Python code that implements LAARC with budgeted uncertainty set on
the inventory model (see Google Colab).

facility location problem.

maximize
x,y

−
n∑

i=1

cixi +
n∑

i=1

m∑

j=1

(rij − dij)yij

subject to
n∑

i=1

yij ≤ Dj ,∀j = 1, . . . ,m

m∑

j=1

yij ≤ Pixi ,∀i = 1, . . . , n

y ≥ 0

x ∈ {0, 1}n

when the Dj’s are known to be in the set {D ∈ Rm | ∃z ∈ Z, Dj = D̄j + D̂jzj ,∀j =
1, . . . ,m} with Z as the budgeted uncertainty set.

Exercise 5.2. Implementing AARC
Implement with RSOME (using Google Colab) an AARC approach to the facility
location problem presented in exercise 5.1.

https://colab.research.google.com/drive/11pkdwbByF-Ihw0TDRAon_yKIxpNuBrC_?usp=sharing
https://colab.research.google.com/drive/1254-xKF8dJ44aoSHAcBkPx5QpuEGYJDn?usp=sharing
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Exercise 5.3. Implementing Lifted AARC
Implement with RSOME (using Google Colab) an AARC approach to the facility
location problem in exercise 5.1 after lifting the uncertainty to the space

(z, z+, z−) ∈ {(z, z+, z−) ∈ Rm×Rm×Rm | z = z+−z−, z+ ≥ 0, z− ≥ 0, z++z− ≤ 1,
∑

i

z+i +z
−
i ≤ Γ} ,

in order to produce policies which are piecewise affine such as yij(z) := ȳij+
∑m

k=1 Ȳ
+
ijkmax(0; zk)+

Ȳ −
ijkmax(0;−zk).

Exercise 5.4. Comparison of Approximate Worst-case Bounds
Compare (using Google Colab) the different optimal values obtained from the three
approximation models (RC, AARC, and LAARC) on the robust facility location-
transportation problem to the true worst-case value that can be achieved. In particu-
lar, compare these different approximate optimal worst-case values when the following
budgets are used:

1. A budget of Γ = 0

2. A budget of Γ = 1

3. A budget of Γ = 4

4. A budget of Γ = m− 1

Discuss what you observe in these results.

Exercise 5.5. Comparison of Worst-case performance of Approximate ro-
bust policy
Compare (using Google Colab) the quality of the approximate robust first-stage de-
cision as follows. For each of them report what is the actual worst-case total profit
generated by opening the selected facilities. Note that to get the actual worst-case
profit, one should allow the optimal transportation yij decision to occur once the true
demand is known. In particular, compare the worst-case performance of these first
stage decisions when the following budgets are used:

1. A budget of Γ = 0

2. A budget of Γ = 1

3. A budget of Γ = 4

4. A budget of Γ = m− 1

Discuss what you observe in these results.

https://colab.research.google.com/drive/1254-xKF8dJ44aoSHAcBkPx5QpuEGYJDn?usp=sharing
https://colab.research.google.com/drive/1254-xKF8dJ44aoSHAcBkPx5QpuEGYJDn?usp=sharing
https://colab.research.google.com/drive/1254-xKF8dJ44aoSHAcBkPx5QpuEGYJDn?usp=sharing


Chapter 6

Robust Nonlinear Programming

We focus on the reformulation of a robust constraint that involve non-linear functions.
In particular, let’s consider

g(x, z) ≤ 0 , ∀ z ∈ Z , (6.1)

where g(·, ·) is a mapping defined over the convex domain Xg×Zg (typically Rn×Rm)
with Xg ⊆ Rn and Zg ⊆ Rm. Furthermore, we will assume that g(x, z) is convex in
x for all z ∈ Zg and concave in z for all x ∈ Xg while Z ⊂ Rm is a given non-empty,
convex and compact (i.e. closed and bounded) set. Finally, it will be assumed that
there exists a vector z0 ∈ Rm (possibly the nominal value for the parameters of g(x, ·))
such that z0 is both in the relative interior of Z and in the relative interior of the
domain of g(x, ·), ∀x ∈ X . This is a technical conditions that will be needed to apply
duality theory.

Remark 6.1. : Specifically, z0 ∈ relint(Z) means that there exists a ball centred at
z0 and of radius ϵ > 0 which projection on the affine space spanned by Z is included
in Z. This translates as the following conditions since Z is assumed convex:

∃ϵ > 0,∀z ∈ Z, z0 − ϵ((z − z0)/∥z − z0∥2) ∈ Z .

Here is an illustration for Z ∈ R2 when z0 = 0m.

Example of sets that include (or not) 0 in their relative interior

z1

z2

0 z1

z2

0 z1

z2

0

Z1 Z2
Z3

0 /2 relint(Z1) 0 2 relint(Z2) 0 2 relint(Z3)

103



104 CHAPTER 6. ROBUST NONLINEAR PROGRAMMING

As seen in chapter 2, for any specific instance of constraint (6.1) it is possible to
apply duality theory to reformulate the robust constraint in the form

h(x, λ) ≤ 0

λ ∈ Λ(x) ,

where λ is an additional variable that is used as a certificate that the robust constraint
is met, and where h(x, λ) would be a new convex function in terms of x and λ, and Λ(x)
is the feasible set for λ. Unfortunately, obtaining this reformulation through duality
arguments is a tedious process that needs to be reapplied each time the uncertainty
set or constraint function is modified. The good news is that in 2015, a group of
researchers proposed a convenient way of systematically and efficiently reformulating
robust non-linear constraints as discussed next.

6.1 The Fenchel Robust Counterpart

In [9], the authors present for the first time a method that can be used to obtain
such a reformulation much more efficiently as it decomposes the dependence of the
reformulation between Z and g(·, ·). In particular, here is the main theorem for what
was called the Fenchel Robust Counterpart by A. Ben-Tal, D. den Hertog, and J.-P.
Vial:

Theorem 6.2. : The vector x ∈ X satisfies the robust constraint (6.1) if and only if
there exists a v ∈ Rm that satisfies the following constraint:

(FRC) δ∗(v|Z)− g∗(x, v) ≤ 0 , (6.2)

where the support function δ∗ is defined as

δ∗(v|Z) := sup
z∈Z

zTv

and the partial concave conjugate function g∗ is defined as

g∗(x, v) := inf
z∈Zg

vT z − g(x, z) .

Proof. We will limit our proof to establishing that the FRC constraint (6.2) is a con-
servative approximation of the robust constraint (6.1). To do this, we will reformulate
the following expression

ψ := max
z∈Z

g(x, z) ,

using the Lagrangian function on the following equivalent problem

ψ = max
z′∈Zg , z∈Z,z′=z

g(x, z′) .
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Doing this we obtain

ψ = max
z′∈Zg , z∈Z

inf
v
g(x, z′)− vT (z′ − z) ,

where v ∈ Rm. Following a basic theory of sequential games, which appears in lemma
10.6, we can easily establish that

ψ ≤ inf
v

max
z′∈Zg , z∈Z

g(x, z′)− vT (z′ − z) .

Yet, the right-hand side expression can be decomposed in two parts:

ψ ≤ inf
v

max
z′∈Zg

g(x, z′)− vT z′

︸ ︷︷ ︸
−g∗(x,v)

+max
z∈Z

vT z
︸ ︷︷ ︸
δ∗(v|Z)

.

Hence, imposing that

∃v ∈ Rm, δ∗(v|Z)− g∗(x, v) ≤ 0 ⇒ g(x, z) ≤ 0 , ∀ z ∈ Z .

To demonstrate that this condition is necessary, one needs some constraint qualifi-
cation argument in order for strong duality to apply. This argument could easily come
from Lagrangian duality if we assumed that Zg was bounded (this would be without
loss of generality in cases where Z would be bounded). In [9], the authors employ
Fenchel duality to guarantee that

ψ = δ∗(v|Z)− g∗(x, v) .

We refer the reader to that article for more details. □

Example 6.3. : Consider the following robust optimization constraint:

p(x)T z + s(x)− zTP (x)z ≤ 0 , ∀ z ∈ Z ,

where p : Rn → Rm is an affine function of x, s : Rn → R, and P (x) : Rn → Rm×m,
and finally where

Z := {z ∈ Rm | zTQz ≤ r} ,
with Q ∈ Rm×m a symmetric matrix and r ∈ R.

After describing g(x, z) as g(x, z) := p(x)T z + s(x) − zTP (x)z and letting z0 = 0,
one needs to make the following assumptions in order to apply theorem 6.2:

• Impose that x ∈ Xg with Xg := {x |P (x) ⪰ 0}, namely that we have the guaran-
tee that P (x) is positive semi-definite in order to make g(x, z) concave in z.

• Impose that Q ≻ 0 and that r > 0, namely that Q is positive definite to ensure
that Z is convex and bounded, and that 0 ∈ relint(Z).

When applying theorem 6.2, we obtain that the constraint is equivalent to

∃v ∈ Rm δ∗(v|Z)− g∗(x, v) ≤ 0 ,

yet we still need to identify properly what form the two functions take.
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Treating the uncertainty set We are interested in identifying δ∗(v|Z) := supz∈Z z
Tv.

To do so, let’s apply Lagrangian duality:

sup
z∈Z

zTv = sup
z

inf
γ≥0

zTv − γ(zTQz − r)

= inf
γ≥0

sup
z
zTv − γ(zTQz − r) .

Duality is strong here since Slater’s condition applies considering that 0TmQ0m = 0 < r.
Following what was done in example 2.2.1, since we established that

sup
z
yT z − γ(zTΣ−1z − 1) =

1

4γ
yTΣy + γ ,

we can conclude that

inf
γ≥0

sup
z
zTv − γ(zTQz − r) = inf

γ>0

1

4γ
vTQ−1v + rγ .

Further following the steps that we had taken in that example, we obtain that

δ∗(v|Z) =
√
r
√
vTQ−1v .

Treating the constraint function We are interested in identifying g∗(x, v) :=
infz v

T z + zTP (x)z − p(x)T z − s(x). We will actually reformulate this using a lin-
ear matrix inequality as follows:

g∗(x, v) = sup{t | t ≤ vT z + zTP (x)z − p(x)T z − s(x) , ∀ z ∈ Rm}
= sup{t | vT z + zTP (x)z − p(x)T z − s(x)− t ≥ 0 , ∀ z ∈ Rm}

= sup
t

{
t

∣∣∣∣∣

[
z
1

]T [
P (x) (v − p(x))/2

(v − p(x))T/2 −s(x)− t

] [
z
1

]
≥ 0 , ∀ z ∈ Rm

}

= sup
t

{
t

∣∣∣∣∣

[
z
y

]T [
P (x) (v − p(x))/2

(v − p(x))T/2 −s(x)− t

] [
z
y

]
≥ 0 , ∀ z ∈ Rm, y ∈ R

}
(since P (x) ⪰ 0)

= sup
t

{
t

∣∣∣∣
[

P (x) (v − p(x))/2
(v − p(x))T/2 −s(x)− t

]
⪰ 0

}

the latter inequality comes directly from the definition of a positive semi-definite matrix
(see appendix 10.8).

Combining the two Now that we have two reformulations, we can reassemble the
constraint:

√
r
√
vTQ−1v − t ≤ 0[
P (x) (v − p(x))/2

(v − p(x))T/2 −s(x)− t

]
⪰ 0 ,

where v ∈ Rm and t ∈ R are additional decision variables that need to be optimized
jointly with x.
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In the above example, we can observe how the work of reformulating the constraint
was divided into two steps. This is a clear advantage as it allows one to easily modify
his model and recuperate the new formulation. One might for instance compare the
solutions that are obtained using different types of uncertainty sets. In each case, the
only modifications to the reformulated model would appear in the part that serves the
purpose of evaluating δ∗(v|Z). As an example, the article establishes that in the case of
using a polyhedron defined as Bz ≤ b, then one requires an additional decision vector
λ ∈ Rm and obtains the following constraints:

bTλ− g∗(x, v) ≤ 0

BTλ = v

λ ≥ 0 ,

which translates in the context of our quadratic function to

bTλ− t ≤ 0

BTλ = v

λ ≥ 0[
P (x) (v − p(x))/2

(v − p(x))T/2 −s(x)− t

]
⪰ 0 .

The downside of employing the proposed Fenchel robust counterpart is that the
conditions that need to be imposed are a bit more restrictive then needed to obtain
a tractable reformulation of robust constraints. Indeed, by decomposing the influence
of the uncertainty set and the constraint function some of the tractability of robust
optimization is lost as illustrated in the following example.

Example 6.4. : Consider the following robust optimization constraint:

p(x)T z + s(x)− zTP (x)z ≤ 0 , ∀ z ∈ Z ,

where p : Rn → Rm is an affine function of x, and so are s : Rn → R, and P (x) : Rn →
Rm×m, and finally where

Z := {z ∈ Rm | zTQz ≤ r} ,

withQ ∈ Rm×m a symmetric matrix and r ∈ R. In fact, it is well known that this robust
constraint has a tractable reformulation even in cases where there is no guarantee that
P (x) is positive semi-definite. Consider for instance imposing that there exists some
λ ≥ 0 for which

p(x)T z + s(x)− zTP (x)z + λ(r − zTQz) ≤ 0 , ∀ z ∈ Rm .

It is clear that any x that satisfy this will satisfy the robust constraint since this
constraint is stricter for z ∈ Z. Yet, a famous version of the S-lemma (see theorem 2.2
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in [38] attributed to [52]) guarantees that the two constraints are equivalent as long as
there exists a z such that zTQz < r. Based on this lemma, it is therefore possible to
reformulate the constraint as the following linear matrix inequality:

[
P (x) + λQ −p(x)/2
−p(x)T/2 −s(x)− rλ

]
⪰ 0 .

This reformulation cannot be obtained using theorem 6.2 since here we allow g(x, z)
to be non-concave in z for some x ∈ Xg.

We present below a list of useful theorems for employing the theory proposed in
theorem 6.2 in order to obtain the Fenchel Robust Counterpart. The first two theorems
identify a characterization of the support function for some simple polyhedra.

Theorem 6.5. : If Z := {z ∈ Rm | 0 ≤ z ≤ 1,
∑

i zi ≤ ρ} with ρ ≥ 0, then

δ∗(v|Z) := inf
ω∈Rm,λ∈R

∑

i

ωi + ρλ

subject to λ ≥ vi − ωi , ∀ i
λ ≥ 0, ω ≥ 0 .

Hence, the robust counterpart takes the form:

∃ω ∈ Rm, λ ∈ R, v ∈ Rm,





∑
i ωi + ρλ− g∗(x, v) ≤ 0

λ ≥ vi − ωi , ∀ i
λ ≥ 0, ω ≥ 0

,

where strong LP duality was applied.

Proof. Simply put

δ∗(v|Z) = sup
z∈Z

vT z = sup
z

inf
γ≥0,ω≥0,λ≥0

vT z +
∑

i

γizi +
∑

i

ωi(1− zi) + λ(ρ−
∑

i

zi)

= inf
γ≥0,ω≥0,λ≥0

sup
z
vT z +

∑

i

γizi +
∑

i

ωi(1− zi) + λ(ρ−
∑

i

zi)

= inf
γ≥0,ω≥0,λ≥0

{ ∑
i ωi + ρλ if vi + γi − ωi − λ = 0 for all i
∞ otherwise

= inf
λ≥0,w≥0

{ ∑
i ωi + ρλ if λ ≥ vi − ωi for all i
∞ otherwise

,

where again strong LP duality was applied. □

Theorem 6.6. : If Z := {z ∈ Rm | z ≥ 0,
∑

i zi = 1}, then

δ∗(v|Z) := inf
λ∈R

λ

subject to λ ≥ vi , ∀ i .
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Hence, the robust counterpart takes the form:

∃λ ∈ R, v ∈ Rm,

{
λ− g∗(x, v) ≤ 0
λ ≥ vi , ∀ i .

Proof. Simply put

δ∗(v|Z) = sup
z∈Z

vT z = sup
z

inf
γ,λ
vT z +

∑

i

γizi + λ(1−
∑

i

zi)

= inf
γ≥0,λ

sup
z
vT z +

∑

i

γizi + λ(1−
∑

i

zi)

= inf
γ≥0,λ

{
λ if vi + γi − λ = 0 for all i
∞ otherwise

= inf
λ

{
λ if λ ≥ vi for all i
∞ otherwise

.

□

We now express a theorem that allows one to derive the support function of an
uncertainty set known to be the affine projection of another set for which the support
function is known.

Theorem 6.7. : If Z ⊂ Rm is an affine projection of Z1 ⊂ Rm1, namely that Z :=
{z ∈ Rm | ∃z′ ∈ Z1, z = Az′ + a0} for some A ∈ Rm×m1 and a0 ∈ Rm, then δ∗(v|Z) =
aT0 v + δ∗(ATv|Z1).

Proof. Simply put

δ∗(v|Z) = sup
z∈Z

vT z = sup
z′∈Z1

vT (Az′ + a0) = vTa0 + δ∗(ATv|Z1) .

□

We can now employ this relation to derive the support function of the popular
budgeted uncertainty set.

Corollary 6.8. : Consider using the budgeted uncertainty set Z := {z ∈ Rm | − 1 ≤
z ≤ 1,

∑
i |zi| ≤ Γ}, then

δ∗(v|Z) := inf
ω+∈Rm,ω−∈Rm,λ∈R

∑

i

ω+
i +

∑

i

ω−
i + Γλ

subject to λ ≥ vi − ω+
i , ∀ i

λ ≥ −vi − ω−
i , ∀ i

ω ≥ 0, λ ≥ 0 .
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Hence, the robust counterpart takes the form:

∃ω+ ∈ Rm, ω− ∈ Rm, λ ∈ R, v ∈ Rm,





∑
i ω

+
i +

∑
i ω

−
i + ρλ− g∗(x, v) ≤ 0

λ ≥ vi − ω+
i , ∀ i

λ ≥ −vi − ω−
i , ∀ i

ω+ ≥ 0, ω− ≥ 0, λ ≥ 0

.

Proof. First, observe how the budgeted uncertainty set can be described as the follow-
ing projection z = [I −I]z′ for z′ ∈ Z1 := {z ∈ R2m | 0 ≤ z ≤ 1,

∑
i zi ≤ Γ}. Then,

based on theorems 6.5 and 6.7, we can conclude that

δ∗(v|Z) = δ∗([I −I]Tv|Z1) .

Hence, we can state that the robust counterpart takes the form

∃ω+ ∈ Rm, ω− ∈ Rm, λ ∈ R, v ∈ Rm,





∑
i ω

+
i +

∑
i ω

−
i + ρλ− g∗(x, v) ≤ 0

λ ≥ vi − ω+
i , ∀ i

λ ≥ −vi − ω−
i , ∀ i

ω+ ≥ 0, ω− ≥ 0, λ ≥ 0

.

□

Finally, we work out a theorem that allows us to easily manipulate known conju-
gate functions to obtain conjugate functions for functions that are obtained by affine
transformation.

Theorem 6.9. : If g(x, z) is a positive affine mapping of g′(x, z), namely that g(x, z) :=
αg′(x, z) + β for some α > 0, then g∗(x, v) = αg′∗(x, v/α)− β.

Proof. Simply put

g∗(x, v) = inf
z∈Zg

vT z − g(x, z)

= inf
z∈Zg

vT z − αg′(x, z)− β

= α

(
inf
z∈Zg

(v/α)T z − g′(x, z)

)
− β

= αg′∗(x, v/α)− β .

□
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6.2 Reference Tables from Ben-Tal et al. 2015

Table 6.1: Table of reformulations for uncertainty sets (Table 1 in [9])

Uncertainty region Z Support function δ∗(v|Z)

Box ∥z∥∞ ≤ ρ ρ∥v∥1

Ball ∥z∥2 ≤ ρ ρ∥v∥2

Polyhedral b−Bz ≥ 0 infw≥0:BTw=v b
Tw

Cone b−Bz ∈ C infw∈C∗:BTw=v b
Tw

KL-Divergence
∑

l zl ln
(
zl
z0l

)
≤ ρ infu≥0

∑
l z

0
l ue

(vl/u)−1 + ρu

Geometric prog.
∑

i αie
(di)

T z ≤ ρ infu≥0, w≥0:
∑
i diwi=v

∑
i{wi ln

(
wi
αiu

)
− wi}+ ρu

Intersection Z = ∩iZi inf{wi}:
∑
i wi=v

∑
i δ

∗(wi|Zi)

Example
Zk = {z|∥z∥k ≤ ρk}
k = 1, 2

inf(w1,w2):w1+w2=v ρ1∥w1∥∞ + ρ2∥w2∥2

Minkowski sum Z = Z1 + · · ·+ ZK

∑
i δ

∗(v|Zi)

Example
Z1 = {z | ∥z∥∞ ≤ ρ∞}
Z2 = {z | ∥z∥2 ≤ ρ2} ρ∞∥v∥1 + ρ2∥v∥2

Convex hull Z = conv(Z1, . . . ,ZK) maxi δ
∗(v|Zi)

Example
Z1 = {z | ∥z∥∞ ≤ ρ∞}
Z2 = {z | |z − z0∥2 ≤ ρ2} max{ρ∞∥v∥1, (z0)Tv + ρ2∥v|∥2}
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Table 6.2: Table of reformulations for constraint functions (Table 2 in [9])

Constraint function g(x, z) Partial concave conjugate g∗(x, v)

Linear in z zTg(x)

{
0 if v = g(x)

−∞ otherwise

Concave in z,
separable in z and x

g(z)Tx sup{si}ni=1:
∑n
i=1 s

i=v

∑
i xi(gi)∗(s

i/xi)

Example −∑i
1
2
(zTQiz)xi sup{si}ni=1:

∑n
i=1 s

i=v−1
2

∑n
i=1

(si)TQ−1
i si

xi

Sum of functions
∑

i gi(x, z) sup{si}ni=1:
∑
i s
i=v

∑
i(gi)∗(x, s

i)

Sum of separable
functions

∑
i gi(x, zi)

∑n
i=1(gi)∗(x, vi)

Example
−∑m

i=1 x
zi
i ,

xi > 1, 0 ≤ z ≤ 1

{ ∑m
i=1

(
vi

lnxi
ln −vi

lnxi
− vi

lnxi

)
if v ≤ 0

−∞ otherwise
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6.3 Exercises

Exercise 6.1. (Conditional Value at Risk Portfolio with uncertain proba-
bilities)

Consider the Conditional Value at Risk minimization problem:

minimize
x,t

CVaR1−ϵ(r
Tx)

∑

i

xi = 1

x ≥ 0 ,

where x ∈ Rn, and the uncertainty about r ∈ Rn takes the form of a set of equiprobable
scenarios {r̄k}Kk=1. Now, let us be worried that the uniform distribution might not be
the rights one for this problem. Instead we would like to minimize the worst-case CVaR
that might be achieved under the following uncertainty set.

D(ρ) := {p ∈ RK | p ≥ 0,
∑

k

pk = 1,
K∑

k=1

pk ln

(
pk
1/K

)
≤ ρ} .

Note that this set looks at distributions that diverge by at most ρ from the uniform
distribution. In this context, the robust optimization problem might look like

minimize
x,t

t (6.3a)

CVaR1−ϵ(r
Tx; p) ≤ t , ∀ p ∈ D(ρ) (6.3b)∑

i

xi = 1 (6.3c)

x ≥ 0 , (6.3d)

where CVaR1−ϵ(rTx; p) := infs s+ (1/ϵ)
∑K

k=1 pkmax(−r̄Tk x− s; 0) with {p ∈ RK | p ≥
0,
∑

k pk = 1} as domain which ensures the convexity in x and concavity in p.

Question: Derive a tractable reformulation of this problem as a convex optimization
problem of finite dimension ?

Exercise 6.2. (Planning an advertisement campaign with exposure rate un-
certainty)
Consider the problem of investing in an online ad campaign in order to do the promo-
tion of a new app for the Ipad.

maximize
x

∑

i

hi(xi)

subject to
∑

i

pixi ≤ B

x ≥ 0 ,
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where x ∈ Rn identifies how many exposures per day an ad will have on each web
site, for each website i, hi(·) expresses an expected number of converted clients that
originated from site i, and ci is the cost of a single exposure on each website, and B is
the total daily budget for the ad campaign.

In practice, it is particularly difficult to estimate the conversion function hi(·) for
each site. It is however expected that the conversion rate (i.e. the number of converted
customer per additional ad) decreases as more ads are being displayed. For this reason,
it is reasonable to think that the function hi(·) would behave as hi(xi) := ci(1 +
xi/di)

ai − ci for some 0 < ai ≤ 1, ci > 0, and di > 0. Here are a few examples of such
a parametric function.

Figure of the converted number of customers per ad
displayed on a website according to hi(xi) := 30(1 + xi/1000)
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Question 1: Present a tractable reformulation for the above problem considering
that the uncertainty set for the vector a ∈ Rn is U1 := {a ∈ Rn | ∃z ∈ Rn, 0 ≤ z ≤
1,
∑

i zi ≤ Γ, ai = āi(1− 0.25zi) , ∀ i} where ā ∈ [0, 1]n?

Question 2: How would the reformulation change if the following set was used in-
stead:

U2 := {a ∈ Rn | ∃z ∈ Rn, z ≥ 0,
∑

i

zi ≤ 1,
∑

i

zi ln(zi) ≤ ρ, ai = āi(1− 0.25zi) , ∀ i} ?

(Hint: you can assume that the worst-case for a always occurs when
∑

i zi = 1.)

Question 3: Solve the reformulation obtained in question #1 using a non-linear
programming solver under conditions where p := [0.110 0.085 0.090 0.080]T and B = 1.
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Exercise 6.3. (More robust non-linear reformulations)

Consider the robust optimization problem:

maximize
x

min
z∈Z

∑

i

xi exp(zi)

subject to
∑

i

xi ≤ 1

x ≥ 0 ,

where

Z := {z ∈ Rn | ∃v ∈ [−1, 1]n, w ∈ [−1, 1], z = µ+Q(v + 1 · w), ∥v∥1 ≤ Γ} .

Question: Derive a tractable reformulation of this problem as a convex optimization
problem of finite dimension ?
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Advanced Methods
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Chapter 7

Globalized Robust Counterpart

7.1 Controlled deterioration beyond Z
Consider the following robust constraint :

g(x, z) ≤ 0 , ∀ z ∈ Z .

Although as we have seen, it is an interesting constraint to impose, in practice it might
not be sufficient when there is a large amount of uncertainty. Indeed, in such cases,
it is tempting to use a large uncertainty set Z to protect oneself from all potential
realizations. On the other hand, such an approach might end up producing robust
solutions that are overly conservative. If one instead reduces the size of Z, the solutions
are more opportunistic but there is automatically a loss in terms of guarantees that are
associated to the proposed robust solution. This is the motivation for formulating a
class of robust constraints that can guarantee feasibility over a set Z while limiting the
degree of infeasibility when the realized vector of parameters lands outside of Z, namely
inside a larger set Z ′ ⊃ Z with Z ′ ⊆ Rm. Here is the globalized robust counterpart
constraint:

(GRC) g(x, z) ≤ ψ(z) , ∀ z ∈ Z ′ ,

where Z ′ ⊃ Z captures the set of all possible realizations of z, and ψ(z) is a non-
negative convex function of z with the convex domain Zψ and designed such that
ψ(z) = 0 for all z ∈ Z. In words, the deterioration function ψ(z) ensures that less
than ψ(z) excess “resources” will be needed for any z /∈ Z that is in Z ′. (We refer the
reader to [8] for similar derivations as presented in this section.)

Theorem 7.1. : Given that Z ′ is bounded1 and that there exists a z in the relative
interior of Zψ, of the domain of g(x, ·) for all x and of Z ′, the GRC constraint is

1Note that it is not clear to the author of these lecture notes what prevents the result from
applying for general unbounded convex Z ′. A later version of these lecture notes might describe the
more general result, otherwise the reformulation presented is still guaranteed to lead to a conservative
approximation of the GRC constraint.

119
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equivalent to

∃w1 ∈ Rm, w2 ∈ Rm, δ∗(w1 + w2|Z ′)− g∗(x,w1)− (−ψ)∗(w2) ≤ 0 ,

where (−ψ)∗(w) is the conjugate function of (−ψ(·)), namely (−ψ)∗(w) := infz∈Zψ w
T z+

ψ(z).

Proof. This follows nearly directly from theorem 6.2 where we consider formulating
the Fenchel robust counterpart of

h(x, z) ≤ 0 , ∀ z ∈ Z ′ .

with h(x, z) := g(x, z)− ψ(z) and for which all the assumptions made by the theorem
are respected. This FRC takes the form

∃ v ∈ Rm, δ∗(v|Z ′)− h∗(x, v) ≤ 0 ,

where according to table 6.2 the expression for h∗(x, v) can be reformulated as

h∗(x, v) = sup
(w1,w2)∈Rm×Rm:w1+w2=v

g∗(x,w1) + (−ψ)∗(w2) .

This leads to the reformulation that is presented in our theorem. □

Corollary 7.2. : Given that Z ′ is bounded (see footnote 1) and that there exists a
z in the relative interior of Zψ, of the domain of g(x, ·) for all x and of Z and Z ′.
Furthermore, let the deterioration function ψ(·) be defined as

ψ(z) := αdist(z,Z) ,

where dist(z,Z) := infz′∈Z ∥z′ − z∥ for some norm ∥ · ∥, then the GRC constraint is
equivalent to

∃w1 ∈ Rm, w2 ∈ Rm,

{
δ∗(w1|Z ′)− g∗(x,w1 + w2) + δ∗(w2|Z) ≤ 0
∥w2∥∗ ≤ α .

,

where ∥ · ∥∗ is the dual norm of ∥ · ∥, namely ∥w2∥∗ := supv:∥v∥≤1 v
Tw2.

Finally, if Z ′ = Rm, then the GRC constraint is equivalent to

∃w ∈ Rm, δ∗(w|Z)− g∗(x,w) ≤ 0 & ∥w∥∗ ≤ α ,

where we can recognize the original robust counterpart with a bound on the dual norm
of w.
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Proof. In order to apply theorem 7.1, one needs to identify (−ψ)∗(w). We first have
that

(−ψ)∗(w) := inf
z′
wT z′ + ψ(z′) = inf

z′
wT z′ + inf

z∈Z
α∥z′ − z∥

= inf
z∈Z

(inf
z′
wT z′ + α∥z′ − z∥)

= inf
z∈Z

(inf
∆
wT (∆ + z) + α∥∆∥)

= inf
z∈Z

wT z + (inf
∆
wT∆+ α∥∆∥)

=

{
−δ∗(−w|Z) if ∥w∥∗ ≤ α

∞ otherwise.

where the last equality comes from

inf
∆
λT∆+ α∥∆∥ = inf

s≥0,w∈Rm:∥w∥=s
λTw + αs = inf

s≥0,v∈Rm:∥v∥=1
sλTv + αs

= inf
s≥0

s

(
inf

v∈Rm:∥v∥≤1
λTv

)
+ αs = inf

s≥0
s(−∥λ∥∗) + αs

=

{
0 if ∥λ∥∗ ≤ α

−∞ otherwise

where we used the definition of the dual norm ∥λ∥∗ := supv∈Rm:∥v∥≤1 λ
Tv.

Hence we obtain that the GRC constraint is equivalent to

∃w1 ∈ Rm, w2 ∈ Rm,

δ∗(w1 + w2|Z ′)− g∗(x,w1) + δ∗(−w2|Z) ≤ 0

∥w2∥∗ ≤ α

which reduces to the following when replacing w′
1 := w1 + w2 and w′

2 := −w2, so that
w1 = w′

1 + w′
2:

∃w′
1 ∈Rm, w′

2 ∈ Rm,

δ∗(w′
1|Z ′)− g∗(x,w

′
1 + w′

2) + δ∗(w′
2|Z) ≤ 0

∥w′
2∥∗ ≤ α

In the case where Z ′ := Rm, then δ∗(w1,Z ′) reduces to

δ∗(w1,Z ′) :=

{
0 if w1 = 0
∞ otherwise

.

□

Remark 7.3. : Note that in the seminal paper of [7], the GRC paradigm was orig-
inally called “comprehensive robust counterpart”, while in [6] the authors decided to
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rather use the expression “soft robust model” to refer to an analogous formulation.
Furthermore, in the original paper and in [10], GRC is presented from the perspective
of conic optimization as the idea of replacing the conic constraint:

G(x, z) ∈ K , ∀ z ∈ Z ,

where G(x, z) is a mapping from Rn × Rm to RJ and K is a cone, with the constraint

dist(G(x, z′),K) ≤ αdist(z′,Z) , ∀ z′ ∈ Z ′ ,

which reflects the idea that we wish the vector G(x, z′) to be less than some distance
away from being in the feasible set when z is some distance away from Z. It is impor-
tant to realize that although our definition of GRC is more general as we can employ
g(x, z) := dist(G(x, z′),K) and ψ(z) := αdist(z′,Z), our concavity assumption for
g(x, z) does not cover this special case, except if the cone K is the negative orthant
and dist(G(x, z′),K) := maxj Gj(x, z

′). We choose to focus on this GRC form because
it appears more intuitive to apply and unifies somehow the notions of comprehensive
and soft robustness. To demonstrate this in the later case, in [6] the authors study the
application of our GRC constraint to stochastic programs with distribution ambiguity
where they obtained a constraint of the form

sup
Q∈Q(ϵ)

EQ[g(x, Z)] ≤ ϵ , ∀ ϵ ∈ [0, δ] ,

where Z is a random vector distributed according to Q, and Q(ϵ) is a family of distri-
bution sets parametrized by ϵ such that ϵ1 > ϵ2 → Q(ϵ1) ⊇ Q(ϵ2). In our context, this
can be translated as

EQ[g(x, Z)] ≤ ψ(Q) , ∀Q ∈ Q(δ) ,

where ψ(Q) := inf{ϵ ∈ [0, δ] |Q ∈ Q(ϵ)}. The authors of [6] established a connection
with convex risk measures which is straightforward to identify in this form as it is known
that for any such measure ρ(Y ) applied on expenses, the constraint ρ(g(x, z)) ≤ 0 can
be expressed as

EQ[g(x, Z)]− ψ(Q) ≤ 0 , ∀Q ∈ M ,

where ψ(Q) is a convex function of the probability measure Q, and where M is the set
of all probability measures on the measurable space (Rm,B) with B the σ-algebra on
Rm.

7.2 Examples

Both of the examples below come from [10] Exercise 3.1 and A. Nemirovski’s lecture
notes Exercise 4.3.
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Example 7.4. :Production problem with bounded sensitivity to price drifts

“Exercise 3.1 from [10] Consider a situation as follows. A factory consumes n types of raw materials,
coming from n different suppliers, to be decomposed into m pure components. The per unit content
of component i in raw material j is pij ≥ 0, and the necessary per month amount of component i is a
given quantity bi ≥ 0. You need to make a long-term arrangement on the amounts of raw materials
xj coming every month from each of the suppliers, and these amounts should satisfy the system of
linear constraints

Px ≥ b, P =




p11 p12 · · · p1n
p21 p22 · · · p2n
· · · · · · · · · · · ·
pm1 pn2 · · · pmn


 .

The current per unit price of products j is cj ; this price, however, can vary in time, and from the

history you know the volatilities vj ≥ 0 of the prices. How to choose xj ’s in order to minimize the

total cost of supply at the current prices, given an upper bound α on the sensitivity of the cost to

possible future drifts in prices ? ”

The GRC approach: One might express the deterministic model as:

minimize
x,t

t

subject to t ≥ cTx

Px ≥ b

x ≥ 0 ,

where x ∈ Rn is the amount of raw material ordered from each supplier and t ∈ R
captures the total cost of the order. Finally, the second constraint imposes that the
minimum quantity of each pure component is satisfied.

Given that we wish to impose an upper bound of α on the sensitivity of the cost
to possible future drifts in prices we will replace the first constraint with the following
GRC.

t+ αdist(z,0n) ≥
n∑

i=1

(ci + vizi)xi , ∀ z ∈ Rn ,

with dist(z1,0n) := ∥z1∥1. Namely, this constraint can be interpreted as imposing that
t∗ captures a total cost that is known to only be perturbed by a factor of α of the total
relative variation of prices when compared to their expected volatilities. According to
corollary 7.2, since the distance measure is a norm, this GRC model is equivalent to
the RC model to which we further impose that ∥diag(v)x∥∗1 ≤ α. In particular, we
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obtain:

minimize
x,t

t

subject to t ≥ cTx

vixi ≤ α , ∀ i = 1, . . . , n

Px ≥ b

x ≥ 0 ,

Example 7.5. :Linear estimator with controlled deterioration

“Exercise 4.3 from A. Nemirovski’s lecture notes Consider the situation as follows:
Unknown signal z known to belong to a given ball B := {z ∈ Rn | zT z ≤ 1} is observed according
to the relation y = Az + ξ, where y is the observation, A is a given m × n sensing matrix, and ξ is
an observation error. Given y, we want to recover a linear form fT z of z; here f is a given vector.
The normal range of the observation error is U := {ξ ∈ Rm | ∥ξ∥2 ≤ 1}. We are seeking for a linear

estimate f̂(y) = gT y.

1. Formulate the problem of building the best, in the minimax sense (i.e., with the minimal
worst-case recovering error with respect to x ∈ B and ξ ∈ U), linear estimate as the RC of an
uncertain LO problem and build tractable reformulation of this RC.

2. Formulate the problem of building a linear estimate with the worst-case, over signals z with
∥z∥2 ≤ 1+ρz and observation errors ξ with ∥ξ∥2 ≤ 1+ρξ, risk for all ρz ≥ 0, ρξ ≥ 0, risk admit-
ting the bound τ +αzρz +αξρξ with given τ , αx, and αξ; thus we want “desired performance”
τ of the estimate in the normal range B × U of [zT ξT ]T and “controlled deterioration of this
performance” when z and/or ξ run out of their normal ranges. Build a tractable reformulation
of this problem.”

The GRC approach: One might answer question #1 using the following model

minimize
g,t

t

subject to t ≥ |gT (Az + ξ)− fT z| , ∀ (z, ξ) : ∥z∥2 ≤ 1, ∥ξ∥2 ≤ 1 ,

where g ∈ Rn is the linear estimator we are trying to identify and t ∈ R captures the
largest error in estimation that can be observed if the realization of z and ξ land in
their respective balls. This problem reduces to

minimize
g,t

t

subject to t ≥ ∥g∥2 + ∥ATg − f∥2 .

When answering question #2, one needs modify the model in order to represent the
guarantee that when z or ξ fall outside their respective balls, the estimation error does
not deteriorate too much. Let Ballz(r) := {z | ∥z∥2 ≤ r} and Ballξ(r) := {ξ | ∥ξ∥2 ≤ r}
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respectively be the two balls of radius r for z and ξ. We can formulate the following
GRC model:

t+ αz dist(z,Ballz(1)) + αξ dist(ξ,Ballξ(1)) ≥ |gT (Az + ξ)− fT z| , ∀ (z, ξ) ,
where dist(z,Ballz(1)) = infz′:∥z′∥2≤1 ∥z − z′∥2 and dist(ξ,Ballξ(1)) = infξ′:∥ξ′∥≤1 ∥ξ −
ξ′∥2. In this new model, we have the guarantee that for the robust linear estimator
g∗ that is returned, the estimation error will be lower than t∗ if the norm of the
perturbations are smaller than one, while the estimation error will not increase by
more than a factor αz of the distance from this ball that z ends up achieving, and
similarly in terms of the deterioration for ξ’s that would fall outside of Ballξ(1).

In order to identify a reduced form for this GRC model, we first divide the constraint
in a set of two in order to expose concavity with respect to z and ξ.

t+ αz dist(z,Ballz(1)) + αξ dist(ξ,Ballξ(1)) ≥ gT (Az + ξ)− fT z , ∀ (z, ξ)
t+ αz dist(z,Ballz(1)) + αξ dist(ξ,Ballξ(1)) ≥ −gT (Az + ξ) + fT z , ∀ (z, ξ) .

We will apply corollary 7.2 in two separate steps for each constraint first involving
z then ξ. A first application of the theorem implies that for any fixed ξ, the first
constraint above reduces to

t+ αξ dist(ξ,Ballξ(1)) ≥ gT ξ + ∥ATg − f∥2 , ∀ ξ
∥ATg − f∥2 ≤ αz

And a second application of the theorem for ξ makes the constraint further reduce
to

t ≥ ∥gT∥2 + ∥ATg − f∥2
∥ATg − f∥2 ≤ αz

∥g∥2 ≤ αξ .

Actually when looking at the second set of constraint, we realize that it also reduces
to the three constraints above.

We are left with:

minimize
g,t

t

subject to t ≥ ∥gT∥2 + ∥ATg − f∥2
∥ATg − f∥2 ≤ αz

∥g∥2 ≤ αξ .

7.3 Relation to Probabilistic Envelopes

In [51], the authors establish a connection between the application of GRC to linear
constraints and what they call the imposition of probabilistic envelopes. Namely, they
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argue that in a context where some uncertain parameters are considered random (i.e.
drawn from a distribution F ), there are good reasons to be interested in a more exten-
sive version of chance constraint which they call “probabilistic envelope constraint”:

(PEC) P(a(Z)Tx ≤ b(Z) + s(ϵ)) ≥ 1− ϵ , ∀ ϵ ∈]0, 1] ,

for some non-increasing function s(ϵ). In words, this constraint imposes a lower bound-
ing envelope on the cumulative density function of a(Z)Tx− b(Z).

Assumption 7.6. : The random vector Z has mean equal to zero and a covariance
matrix Σ ≻ 0. Moreover, the function s(ϵ) is a non-increasing convex function.

In the context described by this assumption, since the full knowledge of the distri-
bution of Z might be unavailable, it is natural to consider instead the distributionally
robust version of PEC:

(DRPEC) inf
F∈D(0,Σ)

PF (a(Z)Tx ≤ b(Z) + s(ϵ)) ≥ 1− ϵ , ∀ ϵ ∈]0, 1] ,

where D(0,Σ) is the set of all distributions that have mean equal to zero and covariance
matrix equal to Σ. Here is the flavour of the results that are presented in the paper.

Theorem 7.7. : Given that assumption 7.6 is satisfied, constraint DRPEC is equiva-
lent to the following GRC constraint:

a(z)Tx ≤ b(z) + s

(
1

1 + zTΣ−1z

)
, ∀ z ∈ Rm .

Proof. We first present the probabilistic envelope constraint in terms of the random
vector Z.

inf
F∈D(0,Σ)

PF (a(x)TZ ≤ b(x) + s(ϵ)) ≥ 1− ϵ , ∀ ϵ ∈]0, 1] .

This constraint is necessarily equivalent to:

sup
F∈D(0,Σ)

PF (a(x)TZ > b(x) + s(ϵ)) ≤ ϵ , ∀ ϵ ∈]0, 1] .

Then, based on [35], we will use the fact that

sup
F∈D(0,Σ)

PF (a′TZ > b′) = sup
F∈D(0,Σ)

PF (a′TZ ≥ b′)

=





1 if b′ < 0
1

1+(b′/∥Σ1/2a′∥2)2 if b′ ≥ 0 and a′ ̸= 0

0 otherwise (i.e. b′ ≥ 0 and a′ = 0)

.

To reformulate the constraint, one can consider two cases. Either a(x) ̸= 0 and we
get that DRPEC is equivalent to

b(x) + s(ϵ) ≥ 0 &
1

1 + ((b(x) + s(ϵ)/∥Σ1/2a(x)∥2)2
≤ ϵ .
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or a(x) = 0 and then DRPEC is equivalent to b(x) + s(ϵ) ≥ 0. Yet, in both case we
can simply impose:

b(x) + s(ϵ) ≥
√

1− ϵ

ϵ
∥Σ1/2a(x)∥2 , ∀ ϵ ∈]0, 1]

Further processing this constraint we get a robust constraint in both z and ϵ:

a(x)T z ≤ b(x) + s(ϵ) , ∀ z : ∥Σ−1/2z∥2 ≤
√

1− ϵ

ϵ
, ∀ ϵ ∈]0, 1] .

Furthermore, we can easily inverse the two enumerations over z and ϵ to obtain

a(x)T z ≤ b(x) + s(ϵ) , ∀ 0 < ϵ ≤ 1 :

√
1− ϵ

ϵ
≥ ∥Σ−1/2z∥2 , ∀ z .

Yet, since s(ϵ) is non-decreasing, and the expression (1 − ϵ)/ϵ is decreasing, we know
that the constraint is tightest when ϵ = 1/(1 + zTΣ−1z). This leads to the following
GRC:

a(x)T z ≤ b(x) + s

(
1

1 + zTΣ−1z

)
, ∀ z .

□

Remark 7.8. : It is worth mentioning that similar results can be obtained for the
PEC when the distribution is known and that it has an ellipsoidal distribution. Namely,
cases for which there exists a linear transformation of Z that make the super-level sets
of the density be spheres centred at the mean. Some additional technical conditions
are however required for the associated deterioration function ψ(z) to be a convex
function. See all the details in [51].
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Chapter 8

Distributionally Robust
Optimization

Distributionally robust optimization refers to a decision model that is based on stochas-
tic programming but for which the knowledge of the distribution of Z is incomplete.
In particular, one might consider the following optimization model

maximize
x∈X

E[g0(x, Z)] (8.1a)

subject to E[gj(x, Z)] ≤ bj , ∀j = 1, . . . , J (8.1b)

where Z ∈ Rm is a random vector, g0(x, z) is a profit function, each gj(x, z) captures
a performance criterion that we wish to keep below bj on average. Note that the
expression E[g(x, Z)] is quite flexible in terms of what it can capture. For instance, it
can capture the probability that a certain resource be depleted by using g(x, z) := 0
if f(x, z) ≤ d and g(x, z) := 1 otherwise, where f(x, z) is the function that computes
how many resources are used with the production plan x when z occurs. Indeed in this
example,

E[g(x, Z)] = P(f(x, Z) ≤ d) · E[g(x, z)|f(x, z) ≤ d] + P(f(x, Z) > d) · E[g(x, z)|f(x, z) > d]

= P(f(x, Z) ≤ d) · 0 + P(f(x, Z) > d) · 1 = P(f(x, Z) > d).

The expression E[g0(x, z)] can also be used to capture risk aversion through the ex-
pected utility theory when using g0(x, z) := u(f(x, z)), where f(x, z) is some revenue
function while u(·) is a non-decreasing concave utility function (see [48] for more details
about expected utility theory).

The DRO framework questions the classical assumption that the distribution of
Z, which we call F , is exactly known. In practice, there is often many reasons to be
doubtful about any particular choice for F . This is especially the case in situations
where decision models are designed based on historical observations of the random
vector Z. These observations could take the form of independent and identically dis-
tributed samples from F and would then typically be used to estimate the parameters

129
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of distribution form such as a normal distribution, Poisson distribution, Weibull distri-
bution, etc. When the random vector is large, then it can easily be the case that there
are many distribution models that could explain the data equally well. Selecting one
of these in order to construct and solve a stochastic program such as (8.1) might give
rise to what’s called the “Optimizer’s curse” (see [45]), i.e. identifying a solution that
over exploits the described distribution model resulting in an optimistic bias about
future performance which can lead to post-decision disappointment in out-of-sample
tests. For this reason, the DRO paradigm suggests to drop the assumption of a known
distribution F but to rather identify a distribution set D assumed to contain the true
distribution. Confronted with such ambiguity about F , DRO follows an ambiguity
aversion principle that replaces the stochastic program with

maximize
x∈X

inf
F∈D

EF [g0(x, Z)] (8.2a)

subject to EF [gj(x, Z)] ≤ bj , ∀F ∈ D, ∀j = 1, . . . , J . (8.2b)

Note that for each constraint, the DRO model will make sure that the expected value
of gj(x, Z) is smaller or equal to bj for all F ∈ D, and will use as objective value the
worst-case expected value of g0(x, Z) achieved by any distribution F in D.

In this chapter, we will focus on the problem

minimize
x∈X

sup
F∈D

EF [h(x, ξ)] , (8.3a)

where ξ is the random vector drawn from a distribution F , since it is the form that is
most commonly used in the literature, but the results we obtain can easily be adapted
to the model in (8.2) (e.g. consider h0(x, z) := −g0(x, z)).

8.1 Moment based models

In this type of approach, the random variable is assumed to have a continuous support
and only a number of moments are known for the distribution F .

8.1.1 Mean and support models

Perhaps the most famous uncertainty set in this category is one that accounts for the
mean and support of the distribution as follows:

D(Z, µ) =
{
F ∈ M

∣∣∣∣
PF (ξ ∈ Z) = 1
EF [ξ] = µ

}
,

where M is the set of all probability measures on the measurable space (Rm,B), where
B is the Borel σ-algebra on Rm, and where Z ⊆ Rm is a Borel set (e.g. a closed set in
Rm).
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This ambiguity set is actually the one that is used in probability inequalities such
as Markov inequality which states that if ξ is a non-negative random variable with an
expected value of µ then

P(ξ ≥ a) ≤ sup
F∈D([0,∞[,µ)

PF (ξ ≥ a) = µ/a .

The biggest conceptual challenge in dealing with this type of robust optimization
model is the fact that, unlike previous robust optimization models that we encountered,
nature does not control a finite dimensional vector but rather a function F : B → R+

(intuitively, F : Rm → R when F is a density function). Yet the analysis remains quite
similar to what we have seen up to this point. For any fixed decision x, we would like
to employ duality theory to reformulate the worst-case analysis problem as an infimum
over a set of additional auxiliary variables in order to reintegrate the result of this
analysis in the DRO model.

Looking more closely at the worst-case analysis problem, one might be able to
recognize that it is actually a linear program but of semi-infinite dimension (infinite
number of decision variables, and finite number of constraints). In particular, we are
interested in

maximize
F∈M

∫

Z
h(x, ξ)dF (ξ) (8.4a)

subject to

∫

Z
dF (ξ) = 1 (8.4b)

∫

Z
ξdF (ξ) = µ , (8.4c)

where we further assume that h(x, ·) is real-valued measurable in (Rm,B).
Based on the theory of semi-infinite conic programs (see Theorem 3.4 in [43]), one

can establish that the following semi-infinite program is the dual problem and that
strong duality applies as long as the ambiguity set D(Z, µ) ̸= ∅, i.e. that there exists
an F ∈ D(Z, µ):

minimize
r,q

µT q + r (8.5a)

subject to zT q + r ≥ h(x, z) , ∀ z ∈ Z , (8.5b)

where r ∈ R and q ∈ Rm are respectively the dual variables associated with constraints
(8.4b) and (8.4c). One can for instance formulate the Lagrangian equation for this
problem as:

L(F, r, q) :=

∫

Z
h(x, ξ)dF (ξ) + r

(
1−

∫

Z
dF (ξ)

)
+ qT

(
µ−

∫

Z
ξdF (ξ)

)

= r + µT q +

∫

Z
(h(x, ξ)− r − qT ξ) dF (ξ) .
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The dual problem is obtained through

sup
F

inf
r,q

L(F, r, q) ≤ inf
r,q

sup
F

L(F, r, q) = inf
r,q

{
r + µT q if h(x, z)− r − qT z ≤ 0 , ∀ z ∈ Z

∞ otherwise
,

with equality being met when D(Z, µ) ̸= ∅.

Theorem 8.1. : Let D(Z, µ) be a distribution set for which there exists a feasible
solution F0 ∈ D(Z, µ), then the moment problem (8.4) is equivalent to the following
robust optimization problem:

minimize
q

sup
z∈Z

h(x, z) + (µ− z)T q . (8.6)

It is worth presenting a little more intuition about this dual problem. Indeed, one
can easily demonstrate that it provides an upper bound for the worst-case expectation
of h(x, ξ) by considering that for any pair (q, r) that allows the affine function ĥ(x, ξ) :=
qT ξ + r be a global over-estimator of h(x, ξ), it must be that

h(x, z) ≤ qT z + r , ∀ z ∈ Z ⇒ sup
F∈D(Z,µ)

EF [h(x, ξ)] ≤ sup
F∈D(Z,µ)

EF [qT ξ + r]

= sup
F∈D(Z,µ)

qTEF [ξ] + r

= qTµ+ r .

Hence, the dual problem simply attempts to find the tightest affine global over-estimator
of h(x, ξ) for which it then becomes easy to evaluate the worst-case expectation (by
the linearity property of expectation). As before, the strength of duality theory stands
in establishing conditions under which this upper bound is tight.

Another valuable intuition that can be extracted from this dual problem builds
upon the fact that this is a bounded (since the primal is feasible) linear program
with a decision vector in Rm+1. Indeed, it is well known that in a bounded finite
dimensional linear program, only m+1 constraints are actually needed to identify any
optimal solution (i.e. an optimal vertex of the polyhedron). Considering that this is
also the case for semi-infinite linear programs such as problem (8.5), one is left with
the conclusion that there exists a subset Z∗ := {z∗1 , z∗2 , . . . , z∗m+1} of Z for which the
following finite linear program returns the same optimal value as problem (8.5):

minimize
r,q

µT q + r (8.7a)

subject to zT q + r ≥ h(x, z) , ∀ z ∈ Z∗ . (8.7b)

Since we assumed that h(x, z) is real-valued, this LP is feasible, hence taking once
more the dual of this problem we get that the following finite dimensional LP returns
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the same optimal value as (8.4):

maximize
p∈Rm+1

m+1∑

i=1

pih(x, z
∗
i ) (8.8a)

subject to
∑

i

pi = 1 (8.8b)

m+1∑

i=1

piz
∗
i = µ . (8.8c)

The intuition we get from these arguments is that there always exists a worst-case
distribution for problem (8.4) that is supported on at most m+1 points in Z, although
we do not know a priori which are these points and that these might depend on x.
Actually, this intuition is confirmed by the following theorem which can be found as
Lemma 3.1 in [43] but originally attributed to [40].

Theorem 8.2. : Let Z ∈ Rm be a Borel set, and F0 be some feasible distribution ac-
cording to D(Z, µ), then problem (8.4) is equivalent to the following finite dimensional
optimization problem

maximize
p,{zi}m+1

i=1

m+1∑

i=1

pih(x, zi) (8.9a)

subject to
m+1∑

i=1

pi = 1 & p ≥ 0 (8.9b)

m+1∑

i=1

pizi = µ (8.9c)

zi ∈ Z , ∀ i = 1, . . . ,m+ 1 , (8.9d)

where p ∈ Rm+1 and each zi ∈ Rm.

Example 8.3. : Consider a certain step we did when proving Lemma 3.6 which re-
quired establishing a tight upper bound for E[exp(γaiξ)] knowing that the distribution
of ξ is symmetric and supported on [−1, 1]. Based on this conditions, it is necessarily
the case that E[ξ] = 0 and one might instead study

sup
F∈D([−1,1],0)

EF [exp(γaiξ)] .

Based on Theorem 8.2, we now know that the worst-case distribution of this problem
is supported on two points since m = 1. Furthermore, we also know based on equation
(8.6) that the bound is exactly equal to:

sup
F∈D([−1,1],0)

EF [exp(γaiξ)] = inf
q

sup
z∈[−1,1]

exp(γaiz)− zq .
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Now since exp(γaiz)− zq is convex in z, it must be that the maximum is achieved at
either z = −1 or z = 1, hence

sup
F∈D([−1,1],0)

EF [exp(γaiξ)] = inf
q
max(exp(γai)− q ; exp(−γai) + q) .

Looking now at the minimization in q we realize that the optimum is achieved at the
intersection of both affine functions, namely when

exp(γai)− q = exp(−γai) + q .

This gives us q∗ = (1/2)(exp(γai)− exp(−γai)) which can be reinserted in the expres-
sion above:

sup
F∈D([−1,1],0)

EF [exp(γaiξ)] = max(exp(γai)−q∗ ; exp(−γai)+q∗) = (1/2)(exp(γai)+exp(−γai)) .

This is indeed what we had observed before as a bound. This bound is tight whether
we look for symmetric distributions or distributions with expected values of 0 since in
both case the worst-case distribution puts half of the weight at both −1 and 1.

Under the additional hypothesis that Z is a convex set and that h(x, z) := maxk=1,...,K hk(x, z)
for some K with each hk(x, z) a concave function of z, i.e. that h(x, z) is piecewise
concave in z, then one can actually show that there always exists a worst-case distri-
bution supported on at most K points, each of which lie on the region of Rm where
the respective function hk(x, z) achieves a larger value than hk′(x, ξ) for all k

′ ̸= k.

Theorem 8.4. : When Z is a convex set and h(x, z) := maxk=1,...,K hk(x, z) for some
K with each hk(x, z) a concave function of z, then problem (8.4) is equivalent to

maximize
p,{zk}Kk=1

K∑

k=1

pkhk(x, zk) (8.10a)

subject to
K∑

k=1

pk = 1 , p ≥ 0 (8.10b)

K∑

k=1

pkzk = µ (8.10c)

zk ∈ Z , ∀ k = 1, . . . , K . (8.10d)

Proof. This proof is inspired by the proof of theorem 6.2 in [47] and decomposes as two
steps. In the first step, we show that problem (8.10) is a conservative approximation
of problem (8.4), namely that any of its feasible solution can be used to construct
a feasible solution to problem (8.4) that achieves an objective value that is larger or
equal to the objective value measured in (8.10). Secondly, we show that the same can
be said of problem (8.4) being a conservative approximation of problem (8.10).



8.1. MOMENT BASED MODELS 135

Step #1: Given any feasible solution to problem (8.10), one can construct the fol-
lowing candidate for problem (8.4).

p′i :=

{
pk if i ≤ K
0 otherwise

z′i :=

{
zk if i ≤ K
z1 otherwise

.

We start by verifying that this candidate is feasible in problem (8.4):

m+1∑

i=1

p′i =
K∑

k=1

pk = 1

p′i = pk ≥ 0 , ∀ i = 1, . . . , K

p′i = 0 ≥ 0 , ∀ i = K + 1, . . . ,m+ 1

m+1∑

i

p′iz
′
i =

K∑

k=1

pkzk = µ

z′i = zk ∈ Z , ∀ i = 1, . . . , K

z′i = z1 ∈ Z , ∀ i = K + 1, . . . , n .

We can then verify the second claim about the relation between the two objective
values:

m+1∑

i=1

p′ih(x, z
′
i) =

K∑

k=1

pkh(x, zk) ≥
K∑

k=1

pkhk(x, zk) .

Step #2: We first define the following partition of Z:

Zk := {z ∈ Z |hk(x, z) ≥ hk′(x, z) , ∀ k′ < k and hk(x, z) > hk′(x, z) , ∀ k′ > k} .

Now, given any feasible solution to problem (8.4), we can construct the following
candidate for problem (8.10):

p′k :=
∑

i∈Ik
pi z′k :=

1

p′k

∑

i∈Ik
pizi ,
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where Ik := {i ∈ {1, · · · ,m + 1} | zi ∈ Zk}. We start by verify that this candidate is
feasible:

K∑

k=1

p′k =
K∑

k=1

∑

i∈Ik
pi =

∑

i

pi = 1

p′k =
∑

i∈Ik
pi ≥ 0 , ∀ k = 1, . . . , K

K∑

k=1

p′kz
′
k =

K∑

k=1

p′k

(
1

p′k

∑

i∈Ik
pizi

)
=
∑

i

pizi = µ

z′k =

(
1

p′k

∑

i∈Ik
pizi

)
∈ Z , ∀ k = 1, . . . , K ,

where the last conditions follows from the fact that Z is a convex set. We can then
verify the second claim about the relation between the two objective values:

K∑

k=1

p′khk(x, z
′
k) =

K∑

k=1

p′khk

(
x,

(
1

p′k

∑

i∈Ik
pizi

))

≥
K∑

k=1

p′k

(
1

p′k

∑

i∈Ik
pihk(x, zi)

)

=
K∑

k=1

∑

i∈Ik
pih(x, zi) =

∑

i

pih(x, zi) .

This completes our proof. □

One can actually simply exploit the result of theorem 8.4 to conclude that when
h(x, z) is a concave function of z, the worst-case distribution ends up being one that
puts all of its mass at µ. Hence, the DRO problem reduces to a very trivial form.

Corollary 8.5. : When Z is a convex set and h(x, z) is a concave function of z, if
D(Z, µ) ̸= ∅, then the DRO problem presented in (8.3) is equivalent to

minimize
x∈X

h(x, µ) .

Now that we have built some much needed intuition about this dual reformulation
and about the structure of worst-case distributions. We can turn ourself toward the
reformulation of a DRO problem as in (8.3). Indeed, following the same steps as used
for robust optimization, we get the following result.

Theorem 8.6. : Let D(Z, µ) be a distribution set for which there exists a feasible so-
lution F0 ∈ D(Z, µ), the DRO problem presented in (8.3) is equivalent to the following
robust optimization problem:

minimize
x∈X ,q

sup
z∈Z

h(x, z)− zT q + µT q . (8.11)
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Moreover, the problem can be reformulated as follows when Z is a convex set and
h(x, z) := maxk hk(x, z) where each hk(x, z) is a concave function of z:

minimize
x∈X ,q,{vk}k,t

t+ µT q

subject to t ≥ δ∗(vk | Z)− hk∗(x, vk + q) , ∀ k ,

where for each k, vk ∈ Rm, while δ∗(v|Z) is the support function of Z and hk∗(x, v) is
the partial concave conjugate function of hk(x, z).

Proof. This follows naturally from reintegrating problem (8.5) in the DRO problem to
obtain

minimize
x∈X ,r,q

µT q + r

subject to zT q + r ≥ h(x, z) , ∀ z ∈ Z ,

and simply replacing r by the minimum it can achieve based on the robust constraint.

In the case, of a convex Z and a piecewise concave h(x, z), then problem (8.11) is
equivalent to

minimize
x∈X ,q

sup
z∈Z

max
k
hk(x, z) + (µ− z)T q

which is itself equivalent to

minimize
x∈X ,q

max
k

sup
z∈Z

hk(x, z) + (µ− z)T q

so that we can represent this problem in epigraph form:

minimize
x∈X ,q,t

t+ µT q

subject to t ≥ sup
z∈Z

hk(x, z)− zT q , ∀ k .

By exploiting Theorem 6.2 on each of the constraints, one obtains in each case

∃v ∈ Rm, t ≥ δ∗(v | Z)− g∗(x, v) ,

where gk∗(x, v) is the partial concave conjugate function of gk(x, z) := hk(x, z) − qT z.
The latter can be expanded to

gk∗(x, v) := inf
z∈Zh

vT z − hk(x, z) + qT z = inf
z∈Zh

(v + q)T z − hk(x, z) = hk∗(x, v + q) .

This completes our proof. □
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8.1.2 Other moment functions

One might now wonder whether more sophisticated ambiguity sets can be used instead
of D(Z, µ). In fact, Wiesemann et al. [50] show how D(Z, µ) can actually capture an
extensive list of interesting ambiguity sets.

Example 8.7. : Consider that ξ is a random variable known to have a mean µ, and
a variance of E[(ξ − µ)2] = σ2. This gives rise to the following DRO problem :

minimize
x∈X

sup
F∈D(µ,σ2)

EF [h(x, ξ)] ,

where

D(µ, σ2) := {F |PF (ξ ∈ R) = 1, EF [ξ] = µ, EF [(ξ − µ)2] = σ2} .
Of course, this does not appear like a set that fits the description we have used until
now. However, one can consider a lifted space where a DRO model that fits our
assumptions will be exactly equivalent to this one. Namely, consider the lifting ζ =
[ ζ1 ζ2 ]T := [ξ , (ξ − µ)2]T with the following support set

Z ′ := {z′ ∈ R2 | z′2 = (z′1 − µ)2} .

One can actually show that the following DRO problem is equivalent to the first one:

minimize
x∈X

sup
F ′∈D(Z′,[µ , σ2]T )

EF ′ [h(x, ζ1)] .

Indeed, for any random variable ξ with a feasible distribution F ∈ D(µ, σ2), one can
construct the random variable ζ = (ξ, (ξ − µ)2) for which the distribution F ′ must lie
in D(Z ′, [µ , σ2]T ) since PF (ζ ∈ Z ′) = 1 and EF [ζ] = [µ , σ2]T . Furthermore we have
that EF [h(x, ζ1)] = EF [h(x, ξ)] so that

sup
F∈D(µ,σ2)

EF [h(x, ξ)] ≤ sup
F ′∈D(Z′,[µ , σ2]T )

EF ′ [h(x, ζ1)] .

Alternatively, letting ζ be any random variable with a distribution F ′ ∈ D(Z ′, [µ , σ2]T ),
we can simply consider the distribution of ξ := ζ1 as being a member of D(µ, σ2) since
EF ′ [ξ] = EF ′ [ζ1] = µ and EF ′ [(ξ − µ)2] = EF ′ [(ζ1 − µ)2] = EF ′ [ζ2] = σ2. Finally, we
have that EF ′ [h(x, ξ)] = EF ′ [h(x, ζ1)] so that

sup
F ′∈D(Z′,[µ , σ2]T )

EF ′ [h(x, ζ1)] ≤ sup
F∈D(µ,σ2)

EF [h(x, ξ)] .

Theorem 8.6 can therefore be used to reformulate the DRO model as:

minimize
x∈X ,q∈R2

sup
z∈Z′

h(x, z1) + (µ− z1)q1 + (σ2 − z2)q2 .
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This is equivalent to

minimize
x∈X ,q∈R2

sup
z1∈R

h(x, z1) + (µ− z1)q1 + (σ2 − (z1 − µ)2)q2 .

We now consider a special case where h(x, z) is lower bounded by −B. Since
h(x, z) ≥ −B for all x ∈ X and z ∈ R, when q2 < 0, we have that

sup
z1∈R

h(x, z) + (µ− z1)q1 + (σ2 − (z1 − µ)2)q2 ≥ sup
z1∈R

−B + µq1 + σ2q2 − z1q1 − q2(z1 − µ)2

= ∞ (as z1 → ∞) .

Hence, it must be that q2 ≥ 0 for the objective function to reach a value smaller than
infinity. This being said, one can realize that the DRO is equivalent to

minimize
x∈X ,q1,q2≥0,t

t+ µq1 + (σ2 − µ2)q2

subject to t ≥ sup
z1∈R

hk(x, z)− (q1 − 2q2µ)z1 − q2z
2
1 , ∀ k ,

when h(x, z) := maxk hk(x, z). One might notice that this latter problem is a stan-
dard non-linear robust optimization problem which can be tackled using the methods
discussed in Chapter 6 if each hk(x, z) is convex in x and concave in z.

Example 8.8. : Consider that one has information about the support Z, the mean µ,
and an upper bound on the second order moment matrix of the type E[ξξT ] ⪯ Σ where
A ⪯ B refers to the fact that B − A is positive semi-definite, i.e. zT (B − A)z ≥ 0 for
all z ∈ Rm. This gives rise to the following DRO problem :

minimize
x∈X

sup
F∈D(Z,µ,Σ)

EF [h(x, ξ)] ,

where
D(Z, µ,Σ) := {F |P(ξ ∈ Z) = 1, E[ξ] = µ, E[ξξT ] ⪯ Σ} .

Of course, this does not appear like a set that fits the description we have used until
now. However, one can consider a lifted space where a DRO model that fits our
assumptions will be exactly equivalent to this one. Namely, consider the lifting ζ ∈
Rm × Rm×m with the following support set

Z ′ := {(z1, Z2) ∈ Rm × Sm×m | z1 ∈ Z, Z2 ⪰ z1z
T
1 } , (8.12)

where Sm×m is the space of all m×m symmetric matrices.
Similarly as was done in the previous example, one can consider the DRO model

to be equivalent to
minimize

x∈X
sup

F∈D(Z′,(µ,Σ))

EF [h(x, ζ1)] .

In this context, since we are imposing m +m(m + 1)/2 different moments (i.e. only
the diagonal and lower triangle of Σ count as different moment constraints), we know
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that the worst-case distribution will be supported on (1/2)(m + 1)(m + 2) points.
Furthermore, we can reformulate the DRO as

minimize
x∈X ,q,Q

sup
(z1;Z2):z1∈Z,Z2⪰z1zT1

h(x, z1) + (µ− z1)
T q + (Σ− Z2) •Q ,

where A•B :=
∑

ij AijBij indicates the Frobenius inner product, and where Q ∈ Sm×m

and Z2 ∈ Sm×m are symmetric matrices. This problem will reduce to the following if
h(x, z) := maxk hk(x, z):

minimize
x∈X ,q,Q,r

r + µT q + Σ •Q

subject to r ≥ sup
(z1;Z2):z1∈Z,Z2⪰z1zT1

hk(x, z1)− zT1 q +−Z2 •Q , ∀ k .

Looking more closely at the supZ2⪰z1zT1 −Z2•Q part of the constraint, we realize that if
Q is not positive semi-definite, then the supremum can reach ∞ since Z2 is unbounded
above. We must therefore have that Q ⪰ 0, for the same price we also get that the
optimum is always achieved at Z2 = z1z

T
1 . The DRO therefore reduces to

minimize
x∈X ,q,Q,r

r + µT q + Σ •Q (8.13a)

subject to r ≥ sup
z1∈Z

hk(x, z1)− zT1 q − zT1 Qz1 , ∀ k (8.13b)

Q ⪰ 0 . (8.13c)

Each constraint in this latter reformulation is a non-linear robust constraint with the
right properties to be tackled by the theory presented in Chapter 6 when each hk(x, z)
is convex in x and concave in z.

8.1.3 Accounting for moment uncertainty

When moments of distribution are estimated based on historical data, it is common
to consider that the moments are not precisely known but are rather assumed to lie
in some confidence region U . In this context the distributionally robust model should
consider as candidate worst-case distribution any distribution which mean lies in U ,
thus giving rise to the following DRO model:

minimize
x∈X

sup
µ∈U ,F∈D(Z,µ)

EF [h(x, z)] . (8.14a)

Corollary 8.9. : Let D(Z, µ) be a distribution set and U ∈ Rm be a bounded and
convex uncertainty set for the moment vector µ. Given that for all µ ∈ U , there exists
an F ∈ D(Z, µ), the DRO problem presented in (8.14) is equivalent to the following
robust optimization problem:

minimize
x∈X ,q

sup
z∈Z

h(x, z)− zT q + δ∗(q | U) . (8.15a)
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Moreover, the problem can be reformulated as follows when Z is a convex set and
h(x, z) := maxk hk(x, z) where each hk(x, z) is a concave function:

minimize
x∈X ,q,{vk}k,t

t+ δ∗(q | U)

subject to t ≥ δ∗(vk | Z)− hk∗(x, vk + q) , ∀ k ,

where for each k, vk ∈ Rm, while δ∗(v|Z) is the support function of Z and hk∗(x, v) is
the partial concave conjugate function of hk(x, z).

Proof. This result follows almost directly from theorems 8.1 and 8.6. From the former,
we can establish that

sup
µ∈U ,F∈D(Z,µ)

EF [h(x, z)] = max
µ∈U

inf
q
sup
z∈Z

h(x, z) + (µ− z)T q

= max
µ∈U

inf
q
µT q + sup

z∈Z
h(x, z)− zT q

= inf
q
max
µ∈U

µT q + sup
z∈Z

h(x, z)− zT q

= inf
q
sup
z∈Z

δ∗(q | U) + h(x, z)− zT q ,

where we employed Sion’s minimax theorem which exploits the fact that U is bounded
and convex, and that µT q + supz∈Z h(x, z) − zT q is affine in µ and convex in q. Note
that the introduction of the support function simply follows from its definition. The
second reformulation follows from Theorem 8.6 which can exploit the fact that h(x, z)
would be piecewise concave in z. □

Example 8.10. : In [28], the authors explain how independently and identically dis-
tributed samples {ξi}Mi=1 from F can be used to construct the following uncertainty
set:

D(Z, µ̂, Σ̂, γ1, γ2) =



F ∈ M

∣∣∣∣∣∣

PF (ξ ∈ Z) = 1

(EF [ξ]− µ̂)T Σ̂−1(EF [ξ]− µ̂) ≤ γ1
EF [(ξ − µ̂)(ξ − µ̂)T ] ⪯ (1 + γ2)Σ̂



 ,

where the second constraint imposes that the mean of ξ be located inside some confi-
dence region described as an ellipsoid centered at the empirical estimate of the mean,
µ̂, and with a shape that is defined through the empirical covariance matrix, Σ̂. The
third constraint is a bit more complicated to parse since it imposes a linear matrix in-
equality (in the form of an upper bound) on the centered second order moment matrix
of ξ. Note that this is not exactly equivalent to imposing an LMI upper bound on the
covariance matrix of ξ unless γ1 = 0 (since then EF [ξ] = µ̂). Nevertheless, it allows
one to control how far the realization might be from µ̂ on average.

One can recognize in this context that the DRO problem becomes:

minimize
x∈X

max
(µ,Σ)∈U

sup
F∈D(Z,(µ,Σ))

EF [h(x, ζ)] ,
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where

U :=

{
(µ,Σ) ∈ Rm × Sm×m

∣∣∣∣
(µ− µ̂)T Σ̂−1(µ− µ̂) ≤ γ1

Σ ⪯ (1 + γ2)Σ̂ + µ̂µT + µµ̂T − µ̂µ̂T

}
.

Based on these considerations, one can exploit corollary 8.9 and the results of
Example 8.8 to claim that the DRO problem is equivalent to

minimize
x∈X ,q

sup
z∈Z′

h(x, z1)− zT1 q − Z2 •Q+ δ∗((q,Q) | U)

where Z ′ follows the definition in equation (8.12). Given that we already performed the
analysis for supz∈Z′ h(x, z1)−zT1 q−Z2•Q, we are left with characterizing δ∗((q,Q) | U).
To do so, we will describe the U set as the intersection of two sets:

U1 := {(µ,Σ) ∈ Rm × Sm×m | (µ− µ̂)T Σ̂−1(µ− µ̂) ≤ γ1} ,

and

U2 := {(µ,Σ) ∈ Rm × Sm×m |Σ ⪯ (1 + γ2)Σ̂ + µ̂µT + µµ̂T − µ̂µ̂T} .
In the first case, we have that µ := µ̂+ Σ̂1/2w where ∥w∥2 ≤ √

γ1. Based on Table 6.1
and theorem 6.7, we can use this fact to conclude that

δ∗(q,Q | U1) := µ̂T q +
√
γ1∥Σ̂1/2q∥2 + 1{Q = 0} ,

where 1{Q = 0} is the indicator function that returns 0 if satisfied and ∞ otherwise.
In the second case, i.e. δ∗(q,Q | U2), we need to reformulate the following expression:

max
z1∈Rm,Z2∈Sm×m

Q • Z2 + qT z1

subject to Z2 ⪯ (1 + γ2)Σ̂ + µ̂zT1 + z1µ̂
T − µ̂µ̂T .

After replacing Z ′
2 := Z2 − µ̂zT1 − z1µ̂

T , we get

max
z1∈Rm,Z′

2∈Sm×m
Q • Z ′

2 + (q + 2Qµ̂)T z1

subject to Z ′
2 ⪯ (1 + γ2)Σ̂− µ̂µ̂T ,

which can be optimized separately in z1 and Z
′
2. In the former case, the optimal value

is unbounded unless q = −2Qµ̂ for which (q + 2Qµ̂)T z1 = 0. In the latter case, the
problem becomes unbounded if Q ⪰̸ 0 since then their is a direction that can be used
to create an eigenvector of Z ′

2 for which the eigenvalue is unbounded on the negative
side yet leads to an arbitrary increase of the objective function. If Q ⪰ 0, then the
maximum is reached at Z2 = (1 + γ2)Σ̂− µ̂µ̂T . Overall, we get

δ∗(q,Q | U2) := ((1 + γ2)Σ̂− µ̂µ̂T ) •Q+ 1{q = −2µ̂TQ}+ 1{Q ⪰ 0} .
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Taking these two results together and the rule for composing δ∗(z | Z1 ∩ Z2), we
obtain:

δ∗(q1, Q2) := min
v1,v2∈Rm,V1,V2∈Sm×m

((1 + γ2)Σ̂− µ̂µ̂T ) • V2 + µ̂Tv1 +
√
γ1∥Σ̂1/2v1∥2

subject to V1 = 0

v2 = −2V2µ̂

V2 ⪰ 0

q1 = v1 + v2 & Q2 = V1 + V2 .

Assembling this reduction with the model presented in (8.13), we get that the DRO
model reduces to

minimize
x∈X ,q,Q,r

r + ((1 + γ2)Σ̂ + µ̂µ̂T ) •Q+ µ̂T q +
√
γ1∥Σ̂1/2(q + 2Qµ̂)∥2

subject to r ≥ sup
z1∈Z

hk(x, z1)− zT1 q − zT1 Qz1 , ∀ k

Q ⪰ 0 .

8.2 Scenario-based models

An alternative to moment-based approaches consists in starting of with a set of sce-
narios Z := {z1, z2, . . . , zK} and to consider the following DRO problem:

minimize
x∈X

sup
p∈U

K∑

k=1

pkh(x, z
k) ,

where p ∈ RK is a vector describing the probability of obtaining each of the K sce-
narios for ξ while U ⊆ {p ∈ RK | p ≥ 0,

∑K
k=1 pk = 1} is the uncertainty set for the

distribution. Such an uncertainty set can also be calibrated using historical data (in
this case Z should contain all observed scenarios) but will never account for scenarios
that were not listed in the finite set Z. This can be a problem for the generalization
power of the DRO model since in practice we usually don’t expect historical scenarios
to contain all possible realization of our parameters. The flip-side is that if Z does
contain all possible samples, then most scenario-based methods will have the property
that U({ξi}Mi=1), where each ξi is independently and identically distributed according
to F , converges to {p∗} where p∗k = PF (ξ = ξk) as M goes to infinity. This leads us
to say that the data-driven scenario-based model is “consistent” since in the limit as
more data is recovered, the data-driven solution will converge to the optimal solution
of the stochastic program (8.1). A comprehensive summary of data-driven scenario
based approach can be found in [5]. Note that while consistency is not a property of
data-driven moment based models as the one presented in example 8.10, moment-based
models have the advantage of considering a continuous space of possible realizations.
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8.3 Wasserstein distance based models

In [36], the authors actually are the first to propose a general data-driven DRO formu-
lation that can achieve the three most valued properties of such models:

1. Finite sample guarantee : The property that the optimal value of the DRO model
is guaranteed with high probability to bound from above the expected cost when
a finite number of i.i.d. realizations have been observed

2. Consistency : The property that the optimal solution will eventually converge to
the optimal solution of the stochastic program (8.1) as more i.i.d. realizations
are used to construct the distribution set D.

3. Tractability : The DRO model can be solved using convex optimization algo-
rithms for a large class of problems

We refer the reader to the full article for actual details. Interesting follow up results
that involve applications such as classification and inverse optimization can be found
in [42] and [37].

8.4 The power of randomized policy

Finally, it is worth mentioning an interesting recent result concerning DRO models
that involve discrete (or integer) variables among the decision vector x. In [27], the
authors have established that in such problems it is possible that in order to achieve the
lowest possible worst-case expected cost, one is required to implement a decision that
depends on the outcome of an independent randomization device. The two following
example illustrate this counter-intuitive property of “mixed integer DRO” problems.

Example 8.11. :[The Ellsberg urn game] Consider an urn that contains an unknown
number of red and blue balls in equal proportion. A player is asked to name one of the
two colors and to draw a random ball from the urn. If the chosen ball has the stated
color, the player incurs a penalty of $1; otherwise, the player is rewarded $1. One
readily verifies that the player receives an expected reward of $0 under either choice
(“red” or “blue”).

Assume now that the same game is played with an urn that contains red and blue
balls, but neither the number of balls nor the proportions of their colors are known.
Since the distribution of colors is completely ambiguous, the worst scenario is that
no ball in the urn have the color named by the player, in which case the penalty
of $1 arises with certainty. Thus, a maximally ambiguity-averse player is indifferent
between any pure strategy (i.e., naming red or blue) and paying a fixed amount of $1.
Assume instead that the player randomly names “red” (or “blue”) with probability p
(or 1 − p), and that the (unknown) probability of the drawn ball being red (blue) is
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q (or 1 − q). In that case, an ambiguity-averse player would be confronted with the
following optimization problem.

maximize
p∈[0,1]

min
q∈[0,1]

[pq + (1− p)(1− q)] · (−$1) + [p(1− q) + (1− p)q] · $1

The inner minimization problem has the parametric optimal solution q⋆ = 1 if p > 1/2;
q⋆ ∈ [0, 1] if p = 1/2; q⋆ = 0 if p < 1/2, which results in an objective value of−2|p−1/2|.
Under the optimal choice p⋆ = 1/2 (i.e., picking a color based on the throw of a fair
coin), the player can completely suppress the ambiguity and receive the same expected
reward of $0 as in the first urn game where the proportions of colors are known. Hence
to achieve the best worst-case expected profit, one must randomly choose between the
color “red” and “blue”.

Example 8.12. : A manager must implement one out of five candidate projects.
The projects’ net present values (NPVs) follow independent Bernoulli distributions
that assign unknown probabilities pLi and pHi to the low and high NPV scenarios from
Table 8.1. The scenarios are chosen such that projects with higher indices display a
higher expected NPV as well as a higher dispersion, as indicated by the increasing
spread between the associated two NPV scenarios.

Table 8.1: Low and high NPV scenarios (in $1, 000, 000), as well as means of the five
projects under nominal and ambiguous probabilities.

Low NPV High NPV Mean Mean if pLi = 0.5

Project 1 −0.6141 0.8500 pL1 · (−0.6141) + pH1 · 0.8500 0.1179
Project 2 −0.5471 1.9250 pL2 · (−0.5471) + pH2 · 1.9250 0.6889
Project 3 −0.3415 2.9500 pL3 · (−0.3415) + pH3 · 2.9500 1.3042
Project 4 −0.0750 3.9250 pL4 · (−0.0750) + pH4 · 3.9250 1.9250
Project 5 0.2168 4.8500 pL5 · 0.2168 + pH5 · 4.8500 2.5334

Let’s first assume that the probabilities are known to be such that pLi = pHi = 0.5.
If the manager aims to maximize the expected NPV, then she selects project 5. The
manager cannot improve upon this pure (i.e., deterministic) choice by making a random
choice as long as the NPVs are independent of the randomization device.

E[
5∑

i=1

ξiXi] =
5∑

i=1

E[ξiXi] =
5∑

i=1

E[ξi]E[Xi] ≤ max
i=1,...,5

E[ξi] ,

where ξi is the Bernoulli random variable capturing the NPV of project i, and Xi is
the Bernoulli random variable representing the event that the random project selection
ended up choosing project i.

Let’s assume now that the probabilities pLi and pHi corresponding to the low and
high NPV scenarios of the i-th project, respectively, are ambiguous, and that they are
only known to satisfy

pLi =
1

2
+ zimin

{
0.3µi,

1

2

}
and pHi =

1

2
− zimin

{
0.3µi,

1

2

}
(8.16)
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for some zi ∈ [−1, 1] with
∑5

i=1 |zi| ≤ 1, where µi denotes project i’s expected NPV
under the nominal Bernoulli distribution from Table 8.1. Thus, possible deviations of
the probabilities (pLi , p

H
i ) from their nominal values (1/2, 1/2) are proportional to the

project’s expected NPV under the nominal distribution. This gives rise to the following
uncertainty set:

U := {(pL, pH) ∈ R5×R5 | ∃ z ∈ [−1, 1]5, pLi = 0.5+min(0.5, 0.3µi)zi, p
L+pH = 1,

5∑

i=1

|zi| ≤ 1} .

Assume further that the manager maximizes the worst-case expected NPV over all
distributions satisfying (8.16). In this case, the decision model takes the form of a
DRO

max
x∈{0, 1}5:∑5

i=1 xi≤1
min
F∈D

EF [
5∑

i=1

ξixi] .

One can find the solution of this DRO analytically by considering that if project j is
chosen, then the worst-case analysis reduces to

min
F∈D

EF [ξj] = (0.5 + min(0.3µj, 0.5))ξ
L
j + (0.5−min(0.3µj, 0.5))ξ

H
j .

Hence, the worst-case expected value is evaluated to 0.066, 0.178, 0.016, -0.075, 0.2168
for projects 1 to 5 respectively. So that we are better choose project 5 with a worst-case
expected value of 0.2168. Alternatively, we could try to identify a randomized strategy:

max
q∈[0, 1]5:∑5

i=1 qi=1
min
F∈D

Eξ∼F,X∼q[
5∑

i=1

ξiXi]

Yet, we have that Eξ∼F,X∼q[
∑5

i=1 ξiXi] =
∑5

i=1 Eξ∼F [ξi]Ex∼q[Xi] =
∑

i EF [ξi]qi. Hence
the Randomized DRO reduces to

max
q∈[0, 1]5:∑5

i=1 qi=1
min

(pL,pH)∈U

5∑

i=1

(pLi · ξLi + pHi · ξHi )qi

The optimal randomized strategy chooses projects 3, 4, and 5 with probabilities 45.46%,
29.27%, and 25.27% respectively, yielding a worst-case expected value of 1.2111, which
is more than five time larger than what any deterministic policy can achieve.

For implementation details, we refer the reader to the following Google Colab file.

8.5 Exercises

Consider the following DRO problem:

minimize
x∈X

sup
F∈D1

EF [max(−1

2
ξTQ(x)ξ, xTCξ)] , (8.17)

https://colab.research.google.com/drive/13aDXf15WCg9vqIjGYm6aQVNsYMhr-66s?usp=sharing
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where X := {x ∈ Rn
+ |Ax ≤ b, x ≥ 1} for some A ∈ Rp×n and b ∈ Rp, Q(x) :=∑n

i=1Qixi with each Qi ∈ Rm×m such that Qi ≻ 0, and C ∈ Rn×m such that each
Cij ≥ 0.

Exercise 8.1. Mean-support DRO problem
Derive an explicit finite dimensional representation for the DRO problem (8.17) when

D1 := {F |PF (ξ ∈ Z) ≥ 1, EF [ξ] = µ̄} ,

where Z := {z ∈ Rm |Wz ≤ v}, with W ∈ Rp×m, v ∈ Rp, and µ̄ ∈ Rn.

Exercise 8.2. DRO with moment uncertainty
Derive an explicit finite dimensional representation for problem (8.17) when the distri-
bution ambiguity set takes the form:

D2(Γ) := {F |PF (ξ ∈ Z) = 1, EF [ξ] ≥ µ̄,
∑

i

EF [ξi]− µ̄i ≤ Γ} .

Exercise 8.3. Globalized DRO problem
Derive an explicit finite dimensional representation for the following globalized distri-
butionally robust optimization problem:

minimize
x∈X ,t

t

subject to EF [max(−1

2
ξTQ(x)ξ, xTCξ)] ≤ αΓ + t , ∀F ∈ D2(Γ) , ∀Γ ∈ [0, Γ̄] ,

where α > 0.
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Chapter 9

Pareto Efficiency in Robust
Optimization

In [32], the authors have exposed an interesting characteristic of optimal solutions to
robust optimization problems.

Example 9.1. : Consider the following robust optimization model:

maximize
x∈[0, 1]

min
z∈[0,1]

zx .

This robust optimization problem does not have a unique optimal solution. Indeed, the
whole interval x ∈ [0, 1] achieves the same worst-case value of 0. When implementing
this robust optimization model in RSOME (version rsome-0.0.6 with mosek-9.2.32, see
Google Colab), one obtains that x∗ = 0 which is indeed true but leaves one wondering
why consider this value over any other value in [0, 1]. In fact, one can demonstrate
that x∗∗ = 1 performs as well as x∗ in the worst-case but achieves a strictly better
performance than x∗ in terms of xz for any z ∈]0, 1].

This example illustrates how robust optimization problems might have non-unique
optimal solutions and raises the question of how to adequately select the solution
that will be implemented. Note that when solving robust optimization models with a
software package such as CPLEX, the choice of which solution among optimal ones is
returned is completely arbitrary (hence out of our control).

The example also illustrates that while robust optimization provides some guaran-
tees regarding the worst-case scenario, it does not provide any guarantees regarding
how the solution behaves compared to others under non-worst-case scenarios. Actually,
in [32], the authors argue that in the set of optimal robust solutions there are solutions
that are clearly preferred to others (e.g. x∗∗ = 1 is clearly preferred to x∗ = 0 in
example 9.1) since for those solutions there exists other optimal robust solutions that
“strictly dominates” them, i.e. some other solution performs at least as well as them
under all scenarios and strictly outperforms them under some scenarios.

149

https://colab.research.google.com/drive/1UfDaYT2NUIJkolkDBDB1J675CmoaKD3W?usp=sharing
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Let’s now make this discussion more formal. Consider the following robust opti-
mization problem:

maximize
x∈X

min
z∈Z

h(x, z) .

Based on the above optimization model one can identify a set of optimal robust
solutions as defined below.

Definition 9.2. : The set of all optimal robust solutions is defined as

XRO := {x ∈ X | min
z∈Z

h(x, z) ≥ max
x∈X

min
z∈Z

h(x, z)} .

The question is : “Which of the solutions x ∈ XRO should be used?”
The most common way of answering this question in the optimization community

has been to employ a secondary objective g(x) to discriminate among the different
optimal solutions. For example, one natural choice of g(x) might simply be h(x, ẑ)
with ẑ as the nominal scenario. Generally speaking, we would be looking for the
optimal solution of:

maximize
x∈XRO

g(x) ,

which can be characterized as

maximize
x∈X

g(x)

subject to h(x, z) ≥ γ , ∀ z ∈ Z ,

where γ := maxx∈X minz∈Z h(x, z) is the best worst-case value achieved in the
robust optimization problem. It is worth emphasizing that this problem is a convex
optimization problem when X is convex, while g(x) and h(x, z) are concave functions in
x. Furthermore, a Fenchel robust counterpart of the robust constraint can be obtained
if Z is convex and h(x, z) is convex in z.

In [32], the authors instead argue that some members of XRO should be discarded
before having to use a new criterion of selection. Indeed, remember that in example
9.1, it was clear to us that x∗∗ = 1 was a better solution than x∗ = 0. We next present
the definitions of the type of solutions that are left when we discard from XRO all
solutions that have a similar property to x∗ = 0.

Definition 9.3. : We will say that a solution x is Pareto robustly optimal (PRO) if
it is robust optimal, i.e. x ∈ XRO, and if there exists no other x̄ ∈ X that Pareto
dominates x, i.e. there exists no x̄ ∈ X for which the following two conditions hold:

1. h(x̄, z) ≥ h(x, z) for all z ∈ Z

2. h(x̄, z) > h(x, z) for some z ∈ Z.
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Moreover, one can define the set of all Pareto robustly optimal solutions as

XPRO := {x ∈ XRO | ∀x′ ∈ {x′ ∈ X |h(x′, z) ≥ h(x, z) , ∀ z ∈ Z}, h(x′, z) ≤ h(x, z) , ∀ z ∈ Z} .

Based on definition 9.3, it is clear that testing whether x ∈ XPRO or not is equiv-
alent to verifying whether x̂ ∈ XRO and whether the optimal value of the following
optimization model is lower or equal to zero:

maximize
x′∈X ,z∈Z

h(x′, z)− h(x, z) (9.1a)

subject to h(x′, z′) ≥ h(x, z′) , ∀ z′ ∈ Z . (9.1b)

To simplify the analysis of this problem (see remark 9.12 for some direction of
generalization), the authors of [32] assumed that the function h(x, z) was affine in
both x and z which we also assume for the rest of the chapter.

Assumption 9.4. : We assume that X and Z are convex sets, that Z contains a
scenario z̄ in its relative interior, and that h(x, z) is affine in both x and z. In other
words,

h(x, z) := c(z)Tx+ d(z) & h(x, z) := c′(x)T z + d′(x) .

Perhaps, the most important result on this topic is an answer regarding the identi-
fication of a simple method to check whether an optimal robust solution is also Pareto
robustly optimal.

Theorem 9.5. : If assumption 9.4 is satisfied and x ∈ XRO, then, verifying whether
x ∈ XPRO is equivalent to verifying whether the optimal value of the following convex
optimization problem is lower or equal to zero:

maximize
∆

c(z̄)T∆ (9.2a)

subject to x+∆ ∈ X (9.2b)

c(z)T∆ ≥ 0 , ∀ z ∈ Z . (9.2c)

Proof. First, when h(x, z) := c(z)Tx+ d(z), problem (9.1) takes the form

maximize
x′∈X ,z∈Z

c(z)Tx′ + d(z)− c(z)Tx− d(z)

subject to c(z′)Tx′ + d(z′) ≥ c(z′)Tx+ d(z′) , ∀ z′ ∈ Z ,

hence reduces to

maximize
x′∈X ,z∈Z

c(z)T (x′ − x)

subject to c(z′)T (x′ − x) ≥ 0 , ∀ z′ ∈ Z .
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One can then perform the variable replacement ∆ := x′ − x in order to get

maximize
∆,z∈Z

c(z)T∆

subject to x+∆ ∈ X
c(z′)T∆ ≥ 0 , ∀ z′ ∈ Z .

We are left with the step of demonstrating equivalence between the two objective
functions:

max
z∈Z

c(z)T∆ ≤ 0 ⇔ c(z̄)T∆ ≤ 0 .

Since z̄ ∈ Z, it is first clear that

max
z∈Z

c(z)T∆ ≤ 0 ⇒ c(z̄)T∆ ≤ max
z∈Z

c(z)T∆ ≤ 0 .

The reverse direction needs a little more work. Let’s assume that c(z̄)T∆ ≤ 0 and take
any z ∈ Z. Since z̄ is in the relative interior of the convex set Z, as stated in remark
6.1 it must be that there exists an ϵ > 0 such that z′ := z̄ − ϵ((z − z̄)/∥z − z̄∥2) ∈ Z.
In other words, there is a z′ ∈ Z such that z̄ := θz′ + (1− θ)z for some θ ∈ [0, 1]1. For
this reason, we must have that

c(z)T∆ = c((1/(1− θ))(z̄ − θz′))T∆ = (1/(1− θ))(c(z̄)T∆− θc(z′)T∆) ≤ 0 ,

since to be feasible ∆ must satisfy c(z′)T∆ ≥ 0 , ∀ z′ ∈ Z. Since such a conclusion can
be drawn for any z ∈ Z, we conclude that

c(z̄)T∆ ≤ 0 ⇒ sup
z∈Z

c(z)T∆ ≤ 0 .

□

The above theorem inspires us with both a method for identifying PRO solutions
and a method for verifying whether XRO = XPRO.

Corollary 9.6. : If assumption 9.4 is satisfied, let z̄ be any scenario in the relative
interior of Z, then all optimal solutions to the problem maximizex∈XRO

c(z̄)Tx+ d(z̄)
are members of XPRO.

It is worth mentioning that [32] also proves that all PRO solutions can be identified
this way using different choices of vector z̄ in the relative interior of Z (see proposition
1 in the article).

1Specifically, we would have that θ := ∥z − z̄∥2/(∥z − z̄∥2 + ϵ)
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Proof. We can easily prove this by contradiction. Let x∗ be an optimal solution of
maximizex∈XRO

c(z̄)Tx + d(z̄) such that x∗ /∈ XPRO. Based on Theorem 9.5 this
implies that there exists a ∆∗ for which the following conditions hold:

c(z̄)T∆∗ > 0

x∗ +∆∗ ∈ X
c(z)T∆∗ ≥ 0 , ∀ z ∈ Z .

Yet, we can use ∆∗ to create a solution x′ that satisfies x′ ∈ XRO, namely x′ := x∗+∆∗.
Indeed, x′ = x∗ +∆∗ ∈ X by construction of ∆∗, and

min
z∈Z

c(z)Tx′ + d(z) = min
z∈Z

c(z)T (x∗ +∆∗) + d(z) ≥ min
z∈Z

c(z)Tx∗ + d(z) + min
z∈Z

c(z)T∆∗

≥ min
z∈Z

c(z)Tx∗ + d(z) = max
x∈X

min
z∈Z

c(z)Tx+ d(z) ,

where the last equality comes from the fact that x∗ ∈ XRO. The contradiction follows
from the fact that since c(z̄)T∆∗ > 0, it must be that

c(z̄)Tx′ + d(z̄) = c(z̄)T (x∗ +∆∗) + d(z̄) > c(z̄)Tx∗ + d(z̄) .

This is impossible since x∗ was supposed to be an optimal solution of maximizex∈XRO
c(z̄)Tx+

d(z̄). □

Corollary 9.7. : If assumption 9.4 is satisfied, let z̄ be any scenario in the relative
interior of Z, then XRO = XPRO if and only if the optimal value of the following problem
is zero:

maximize
x∈XRO,∆

c(z̄)T∆ (9.3a)

subject to x+∆ ∈ X (9.3b)

c(z)T∆ ≥ 0 , ∀ z ∈ Z . (9.3c)

Proof. We demonstrate that the first statement is false if and only if the second is
false. First, say that XRO ̸= XPRO, this implies that there is an x ∈ XRO that is not
PRO, however, theorem 9.5 states that there must exists a ∆ such that c(z̄)T∆ > 0
in problem (9.2) which implies that the optimum of problem (9.3) must be strictly
positive. Alternatively, let’s assume that problem (9.3) has a non-zero optimal value.
This first implies that the optimal value is strictly positive since ∆ = 0 is always a
feasible solution. This implies that there exists a pair (x′,∆′) such that x′ ∈ XRO and
when evaluated in problem (9.2) is feasible and reaches a strictly positive objective
value. Based on the same theorem, this implies that x′ /∈ XPRO. This concludes this
proof. □

Given these interesting conclusions, one might now wonder if it is possible to per-
form optimization of a secondary objective g(x) over the set of PRO solutions. Indeed,
Iancu and Trichakis confirm that this is possible in the case that the problem is a linear
program but requires the use of additional binary variables.
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Theorem 9.8. : If assumption 9.4 is satisfied and X := {x ∈ Rn |Ax ≤ b}, with
A ∈ Rp×n and b ∈ Rp, while Z := {z ∈ Rm |Wz ≤ v}, then given any secondary
objective function g(x), the optimization problem maximizex∈XPRO

g(x) is equivalent
to the following optimization problem:

maximize
x,µ,η,γ,y

g(x)

subject to c(z̄)− ATµ+ c0η +
m∑

i=1

ciγi = 0

Wγ ≤ vη

0 ≤ b− Ax ≤M(1− y)

0 ≤ µ ≤My

η ≥ 0 , y ∈ {0, 1}p
x ∈ XRO ,

where µ ∈ Rm, η ∈ R and γ ∈ Rm, and where we let c(z) := c0 +
∑m

i=1 cizi.

Proof. Based on theorem 9.5, we know that verifying the feasibility of XPRO is equiv-
alent to checking that the optimal value of problem (9.2) is smaller or equal to zero.
After describing the set X and Z explicitly and deriving the reformulation for the
robust constraint c(z)T∆ ≥ 0 , ∀ z ∈ Z, we get:

maximize
∆,λ

c(z̄)T∆

subject to A(x+∆) ≤ b

cT0∆ ≥ vTλ

W Tλ = −CT∆

λ ≥ 0 ,

where C := [c1 c2 . . . cm].

By linear programming duality, we get that the optimal value is equal to the optimal
value of the dual problem:

minimize
µ,η,γ

(b− Ax)Tµ

subject to c(z̄)− ATµ+ c0η + Cγ = 0

Wγ ≤ vη

µ ≥ 0, η ≥ 0 ,

where µ ∈ Rp is the dual vector for the first constraint, while η ∈ R is the dual
variable of the second constraint, and γ for the third. Hence, we have that the problem
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maximizex∈XPRO
g(x) is equivalent to

maximize
x,µ,η,γ

g(x)

subject to (b− Ax)Tµ ≤ 0

c(z̄)− ATµ+ c0η + Cγ = 0

Wγ ≤ vη

x ∈ XRO

µ ≥ 0, η ≥ 0 .

Similarly as was done in chapter 4, we can linearize the bilinear constraint by exploiting
the fact that since Ax ≤ b for all x ∈ XRO, and µ ≥ 0, the constraint is equivalent to

(bi − aTi x)µi = 0 , ∀ i = 1, . . . , p .

For each i, the resulting constraint can be linearized using a binary variable yi ∈ {0, 1}.

µi ≤Myi & bi − aTi x ≤M(1− yi) ,

for some sufficiently large M > 0. □

It is worth emphasizing the fact that from an algorithmic perspective, robust op-
timization models benefit heavily from the fact that they are allowed to have optimal
solutions that are not Pareto efficient. Indeed, in contrast with stochastic programming
where typically all possible realizations of z must be used to confirm that a solution
is optimal, robust optimization only requires a certificate of optimal performance for
the worst-case scenario. In the following example, we illustrate this using a simple
two-stage inventory problem.

Example 9.9. : Consider the following two-stage inventory problem:

minimize
x1≥0

max
d∈[1, 3]

h1(x1) + min
x2≥0

cx2 + b(d− x1 − x2)
+

where x1 ∈ R is a first-stage production decision, h1(x1) is some arbitrary first stage
production cost function, d is the realized demand, x2 is a recourse production decision
that can adjust to the observed demand, and cx2 + b(d − x1 − x2)

+ is the sum of
second-stage production cost and backlog cost such that c < b. This problem can be
represented as:

minimize
x1≥0,x2:[1, 3]→R+

max
d∈[1, 3]

h1(x1) + cx2(d) + b(d− x1 − x2(d))
+ .

Let’s assume that x∗1 = 2 is a minimizer of this problem. Since c < b it is clear that if
one minimizes the recourse problem:

minimize
x2≥0

cx2 + b(d− 2− x2)
+
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one gets x∗2(d) := max(0, d − 2) which achieves a second stage cost of c in the worst-
case (i.e. when d = 3). One can however realize that any policy in the set X ∗∗

2 :=
{x2 : [1, 3] → R+ |x∗2(d) ≤ x2(d) ≤ 1 , ∀ d ∈ [1, 3]} also achieves this worst-case second
stage cost since for all x2(·) ∈ X ∗∗

2 we have that

max
d∈[1, 3]

cx2(d) + b(d− 2− x2(d))
+ = max

d∈[1, 3]
cx2(d) + 0 ≤ max

d∈[1, 3]
c · 1 = c .

One example of a recourse policy in X ∗∗
2 takes the form of x∗∗2 (d) = 1 while another

one might be x∗∗∗2 (d) = (1/2)(d − 1). We therefore can conclude that {(x∗1, x∗2(·)),
(x∗1, x

∗∗
2 (·)), (x∗1, x∗∗∗2 (·)) } ∈ XRO for this problem which is a good news since it means

that there exist a static and affine decision rule that achieves optimality. On the other
hand, it is clear that the static and affine decision rules are not Pareto efficiently
robust solution, i.e. {(x∗1, x∗∗2 (·)), (x∗1, x

∗∗∗
2 (·)), } /∈ XPRO, since these solutions are

strictly dominated by (x∗1, x
∗
2(·)). Namely, in the case of the static solution (x∗1, x

∗∗
2 (·)),

for all d ∈ [1, 3] we can show that

h1(x
∗
1)+cx

∗
2(d)+b(d−x∗1−x∗2(d))+ ≤ h1(x

∗
1)+c = h1(x

∗
1)+cx

∗∗
2 (d)+b(d−x∗1−x∗∗2 (d))+

while for all d ∈ [1, 3[:

h1(x
∗
1)+cx

∗
2(d)+b(d−x∗1−x∗2(d))+ = h1(x

∗
1)+cx

∗
2(d) < h1(x

∗
1)+c = h1(x

∗
1)+cx

∗∗
2 (d)+b(d−x∗1−x∗∗2 (d))+ .

As a final observation, one needs to be aware that, in multi-stage decision problems,
while there are many situations in which static and affine policies are optimal robust
solutions, these policies (actually optimal policies of any form) often prescribe recourse
actions that are not optimal under the realized scenario for z (unless the realized z
ends up being a worst-case one). This means that one should avoid implementing
affine decision rules when future stages are reached, but instead should optimize an
updated robust optimization model in a shrinking horizon fashion in order to identify
an actual Pareto efficient decision for the current stage under the observed conditions
of operation.

Remark 9.10. : The fact that robust optimal models might return solutions that
are not Pareto robustly optimal is especially important given that in practice the
performance of these solutions is often measured in terms of an expected value over a
set of randomly generated scenarios for z. In this context, it is clear that if x /∈ XPRO,
then the performance that will be measured will give the impression that a robust
solution does not perform very well in a stochastic environment. Yet, if one instead
makes the effort of recuperating an x ∈ XPRO, this solution might achieve a much
better performance in the context of randomly generated scenarios. As an example,
we could think of evaluating the solution x∗ = 0 from example 9.1 using a uniform
distribution over [0, 1]. This would lead to an expected value E[xz] = 0 while the
expected value of the PRO solution x∗∗ = 1 achieves an expected value of 0.5 which is
the best that can be achieved in this context.
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Remark 9.11. : The distinction between XRO and XPRO will also raise some concerns
when comparing the stochastic performance of robust solutions that are obtained from
different conservative approximation schemes (say the AARC versus the LAARC mod-
els studied in chapter 5). Indeed, since the specific solution returned from each of these
models is typically an arbitrary one among their respective XRO sets, conclusions of
the type “LAARC performs 50% better than AARC in terms of expected value on this
problem instance” are somewhat misleading. Indeed, to be correct one should addi-
tionally explain how a unique solution was generated from each model. In case, where
this fact remains unknown, only the worst-case performance over the uncertainty set
Z can honestly be used to make a claim that an approximation method is better than
some other.

Remark 9.12. : Finally, we wish to indicate some direction of generalization for
theorem 9.5. Indeed, when Z is a convex set containing z̄ in its relative interior, and
when h(x, z) is affine in z, we already can demonstrate the following reduction for
problem 9.1.

maximize
x′∈X

h(x′, z̄)− h(x, z̄)

subject to h(x′, z′) ≥ h(x, z′) , ∀ z′ ∈ Z ,

which is a convex optimization problem if h(x, z) is concave in x. The reduction is
obtained using a similar argument as presented in the proof of theorem 9.5. Specifically,
it relies on

max
z∈Z

h(x′, z)− h(x, z) ≤ 0 ⇔ h(x′, z̄)− h(x, z̄) ≤ 0 .

Yet, the steps to show this are exactly the same. First, we have:

max
z∈Z

h(x′, z)− h(x, z) ≤ 0 ⇒ h(x′, z̄)− h(x, z̄) ≤ max
z∈Z

h(x′, z)− h(x, z) ≤ 0 .

While we also have

h(x′, z̄)− h(x, z̄) ≤ 0 ⇒ ∀ z ∈ Z , ∃z′ ∈ Z, , ∃θ ∈]0, 1[ , z̄ = θz′ + (1− θ)z

⇒ h(x′, z)− h(x, z) = h(x′, (1/(1− θ))(z̄ − θz′))− h(x, (1/(1− θ))(z̄ − θz′))

= (1/(1− θ))(h(x′, z̄)− h(x, z̄)− θ(h(x′, z′)− h(x, z′)))

≤ (1/(1− θ))(h(x′, z̄)− h(x, z̄)) ≤ 0 .

The reformulation that is obtained here leads us to believe that Pareto robustly opti-
mal solution might also be found efficiently in scenario based distributionally robust
optimization models, since

∑
i pih(x, z

i) is affine in p.
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Chapter 10

Appendix

10.1 Convex sets and convex functions

Definition 10.1. : A set X ⊆ Rn is convex if for any two members x1 ∈ X and
x2 ∈ X , any “convex combination” of these two points is also a member of X . Namely,
for all θ ∈ [0, 1], we have that θx1 + (1− θ)x2 ∈ X .

Definition 10.2. : A function h : X → R, with X ⊆ Rn as its domain, is said to
be convex if its epigraph is a convex set. Namely, it is convex if and only if X is a
convex set and that for any two members x1 and x2 of X , and any convex combination
x3 := θx1 + (1 − θ)x2, with θ ∈ [0, 1], of these two points, it is the case that h(x3) ≤
θh(x1) + (1− θ)h(x2).

Definition 10.3. : A function h : X → R, with X ⊆ Rn as its domain, is said to be
concave if the function−h(x) is convex. Namely, it is concave if X is a convex set, and if
for any two members x1 and x2 of X , and any convex combination x3 := θx1+(1−θ)x2,
with θ ∈ [0, 1], of these two points, it is the case that h(x3) ≥ θh(x1) + (1− θ)h(x2).

Operations that preserve convexity of functions (see chapter 3.2 of [22] for more
details):

• Addition of two convex function. Namely, if g1(x) and g2(x) are convex functions
then g1(x) + g2(x) is a convex function.

• Multiplying a convex function by a positive scalar. Namely, if g(x) is convex then
αg(x) is convex for any α ≥ 0.

• Taking the supremum over a set of convex functions. Namely, if g(x, z) is convex
for all z ∈ Z then supz∈Z g(x, z) is convex

• Taking the infimum over a subset of variables for which the function is jointly
convex. Namely, if g(x, y) is jointly convex in x and y, and X is convex and
non-empty, then infx∈X g(x, y) is convex in y.
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• Any composition of a convex function with an affine mapping. Namely, if g :
Rn → R while A ∈ Rn×m and b ∈ Rn ,then g(Ax+ b) is convex in x

• Some composition of convex and monotone functions. Namely, let h : R → R
and g : Rn → R then h(g(x)) is convex in x if one of the conditions below apply:

– h(·) is convex and nondecreasing and g(·) is convex
– h(·) is convex and nonincreasing and g(·) is concave

• The perspective of a convex function. Namely, if g(x) is convex, then tg(x/t) is
jointly convex in t and x as long as t > 0.

10.1.1 Strict separating hyperplane theorem

Theorem 10.4. :(Strict separating hyperplane theorem) Let X ∈ Rn be a closed convex
set and x0 /∈ X . Then there exists a hyperplane parametrized by v ∈ Rn and b ∈ R that
strictly separates x0 from X . Namely,

vTx ≤ b, ∀x ∈ X & vTx0 > b

X v

Ball(x0, ✏)

✏

x"

x1

x0

x3

Proof. Since X is closed, it means that there exists some ball of radius ϵ > 0 centered
at x0 which does not intersect with X . Hence, when we try to identify the member of
X that is closest to x0, we will obtain a point x1 such that ∥x1−x0∥2 ≥ ϵ. To be clear,
x1 would be the solution of

x1 := argmin
x∈X

∥x1 − x0∥2 .

Let’s construct the separating hyperplane v := x0 − x1 and b := (x0 − x1)
Tx1. For this

hyperplane, we will show that both conditions are met.
First, again by contradiction, assume there exists some x3 ∈ X such that vTx3 > b,

in other words

(x0 − x1)
Tx3 > (x0 − x1)

Tx1 ⇒ (x0 − x1)
T (x3 − x1) ≥ ε > 0 .
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Well, then we will show that there is a point x4 on the segment between x1 and x3,
which is necessarily a member of X by convexity arguments, for which ∥x4 − x0∥ <
∥x1−x0∥ which contradicts the definition of x1 as the closest point to x0. Indeed, let’s
characterize the segment as any point generated with x1+θ(x3−x1) for some θ ∈ [0, 1]
and measure the squared distances to x0 that can be achieved on this segment:

∥x1 + θ(x3 − x1)− x0∥22 = ∥(x1 − x0) + θ(x3 − x1)∥22
= ∥x1 − x0∥22 − 2θ(x0 − x1)

T (x3 − x1) + θ2∥x3 − x1∥22
≤ ∥x1 − x0∥22 − 2θε+ θ2∥x3 − x1∥22
= ∥x1 − x0∥22 − θ(2ε− θ∥x3 − x1∥22) < ∥x1 − x0∥22 ,

where the last inequality is obtained by setting θ small enough in the interval ]0,min(1, 2ε/∥x3−
x1∥22)].

The second condition is straightforward :

vTx0 = (x0 − x1)
Tx0 ≥ (x0 − x1)

Tx0 − ∥x1 − x0∥22 + ϵ2

= (x0 − x1)
Tx0 − (x1 − x0)

Tx1 + (x1 − x0)
Tx0 + ϵ2

= (x0 − x1)
Tx0 + (x0 − x1)

Tx1 − (x0 − x1)
Tx0 + ϵ2 = (x0 − x1)

Tx1 + ϵ2 > b .

□

Definition 10.5. : The subgradient of a convex function g : Rn → R at a point
x0 ∈ Rn is a vector v ∈ Rn such that

g(x) ≥ g(x0) + vT (x− x0) , ∀x ∈ dom g .

The strict separating hyperplane theorem ensures that it always exists for convex func-
tion. In the special case of a differentiable function, it reduces to the gradient of the
function.

10.2 Minimax theorems

Here is the most general yet weak version of a min max theorem.

Lemma 10.6. : Let X ⊆ Rn and Z ⊆ Rm, and given any function g : X × Z → R,
one has that

sup
z∈Z

inf
x∈X

g(x, z) ≤ inf
x∈X

sup
z∈Z

g(x, z) .

Proof.

inf
x∈X

g(x, z) ≤ g(x′, z) ,∀x′ ∈ X , ∀ z ∈ Z

⇒ sup
z∈Z

inf
x∈X

g(x, z) ≤ sup
z∈Z

g(x′, z) ,∀x′ ∈ X

⇒ sup
z∈Z

inf
x∈X

g(x, z) ≤ inf
x′∈X

sup
z∈Z

g(x′, z) .

□
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We follow with the most general version of a strong minimax theorem.

Lemma 10.7. :(Sion’s minimax theorem [44]) Let X ⊂ Rn be a convex set and Z ∈ Rm

be a compact convex set, and let h be a real-valued function on X × Z with

1. h(x, ·) lower semicontinuous and quasi-convex on Z, ∀x ∈ X

2. h(·, z) upper semicontinuous and quasiconcave on X , ∀ z ∈ Z

then
sup
x∈X

min
z∈Z

h(x, z) = min
z∈Z

sup
x∈X

h(x, z) .

In particular, the conclusion is valid if instead of conditions 1 and 2, one can verify
that h(x, ·) is convex on Z for all x ∈ X , and h(·, z) is concave on X for all z ∈ Z.

10.3 Conic Programming

Definition 10.8. : A symmetric matrix Q ∈ Rn×n is positive semidefinite, referred as
Q ⪰ 0 if it satisfies the following condition

∀x ∈ Rn, xTQx ≥ 0 .

Alternatively, this definition can be verified by confirming that all its eigenvalues are
non-negative.

Definition 10.9. : A symmetric matrix Q ∈ Rn×n is positive definite, referred as
Q ≻ 0 if it satisfies the following condition

∀x ∈ Rn, xTQx > 0 .

Alternatively, this definition can be verified by confirming that all its eigenvalues are
strictly positive.
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