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This paper considers a multiperiod Emergency Medical Services (EMS) location problem and introduces

two two-stage stochastic programming formulations that account for uncertainty about emergency demand.

While the first model considers both a constraint on the probability of covering the realized emergency

demand and minimizing the expected cost of doing so, the second one employs probabilistic envelope con-

straints which allow us to control the degradation of coverage under the more severe scenarios. These models

give rise to large mixed-integer programs, which can be tackled directly or using a conservative approximation

scheme. For the former, we implement the Branch-and-Benders-Cut method, which improves significantly

the solution time when compared to a state-of-the art Branch-and-Bound algorithm proposed in the recent

literature and to using the CPLEX solver. Finally, a practical study is conducted using historical data from

Northern Ireland Ambulance Service and sheds some light on optimal EMS location configuration for this

region and on necessary trade-offs that must be made between emergency demand coverage and expected

cost. These insights are confirmed through an out-of-sample performance analysis.

Key words : Facility location, two-stage stochastic programming, chance-constrained programming,

probabilistic envelope constraint, Emergency Medical Services location, Branch-and-Benders-Cut

1. Introduction

Emergency Medical Services location plays an important role in providing adequate and high-

quality medical services for the public to answer as many emergency requests as possible under

dynamic and complex conditions. The locations of ambulance bases and the emergency vehicle

themselves are especially important considering their effect on response time and level of coverage.

Recently, EMS location has attracted substantial amount of attention in the literature through
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the form of ambulance location and relocation problems and healthcare facility location problems.

In this paper, we study a multiperiod EMS location problem that focuses on decisions, including

ambulance base locations and fleet size, and the assignment of vehicles to emergency requests and

their relocation throughout the day.

Most of the literature on EMS location currently formulates the problem as a deterministic

coverage location problem (see recent reviews by Aringhieri et al. (2017), Ahmadi-Javid et al.

(2017), Bélanger et al. (2018)). Specifically, these models enforce that when an emergency request

occurs, it can be covered by an ambulance within a certain coverage distance. However, such models

disregard the fact that even within a 24-hour cycle the rate of emergency requests, travel time,

and vehicles availability can vary drastically. Relocation of emergency vehicle on the network over

multiperiod can therefore improve the performance of EMS by preventing areas from becoming

unprotected, as well as improving the utilization of available resources. The models presented in

this paper incorporate time-dependent parameters in order to identify time-dependent location

strategies that make the best trade-off between the flexibility of EMS and the financial commitment.

Another key feature of the environment in which EMS operate is the pervasive presence of

uncertainty. This is especially the case for factors like the amount of emergency requests at any

given time, traffic conditions, operational cost, etc. Disregarding this uncertainty in a EMS location

model is likely to lead to surprises regarding operational costs and might even mean that targets

for demand coverage won’t be met. In this regard, our proposed models will follow in the steps of

Beraldi et al. (2004) and more recently Beraldi and Bruni (2009) who consider imposing a constraint

(a.k.a. chance constraint as introduced in Charnes and Cooper (1959)) on the probability of covering

the demand given a joint probability distribution on the amount of requests in each location. This

allows EMS managers to evaluate the additional cost related to improving the reliability level of the

network. This model however has the deficiency that its optimal operating strategy recommends

covering none of the emergency requests for the most severe scenarios. We extend the work of

Beraldi and Bruni (2009) firstly and foremost by considering probabilistic envelope constraints

(see Xu et al. (2012)), instead of single chance constraint, which allow EMS managers to control

how much coverage they are willing to offer as a function of how unlikely the scenario is. Other

contributions are more of a numerical and empirical nature and will be discussed next.

To summarize, this paper addresses the modeling and resolution of a multiperiod EMS location

problem that trades-off between expected cost and level of reliability while taking into account

the decisions on ambulance base location, fleet size, assignment and relocation of vehicles in a

multiperiod environment. More specifically, the contribution can be described as follows:

• We extend the static model presented in Beraldi and Bruni (2009) by considering a multiperiod

environment in which vehicles can be relocated in order to better account for time-dependencies of
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emergency requests, operational costs, and availability of emergency vehicles, and by imposing a

probabilistic envelope constraint (PEC) on the system-wide coverage level that is achieved under

all realizable scenarios, instead of only the more likely ones that are addressed by chance constraint

(CC) paradigm. This allows us to better characterize the trade-offs one needs to make between the

cost of responding to each potential request and its likelihood of occurring.

• We develop an efficient exact algorithm for the chance-constrained version of our model that

significantly outperforms the Branch-and-Bound (BB) algorithm used in Beraldi and Bruni (2009)

and the CPLEX solver. The algorithm is based on a Branch-and-Benders-Cut (B&BC) scheme

and is accelerated using valid inequalities and optimality cuts. This allows us to solve instances of

the chance constrained stochastic program with up to 100 ambulance base locations, 150 demand

locations, 6 time periods, and 200 scenarios in less than 6 minutes.

• We further propose an efficient approximation scheme for both CC and PEC stochastic pro-

grams that returns a solution guaranteed to be feasible. We observe empirically that the conser-

vative solution of this approximation are nearly optimal for the problem instances in this study.

This allows us to conclude that the PEC stochastic program can be used to derive useful insights

in problems of realistic size.

• We perform a case study based on a historical dataset obtained from the Northern Ireland

Ambulance Service Health & Social Care Trust (NIASHSCT) which allows us to demonstrate how

our proposed stochastic programming models can be applied in a real data-driven environment.

This also allows us to provide new insights on how probabilistic envelopes can be designed and

on the trade-offs that exist between coverage, reliability, and expected total cost. Finally, to the

best of our knowledge, we are the first to perform an out-of-sample evaluation of optimal strate-

gies obtained for EMS location problems. This drives us to propose a new online procedure that

identifies ambulance assignments for scenarios that are not observed in the in-sample dataset and

confirm empirically its statistical consistency.

The rest of this paper is structured as follows. Section 2 presents a brief overview of literature.

Section 3 describes the deterministic, CC and PEC version of our model. Section 4 introduces the

accelerated B&BC scheme for the CC stochastic program. Section 5 presents how to adapt this

B&BC scheme to the PEC stochastic program and Section 6 describes our proposed conservative

approximation scheme. The numerical performance of our algorithms and case study of NIASHSCT

are presented in Section 7 and 8 respectively. Finally, we give concluding remarks in Section 9.

2. Literature Review

The earliest versions of EMS ambulance location models can be considered as extensions of classical

covering location models such as set covering location problem (SCLP) in Toregas et al. (1971),
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maximal covering location problem (MCLP) in Church and Velle (1974), double standard model

(DSM) in Gendreau et al. (1997) and their variants. These early models are static and deterministic

ones with decisions that model both the location of bases and fleet sizes while the objective typically

aims at maximizing the coverage or minimizing the number of facilities (see Brotcorne et al. (2003)).

In particular, one of the first SCLP model introduced by Toregas et al. (1971) minimizes the number

of ambulances needed to cover all demand points, while ignoring other relevant aspects of these

problems. Another classical ambulance location model is called MCLP and introduced by Church

and Velle (1974). This model maximizes the proportion of the population that can be covered with

a limited number of ambulances. Extensions of the SCLP and MCLP models have also appeared

more recently in Başar et al. (2011), Schneeberger et al. (2016) and Paul et al. (2017). Recent

advances for covering location problems can also be found in Marianov (2017).

In contrast to static location models, dynamic location models consider long term effects of

ambulance deployment decisions. To the best of our knowledge, the first dynamic ambulance loca-

tion model is proposed by Gendreau et al. (2001), where the authors account for double coverage

standard (as in DSM) and penalize the frequent relocation of vehicles. More recently, Moeini et al.

(2015) propose a modification to the earlier model that appears to provide better coverage for

emergency request by using an adjustment parameter that accounts for its fluctuation. Similarly,

Schmid and Doerner (2010) extend the work of Gendreau et al. (1997) and Gendreau et al. (2001)

by accounting for capacity over a certain horizon of time. Degel et al. (2015) also formulate a

multi-objective and multiperiod covering location model by incorporating time-dependent param-

eters and decisions. It is worth mentioning that a number of studies have also made use of exact or

approximate dynamic programming (see Maxwell et al. (2010), Schmid (2012)) yet their applica-

tion is limited due to the well-known curse of dimensionality. We finally refer the readers to relevant

literature in the context of carsharing systems (see Lu et al. (2017), He et al. (2017, 2018)) where

vehicle fleet composition and dynamics are similarly optimized although the covering of demand

typically plays a less important role than in EMS.

The earliest version of stochastic programming model can be traced back to Daskin (1983) whose

seminal work takes the form of the Maximal Expected Covering Location Problem (MEXCLP).

In MEXCLP, the author assumes that each emergency vehicle is busy with a certain probability

and that its availability is independent from other vehicles. He then formulates a model in which

the expected coverage is maximized. van den Berg and Aardal (2015) later extend MEXCLP by

formulating a time-dependent model with start-up and relocation costs, while Schmid and Doerner

(2010) propose a multiperiod double coverage model with time-dependent travel time. At the same

period, Ansari et al. (2015) account for uncertain travel times and preferences in the assignment of
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ambulances from different stations to demand location while Maleki et al. (2014) adapt the maximal

expected coverage relocation problem in order to optimize the redeployment of ambulances.

Another important family of stochastic programming formulations appears to have been intro-

duced for the first time by Ball and Lin (1993) in an EMS application and employs so-called “chance

constraints” to control the probability that a vehicle is unable to respond to a demand call within

a certain amount of time. Beraldi et al. (2004) develop a stochastic programming model with joint

probabilistic constraints that aims at ensuring a reliable service level for emergency demand under

a known distribution of random emergency demand while minimizing the total cost. They employ

a so-called p-efficient points of the joint probability distribution to reformulate chance constraints

using a MILP representation. Similarly, Zhang and Li (2015) also mitigate emergency demand

uncertainty by proposing a chance constrained model that can be formulated as a second-order

cone program when only the mean and covariance information are known.

A number of recent contributions have also formulated the EMS location problem in the form

of a two-stage model where location and fleet size decisions are considered in the first stage while

the assignment decisions are made in a second stage. Naoum-Sawaya and Elhedhli (2013) use an

objective function that trades-off between relocation costs and expected coverage, using a penalty

cost for unserved demand. The model in Boujemaa et al. (2017) further introduces the notion of

a two-tiered system with two types of vehicles that can be employed on the network. Nickel et al.

(2016) handle the trade-off between cost and coverage by imposing a lower bound on the expected

coverage. An important issue associated to all of these approaches is that by using expected coverage

as a measure of the risk of unmet demand, the decision model does not provide any control

over the likelihood that the coverage goes below certain critical levels. This issue is naturally

addressed in chance constrained formulation typically at the price of computationally inefficiency.

It is worth mentioning that Noyan (2010) does propose the use of “integrated chance constraints”

or second-order stochastic dominance constraints, which also circumvent this issue. One needs to

know however that these risk measures are much less interpretable than chance constraints and

still give rise to significant computational difficulties when considering two-stage formulations.

Our work is heavily inspired by the work of Beraldi and Bruni (2009) who consider a two-stage

stochastic programming formulation that minimizes the expected cost of responding to emergency

requests while imposing a chance constraint on coverage of emergency request demand. These

authors design a BB algorithm to solve the resulting mixed integer linear program (MILP). Beyond

replacing their model’s fixed coverage cost with a linear one, we extend this work in four ways.

Firstly, we extend this approach to a multiperiod setting in which ambulances can be relocated to

other stations (as proposed in Schmid and Doerner (2010) and van den Berg and Aardal (2015)

for covering models). Secondly, we consider probabilistic envelope constraints that allow us to also
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control coverage in scenarios that are considered more extreme while these are ignored in Beraldi

and Bruni (2009)’s work thus causing an optimistic bias in terms of optimal expected cost. Thirdly,

we propose an exact solution scheme that significantly improves the numerical performance of their

BB algorithm. Finally, while Beraldi and Bruni (2009) conduct numerical experiments using test

problems for the Two-Stage Capacitated Facility Location problem, we evaluate our models in a

more realistic case study that uses a dataset covering historical emergency requests from Northern

Ireland and draw a number of interesting practical insights.

Finally, it is worth noting that the models we propose in the following section will combine ideas

from classical mathematical formulation such as the capacitated fixed-charge location problem, the

p-median problem, and transportation problem and integrates them in a multiperiod setting. These

types of models are in fact also commonly used in the literature that covers dynamic facility location

problems where the opening, closing and relocation of facilities is optimized while accounting for

uncertainty about future demand. One can for instance find many models in the recent literature:

e.g. dynamic deterministic models, multiperiod stochastic models, dynamic programming based

models, etc. For conciseness, we refer interested readers to the surveys by Owen and Daskin (1998),

Arabani and Farahani (2012), and Nickel and da Gama (2015) for some detailed formulations.

To the best of our knowledge, none of these formulations have employed probabilistic envelope

constraints although we believe that they could certainly benefit from it.

3. Model Formulation

In this section, we firstly present in Section 3.1 the deterministic version of multiperiod EMS

location model and related notation. Then, we incorporate emergency demand uncertainty and

propose in Section 3.2 two probabilistic constrained stochastic programs.

3.1. Deterministic Model and Notation

We consider a multiperiod EMS location problem that addresses ambulance location, fleet size,

allocation and relocation decisions, and where emergency requests occur randomly. Specifically, we

partition the whole region into a set of zones, based on geographic division. We assume that emer-

gency requests originate randomly from any of these zones, and consider a certain horizon divided

into T periods. Given a set of potential base locations, the decision involves the identification of

which subset of these locations will be operated at different times of the day and the number of

ambulances assigned to these location throughout the day. This implicitly involves decisions about

how ambulances are relocated throughout the day. All notation is detailed in Table 1.

Unlike most related work discussed in Section 2 under a static context, we incorporate time-

dependent parameters and decisions, such as emergency demand, fleet size, service rate, related

cost parameters, some of which are also in Schmid and Doerner (2010) and van den Berg and
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Table 1 Notations

Sets

I the set of demand zones

J the set of potential ambulance base locations

J z
i the set of ambulance base locations from which an ambulance can serve demand in zones i∈ I
J r
m the set of ambulance base locations to which an ambulance in location m∈J can be relocated

Parameters

T the number of time periods considered

f tj the fixed operation cost for the base at location j at time period t

gtj the marginal operation cost of hosting each ambulance at base j during time period t

ct the marginal transportation cost during time period t

lij the distance between demand location i and base location j

αt the relocation cost for each ambulance during time period t

P t
j the maximum number of ambulances that can be hosted at base j during time period t

dti the number of emergency requests in demand zone i during time period t

λtj the service rate per ambulance for base location j at time period t

βt the minimum service level for the EMS system during time period t

Decision Variables

xtj binary variable, xtj = 1 if the base at location j will be open during time period t

ytj integer variable, the number of ambulances hosted at base location j during time period t

rtmj integer variable, the number of ambulances planned to be relocated from location m to

location j (with j 6=m) at time period t

ztij integer variable, the number of emergency requests in zone i served by an ambulance at base

location j during time period t

Aardal (2015). Similarly to a number of static models proposed for this problem (namely Beraldi

et al. (2004), Beraldi and Bruni (2009), Noyan (2010), Naoum-Sawaya and Elhedhli (2013) and

Nickel et al. (2016)), we assume the goal of the EMS manager is to minimize the total cost for

operating the EMS system, which decomposes as the cost for operating bases, vehicles, the cost for

hosting and maintaining them, transportation cost, and relocation cost, while ensure a minimum

coverage level. This gives rise to the following multiperiod deterministic EMS location model:

[DM] minimize
x,y,z,r

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j +

T∑
t=1

∑
j∈J

∑
i∈I

ctlijz
t
ij +

T∑
t=1

∑
j∈J

∑
m∈J

αtrtmj (1a)

subject to ytj ≤ P t
jx

t
j ∀j ∈J , t∈ {1, . . . , T} (1b)

xtj ≥ xt−1
j ∀j ∈J , t∈ {2, . . . , T} (1c)
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ytj +
∑
m∈J rj

rtmj −
∑
m∈J rj

rtjm = yt+1
j ∀j ∈J , t∈ {1, . . . , T − 1} (1d)

yTj +
∑
m∈J rj

rTmj −
∑
m∈J rj

rTjm = y1
j ∀j ∈J (1e)

∑
i∈I

ztij ≤ λtjytj ∀j ∈J , t∈ {1, . . . , T} (1f)∑
j∈J zi

ztij ≤ dti ∀i∈ I, t∈ {1, . . . , T} (1g)

∑
i∈I

∑
j∈J zi

ztij ≥ βt
∑
i∈I

dti ∀t∈ {1, . . . , T} (1h)

xtj ∈ {0,1} , ytj, rtmj, ztij ∈N ∀i∈ I, j,m∈J , t∈ {1, . . . , T} . (1i)

Constraint (1b) imposes the maximum number of vehicles that can be hosted at ambulance base

j during time period t depending on whether the base is open or closed. Constraint (1c) imposes

that an open base remains open for the rest of the day, which is a common constraint in the

multiperiod facility location literature (see constraint (7) in Schilling (1980), constraint (14) in

Van Roy and Erlenkotter (1982), and constraint (11.37) in Nickel and da Gama (2015)). Other

possible forms of condition of operations of facilities and their associated cost are discussed in

Appendix B.1. Constraints (1d) and (1e) are balance equations, which ensure that the relocation

plan of emergency vehicles is feasible over the planning horizon. In particular, J r
j might be such

that ambulance can only be relocated to a base within a certain radius lrmax. It also imposes that

initial and final distribution of ambulances should be the same for consistency from one day to the

other (see Remark 1 below). Constraint (1f) states that the maximum number of emergency request

that can be served from base j during period t depend on the number of ambulances present and

on the service rate λtj ∈ N. Constraint (1g) imposes that, in each zone i, one cannot serve more

emergencies than the number of requests submitted dti. Once again a natural way of designing J z
i

consists in only including pairs of locations that are within a certain service radius lzmax. Finally,

constraint (1h) imposes a minimum service level of βt for the EMS system, in other words the

network should be designed and managed so that at each period of the day a certain proportion

βt ∈ [0, 1] of total emergency demand be served.

In this paper, some assumptions are made in order to help with the numerical resolution efforts.

We assume that relocation decisions are made before any of the emergency requests are observed,

and that the relocation of an ambulance does not affect its capacity to serve emergency requests.

Although these assumptions constitute a limitation of our model, we believe that they do not have

an important effect on the conclusion when comparing the quality of different strategic decisions.

First, when the length of each period is large enough (e.g. 4 hours), the time needed for relocation

within a reasonable distance becomes relatively insignificant and the number of total requests that
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are served in a period becomes large thus reducing the variance of the total. Regarding the nature

of relocation decision, one could argue that schedules of ambulance deployment need to be defined

as early as possible in order to inform drivers once of the plan for the whole day. Alternatively, one

could argue that there is actually no loss in doing so (compared to an adaptive plan) in contexts

where the emergency requests are independent from one period to the next.

One might also note that it is possible with the DM formulation to model the fact that some

ambulances become off-duty during some periods of the day in order to reduce total cost by

assigning them to an artificial node with gtj = 0. Similarly, one could model longer relocation

routes that pass through similar off-duty dummy nodes which would account for the fact that the

ambulance will be traveling for a full period.

Remark 1. Note that, with Constraint (1e), model (1) effectively emulates an infinite horizon

problem in which each day has exactly the same characteristics and where we wish the policy to

be the same every day. In the stochastic setting, it will imply that daily emergency requests are

independent and identically distributed from one day to the other. In practice, this implicit infinite

horizon model might be reasonable especially when there is a strong interest in identifying a policy

that is easy to operationalize by repeating it on a daily basis. Otherwise, one can also extend the

model so that the horizon covers a few days of operations and implement the proposed solution

using a rolling horizon approach where only the first few periods are implemented, the model is

then updated with new conditions and re-optimized.

3.2. Two Probabilistic Constrained Stochastic Programming Models

An important limitation of the DM model consists in the assumption that all parameters are

exactly known at the moment of designing the network. Indeed, in practice it is difficult to predict

exactly where and when the emergency requests will occur. For this reason, we now propose a

model that assumes that these requests occur randomly according to some distribution d∼Q. In

this context, it is reasonable to assume that the assignment of ambulances will be done once the

demand of each period is known. In other words, each decision ztij : R|J |→ R can be adjusted to

the observed emergency demand dt. Following the ideas proposed in Beraldi and Bruni (2009), this

gives rise to the following two-stage chance-constrained stochastic program (CCSP):

[CCSP]

minimize
x,y,z(·),r

EQ

[
T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j +

T∑
t=1

∑
j∈J

∑
i∈I

ctlijz
t
ij(d

t) +
T∑
t=1

∑
j∈J

∑
m∈J

αtrtmj

]
(2a)

subject to (1b)− (1e)
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PQ

(∑
i∈I

ztij(d
t)≤ λtjytj

)
= 1 ∀j ∈J , t∈ {1, . . . , T} (2b)

PQ

∑
j∈J zi

ztij(d
t)≤ dti

= 1 ∀i∈ I, t∈ {1, . . . , T} (2c)

PQ

∑
i∈I

∑
j∈J zi

ztij(d
t)≥ βt

∑
i∈I

dti

≥ 1− ηt ∀t∈ {1, . . . , T} (2d)

PQ
(
ztij(d

t)∈N
)

= 1 ∀i∈ I, j ∈J , t∈ {1, . . . , T} (2e)

xtj ∈ {0,1} ;ytj, r
t
mj ∈N ∀i∈ I, j,m∈J , t∈ {1, . . . , T} , (2f)

for some ηt ∈ [0, 1], where the expected total cost of operation is minimized and where constraint

(2d) is a chance constraint that controls the reliability of the coverage, i.e. the required likelihood

of serving at least a proportion βt of emergency requests according to Q at time t. For example,

when ηt = 0 then the coverage must be satisfied with probability one, and in particular it must

be satisfied under any scenario that has a strictly positive likelihood of occurrence. As argued in

Beraldi and Bruni (2009), this might however lead to an over-dimensioned system hence the need

for the CCSP model, which can serve as a tool to evaluate different alternatives in terms of cost-

reliability trade-off. Unfortunately, the above model is necessarily overly optimistic in assessing the

expected total cost of managing the system given that it completely disregards how the system will

respond to requests in the more extreme scenarios that have less than ηt probability of occurring

at time t. This is illustrated by the following example.

Example 1. Consider a simple network with a single ambulance base, one zone that generates

emergency requests, and a single period horizon. Let d1 be drawn according to two possible scenar-

ios: in scenario #1 d1 = 50 and has 90% chance of occurring while, in scenario #2, d1 = 200 with

10% chance. If one imposes a 90% chance of covering all emergency requests (i.e. β = 100% and

η= 10%), then, assuming that the service rate is 50, it is clear that it becomes optimal to plan for

a single ambulance to be present all day. In particular the solution would take the shape x1 = 1,

y1 = 1, and z11(50) = 50 while z11(200) = 0. The optimal expected cost would be f1 + g1 + 45cl11

reflecting the fact that the available ambulance is left idle at the base under the more extreme

scenarios while 200 emergencies are left unserved.

To correct for this deficiency of the CCSP model, we replace constraint (2d) with a PEC as

popularized in Xu et al. (2012) in order to provide some control on the level of coverage achieved

under all potential scenarios of emergency requests. Similarly, this gives rise to the following two-

stage probabilistic envelope constrained stochastic program (PECSP):

[PECSP]
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minimize
x,y,z(·),r

EQ

[
T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

gtjy
t
j

∑
j∈J

+
T∑
t=1

∑
j∈J

∑
i∈I

ctlijz
t
ij(d

t) +
T∑
t=1

∑
j∈J

∑
m∈J

αtrtmj

]
(3a)

subject to (1b)− (1e), (2b), (2c), (2e), (2f)

PQ

∑
i∈I

∑
j∈J zi

ztij(d
t)≥ βt(η)

∑
i∈I

dti

≥ 1− η ∀η ∈ [0,1), t∈ {1, . . . , T} , (3b)

where constraint (3b) now covers all reliability levels η ∈ [0, 1) using a controlled coverage envelope

function βt(η). Actually, the case that η = 1 does not appear in the constraint since a chance

constraint that impose 0% reliability is always redundant. Note that without loss of generality,

we will assume that βt(η) is non-decreasing (i.e. the less extreme the scenario is, the more strict

the targeted coverage), otherwise one can replace this function with βt
′
(η) := sup{βt(η′) : η′ ≤

η} without affecting the set of feasible solutions. It is also straightforward to see that PECSP

generalizes CCSP since the latter can be obtained by using the following coverage envelope function

βt(η) =

{
β̄t if η≥ η̄t
0 otherwise.

Looking back at Example 1, one can see how the identified deficiency can be resolved using

our PECSP model. In particular, this new model allows one to describe what level of coverage is

expected for the more extreme scenario. In the case that the coverage needed for all scenarios is

always above 50%, e.g. β(η) = 50% for η < 10%, then the optimal solution would recommend a

larger fleet of ambulance since 200×50%> 50. If the reliability level is more relaxed, e.g. β(η) = 5%

for η < 10%, then the same number of vehicles would be proposed yet the expected total cost would

reflect the fact that a minimum proportion of requests need to be satisfied in all scenarios.

The downside of employing PECSP is the challenge that it raises from a computational perspec-

tive. Indeed, chance constrained stochastic programs are typically considered to be computationally

intractable, except in rare cases with special structure. In general, chance constraints define a non-

convex feasible set and can either be conservatively approximated as in Nemirovski and Shapiro

(2006) or approximated using sample average approximation which gives rise to a MILP formula-

tion (see Luedtke and Ahmed (2008), Pagnoncelli et al. (2009), Wang et al. (2011)). The challenge

is even more significant when employing our PEC, which conceptually speaking imposes an infinite

continuum of chance constraints. To the best of our knowledge, to this date the most efficient solu-

tion scheme employs distributionally robust versions of these constraints (see Xu et al. (2012)). Yet,

while these versions might not be very interesting from a practical point of view (as it might lead

to overly conservative solutions), it is also not clear how the method proposed in Xu et al. (2012)

could be used for constraint (3b) given that the interaction between the envelope function and
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uncertainty is not additive but rather multiplicative. One should also note that constraint (3b) can

be equivalently reformulated as a first-order stochastic dominance (FSD) constraint (introduced

for the first time in Dentcheva and Ruszczynski (2003)) :∑
i∈I

∑
j∈J zi

ztij(d
t)

/

(∑
i∈I

dti

)
�(1) Υt ∀t∈ {1, . . . , T} ,

where each dti and Υt are arbitrary random variables on a joint probability space (Ω̄, Σ̄, Q̄), such

that βt(PQ̄(Υt ≤ y)) = y for all y ∈ (0, 1]. In the case where all decisions are static and Q̄ is discrete,

which implies that the associated βt(·) is piecewise constant, Dentcheva and Ruszczyński (2004)

show that a FSD constraint can be reformulated using finitely many chance constraints, Noyan

et al. (2006) further introduce a MILP formulation and propose two convex relaxations. A new

MILP formulation is proposed in Luedtke (2008) which has the property of reducing to a second-

order dominance constraint when the integrality constraint is relaxed. Drapkin and Schultz (2010)

propose a Benders decomposition method to solve a stochastic program with a FSD constraint on

the optimal value of a second-stage problem. Finally, Hu et al. (2012) provide theoretical foun-

dations for the convergence of sample average approximations method on second-order stochastic

dominance constraints which will motivate us to replace Q with a discrete approximation.

In sections 4 and 5, we explain how to obtain a MILP based reformulation of both CCSP

and PECSP, with a general β(·) envelope, and propose an improved B&BC method that can be

employed to improve numerical efficiency. A conservative approximation scheme is also proposed

for PECSP (or CCSP) in order to allow the resolution of EMS location problems of realistic sizes

in Section 6.

4. Solution Scheme for Scenario-based CCSP

In this section, we present a scenario-based version of CCSP, which might be obtained from applying

a sample average approximation scheme, derive a MILP reformulation of the problem, and propose

different variants of a B&BC method to solve the problem efficiently.

4.1. Scenario-based CCSP

In a scenario-based approach, one assumes that the random emergency requests d are drawn from

a finite set of N scenarios {dω}ω∈Ω, where for simplicity Ω = {1, . . . ,N}, hence the distribution Q
can be characterized using a probability vector [p1 p2 . . . pN ] such that p≥ 0 and

∑
ω∈Ω pω = 1. For

each scenario ω ∈Ω, we let dtiω denote the number of emergency requests in zone i at time period

t, while ztijω will denote the number of emergency requests in zone i at time period t served from

ambulance base j. Under these conditions, one can rewrite the CCSP as:

minimize
x,y,z,r

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j +
∑
ω∈Ω

T∑
t=1

∑
j∈J

∑
i∈I

pωc
tlijz

t
ijω +

T∑
t=1

∑
j∈J

∑
m∈J

αtrtmj (4a)
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subject to (1b)− (1e), (2f)∑
i∈I

ztijω ≤ λtjytj ∀j ∈J , t∈ {1, . . . , T}, ω ∈Ω (4b)∑
j∈J zi

ztijω ≤ dtiω ∀i∈ I, t∈ {1, . . . , T}, ω ∈Ω (4c)

∑
ω∈Ω

pω1

∑
i∈I

∑
j∈J zi

ztijω ≥ βt
∑
i∈I

dtiω

≥ 1− ηt ∀t∈ {1, . . . , T} (4d)

ztijω ∈N ∀i∈ I, j ∈J , t∈ {1, . . . , T}, ω ∈Ω , (4e)

where 1{
∑
i∈I

∑
j∈J zi

ztijω ≥ βt
∑
i∈I

dtiω} is an indicator function that returns one if the required coverage

is achieved at time period t under scenario ω, and otherwise returns zero.

Following an idea that dates back to Ruszczyński (2002), we next introduce a set of binary

variables ρ ∈ {0, 1}N×T that will be used to assess whether the coverage frequencies imposed in

constraint (4d) are satisfied. This allows us to replace constraint (4d) with:∑
i∈I

∑
j∈J zi

ztijω ≥ βt(1− ρtω)
∑
i∈I

dtiω ∀t∈ {1, . . . , T}, ω ∈Ω (5)

∑
ω∈Ω

pωρ
t
ω ≤ ηt ∀t∈ {1, . . . , T} . (6)

In particular, ρtω = 1 indicates that the system manager plans to violate the coverage constraint

under scenario ω at time t.

Proposition 1. The CCSP problem is equivalent to the following mixed integer linear program

in terms of optimal value and set of optimal solutions for x and y:

[CCSP2] minimize
x,y,r,z,ρ

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j +
∑
ω∈Ω

T∑
t=1

∑
j∈J

∑
i∈I

pωc
tlijz

t
ijω +

T∑
t=1

∑
j∈J

∑
m∈J

αtrtmj (7a)

subject to (1b)− (1e), (4b), (4c), (6)∑
i∈I

∑
j∈J zi

ztijω ≥ (1− ρtω)

⌈
βt
∑
i∈I

dtiω

⌉
∀t∈ {1, . . . , T}, ω ∈Ω (7b)

ztijω ≥ 0 ∀i∈ I, j ∈J , t∈ {1, . . . , T}, ω ∈Ω (7c)

rtmj ≥ 0 ∀j,m∈J , t∈ {1, . . . , T} (7d)

xtj ∈ {0,1} , ytj ∈N, ρtω ∈ {0, 1} ∀j ∈J , t∈ {1, . . . , T}, ω ∈Ω . (7e)

Moreover, an optimal solution (x∗, y∗, r∗, z∗) for CCSP can be obtained by solving a set of MILPs.

Note that in CCSP2, we were able to relax the integrality constraint on the assignment variables

z and relocation variables r without affecting the quality of the solutions obtained for x and y
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and optimal value. This is due to the fact that when first stage decisions x, y and ρ are fixed,

the convex hull of the joint feasible set for z and r can be obtained simply by employing a linear

relaxation (modulo the tightening of constraint (5) using a simple rounding scheme). The detailed

proof can be seen in Appendix A.1.

4.2. Enhanced Branch-and-Benders-Cut Method

While stochastic programming models are generally known to be computationally challenging, a

method known as the L-shaped method or Benders decomposition (BD), introduced by Benders

(1962) has achieved good numerical performance in a number of applications including facility

location and transportation (see for example in Martins de Sá et al. (2015), Dalal and Üster (2018),

and Rahmaniani et al. (2017) for recent reviews of the topic). The main idea of BD is that the

MILP that emerges in a stochastic program might decompose into a pure integer master problem

(MP) and a number of smaller linear sub-problems (SPs). If so, the two sets of problems can be

solved iteratively, introducing a group of additional constraints in the MP, known as Benders cuts.

This is repeated until the lower bound obtained from MP reaches the upper bound that can be

computed based on the solutions of the SPs.

There are a number of studies that have recently developed Branch-and-Cut (BC) methods to

solve chance constrained programs (CCPs). First, the BC schemes in Song et al. (2014) and Song

and Luedtke (2013) are designed for single-stage binary problems (e.g. binary bin packing and

network design). More recently, Luedtke (2014) does consider mixed type of decisions yet cannot

be employed in two-stage stochastic programs with costly recourse decisions, as is the case in our

model. Interestingly, Liu et al. (2016) propose a BC method with two types of optimality cuts for

solving two-stage CCPs of the same form as ours. While the first type resembles closely the cuts

that we will propose in Section 4.2.4, some preliminary study revealed to us that no significant

improvement could be obtained from the second type. Furthermore, in both case the question is

still open regarding how to extend these families of cuts to the PECSP model.

In this section, we describe an implementation of the B&BC method in order to improve numer-

ical efficiency by integrating Benders cuts directly in the BB algorithm that solves the MP. To

simplify presentation we make the assumption that ambulances can be relocated and serve any

location on the territory.

Assumption 1. The graph of all feasible relocation and emergency assignments is complete, i.e.

J z
i =J and J r

j =J \ j for all i∈ I and j ∈J .

We start in Section 4.2.1 by describing the BD scheme for CCSP2 under Assumption 1 after

introducing redundant constraints that ensure that only optimality cuts will be returned by the

SPs. An extension of the methods to situations where Assumption 1 does not hold is presented
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in Appendix B.5. We then summarize the B&BC scheme in Section 4.2.2. We finally discuss in

sections 4.2.3 and 4.2.4 variants of the algorithm that involve a set of valid inequalities that can

be used to tighten the MP and a way of tightening the optimality cuts returned from the SPs.

4.2.1. Benders Decomposition A traditional application of BD aims at separating the com-

plicating integer variables (x,y,ρ) from the non-complicating variables r and z in order to accel-

erate the resolution of CCSP2. In particular, we consider the following reformulation of CCSP2:

[CCSP2’] minimize
x,y,ρ,θr,θz

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j +
∑
ω∈Ω

T∑
t=1

θztω + θr (8a)

subject to (1b), (1c), (6), (7e)

θr ≥ hr(y) (8b)

θztω ≥ hzω,t(y, ρ) ∀t∈ {1, . . . , T}, ω ∈Ω (8c)∑
j∈J

ytj =
∑
j∈J

yt+1
j ∀t∈ {1, . . . , T − 1} (8d)∑

j∈J

λtjy
t
j ≥ dβt

∑
i∈I

dtiωe(1− ρtω) ∀t∈ {1, . . . , T}, ω ∈Ω (8e)

where

[CCSP-SPr] hr(y) := min
r≥0

T∑
t=1

∑
m∈J

∑
j∈J

αtrtmj (9a)

subject to ytj +
∑
m∈J rj

rtmj −
∑
m∈J rj

rtjm = yt+1
j ∀j ∈J , t∈ {1, . . . , T − 1} (9b)

yTj +
∑
m∈J rj

rTmj −
∑
m∈J rj

rTjm = y1
j ∀j ∈J (9c)

and where

[CCSP-SPz
ω,t] h

z
ω,t(y,ρ) := min

ztω≥0

∑
j∈J

∑
i∈I

pωc
tlijz

t
ijω (10a)

subject to
∑
i∈I

ztijω ≤ λtjytj ∀j ∈J (10b)∑
j∈J zi

ztijω ≤ dtiω ∀i∈ I (10c)

∑
i∈I

∑
j∈J zi

ztijω ≥ (1− ρtω)dβt
∑
i∈I

dtiωe (10d)

Proposition 2. CCSP2’ is equivalent to CCSP2. Moreover, under the Assumption 1, given

any solutions triplet (x,y,ρ) that satisfy (8d) and (8e), problems CCSP-SP r and CCSP-SPz
ω,t are

always feasible and bounded.
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In Problem CCSP2’, we also include the redundant constraints (8d) and (8e) in order to ensure

that hr(y) and hzω,t(y,ρ) can be considered finite valued. A detailed proof of Proposition 2 can be

found in Appendix A.2.

In order to obtain a decomposition between the optimization over x, y, ρ, and the optimization

of r and z, we consider approximating hr(y) and hzω,t(y,ρ) using a subset of their supporting

hyperplanes, which is also called Benders cuts that are identified at given values of MP’s solutions by

solving the corresponding dual problems of CCSP-SPr and CCSP-SPz
ω,t respectively. More details

of the BD approach are provided in Appendix B.2. Unfortunately, in practice this implementation

can be excessively slow to converge due to the fact that each iteration involves solving a CCSP2’

that takes the form of a MILP and of a size that grows with the number of iterations. For this

reason, an implementation of BD in a Branch-and-Cut framework, which integrates the addition

of Benders cuts inside the BB algorithm that is used to solve CCSP2’, has become popular.

4.2.2. Branch-and-Benders-Cut Method Instead of solving a MP using the BB algorithm

at every iteration, the B&BC method only requires traversing once the BB tree structure. This

is done by introducing the new supporting hyperplanes of hr(y) and hzω,t(y,ρ) (i.e. Benders cuts)

only when reaching nodes of the BB tree for which the linear relaxation of the MILP identifies an

integer solution. In CPLEX, this can be done through the lazyconstraint callback routine which

takes the form of CPXcutcallbackadd. The BB tree search then resumes until the optimality is

attained or a stopping criterion is met. For completeness, the detailed procedure of the proposed

B&BC method is presented in Appendix B.3.

4.2.3. Strengthened Valid Inequalities In order to improve the efficiency of the B&BC

method, it can be useful to identify valid inequalities that are redundant for the MILP version

of CCSP2’ but end up tightening its linear relaxation. Proposition 3 introduces a set of valid

inequalities that are inspired from the work of Luedtke et al. (2010).

Proposition 3. For any fixed t, let the ordered scenario set Ω′t := {ω′k}Nk=1 be such that for all

k < k′ we have that
∑
i∈I

dt
iω′
k
≤
∑
i∈I

dt
iω′
k′

. Given some ηt ∈ [0, 1), let k̄t ∈ {1,2, . . . ,N} be such that∑N

k=k̄t
pω′

k
> ηt and

N∑
k=k̄t+1

pω′
k
≤ ηt, where we consider that

N∑
k=N+1

pω′
k

= 0. Then for all t∈ {1, . . . , T},

constraints (6) and (8e) imply that:∑
j∈J

λtjy
t
j ≥ dβt

∑
i∈I

dtiω′
k̄t

e . (11)

This proposition provides a set of T valid inequalities for CCSP2’. Note that for each t, the set Ω

needs to be reordered appropriately and that index k̄t might depend on t. The proof of Proposition

3 is provided in Appendix A.3.
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4.2.4. Strengthened Optimality Cuts Looking back at the definition of hzω,t(y,ρ), one

might notice that as long as ρtω ∈ {0, 1} the optimal value of this problem remains the same when

replacing constraint (10c) with∑
j∈J zi

ztijω ≤ dtiω(1− ρtω) ∀i∈ I, t∈ {1, . . . , T}, ω ∈Ω .

This is due to the fact that when ρtω = 0 then the two constraints are exactly the same, while if

ρtω = 1, then ztω = 0 becomes an optimal solution of CCSP-SPz
ω,t. It is therefore possible to consider

a modified version of CCSP-SPz
ω,t for which the dual sub-problem becomes:

[CCSP-DSPz
ω,t
′] hzω,t(ȳ, ρ̄) = max

µ1
tω ,µ

2
tω ,µ

3
tω

−
∑
j∈J

λtj ȳ
t
jµ

1
jtω −

∑
i∈I

dtiω(1− ρ̄tω)µ2
itω +µ3

tω(1− ρ̄tω)dβt
∑
i∈I

dtiωe

subject to −µ1
jtω −µ2

itω +µ3
tω ≤ pωctlij ∀i∈ I, j ∈J

µ1
tω ≥ 0,µ2

tω ≥ 0, µ3
tω ≥ 0 .

Hence, this reformulated sub-problem gives rise to a supporting hyperplane that will provide a

tighter constraint for the MP.

5. Solution Scheme for Scenario-based PECSP

In this section, we study the numerical resolution of PECSP in a context where Q is modeled as a

discrete distribution. We firstly formulate the scenario-based PECSP as a MILP and then adapt

the B&BC algorithm.

5.1. Scenario-based PECSP

Similarly as was done in Section 4, we start by assuming that Q is discrete and characterized using

a probability vector p ∈ RN such that p ≥ 0 and
∑

ω∈Ω pω = 1. While it is still possible in this

context to employ ztijω to model the conditional assignment plan of emergency requests in zone i

answered by base j at time t under scenario ω and reuse much of the formulation of CCSP2, a

difficulty arises in reformulating the PEC constraint (3b). Namely, under a discrete distribution

Q, it first can be reduced to:

∑
ω∈Ω

pω1

∑
i∈I

∑
j∈J zi

ztijω ≥ βt(η)
∑
i∈I

dtiω

≥ 1− η ∀η ∈ [0,1), t∈ {1, . . . , T} . (12)

Yet, a priori it does not seem possible to introduce binary variables that would count the number

of scenarios where the minimum level of coverage is not achieved since this accounting needs to be

done for each reliability level η in the continuous range [0, 1). For this reason, we make a simplifying

assumption about the discrete distribution Q, which allows to identify a finite set of constraints

that captures the feasible set defined through constraint (12).
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Assumption 2. The discrete distribution Q is a uniform distribution over all ω ∈ Ω. Namely,

pω = 1/N for all ω ∈Ω.

Proposition 4. Under Assumption 2, constraint (12) is equivalent to the constraint that there

exists a ρ∈ {0, 1}(N+1)×N×T such that

∑
i∈I

∑
j∈J zi

ztijω ≥
N−1∑
k=0

βtk(ρ
t
k+1,ω − ρtkω)

∑
i∈I

dtiω ∀t∈ {1, . . . , T}, ω ∈Ω (13)

∑
ω∈Ω

ρtkω = k ∀t∈ {1, . . . , T}, k ∈ {0, . . . ,N − 1} (14)

ρtkω ≤ ρtk+1,ω ∀t∈ {1, . . . , T}, ω ∈Ω, k ∈ {0, . . . ,N − 2} (15)

ρtNω = 1 ∀t∈ {1, . . . , T}, ω ∈Ω , (16)

where βtk := supη<(k+1)/N β
t(η).

Using Proposition 4, which proof is deferred to Appendix A.4, we are able to introduce a finite

dimensional MILP reformulation for PECSP:

[PEC-SP2]

minimize
x,y,z,r,ρ

T∑
t=1

∑
j∈J

f tjx
t
j +
∑
j∈J

T∑
t=1

gtjy
t
j + (1/N)

∑
ω∈Ω

T∑
t=1

∑
j∈J

∑
i∈I

ctlijz
t
ijω +

T∑
t=1

∑
j∈J

∑
m∈J

αtrtmj (17a)

subject to (1b)− (1e), (4b), (4c), (7c), (7d), (14)− (16)∑
i∈I

∑
j∈J zi

ztijω ≥
N−1∑
k=1

(ρtk+1,ω − ρtkω)dβtk
∑
i∈I

dtiωe ∀t∈ {1, . . . , T}, ω ∈Ω (17b)

xtj ∈ {0,1} , ytj ∈N, ρtkω ∈ {0, 1} ∀j ∈J , t∈ {1, . . . , T}, ω ∈Ω, k ∈ {0, . . . ,N} . (17c)

The arguments that one needs to use for relaxing the integrality constraints on z and r and

rounding up the values βtk
∑
i∈I

dtiω are exactly similar as in Section 4.

Although we derive a MILP based reformulation, it still poses a great computational challenge

given that the number of integer variables and number of constraints now grow at the rate of

O(N 2T ) in PEC-SP2. Therefore, we propose an exact solution method in Section 5.2 and conserva-

tive approximation method in Section 6. We also note that the reformulation presented Proposition

4 is a special case of the MILP formulation in Luedtke (2008) for FSD constraints. In fact, for

constraint (12) such a reformulation exists as long as Q is discrete yet might in general require ρ

to be of exponential size if β(·) is strictly increasing.
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5.2. Exact Branch-and-Benders-Cut Method for PECSP

We briefly summarize how to set-up the problem in order for applying the B&BC method presented

in Section 4.2. In particular, we can decompose PEC-SP2’ using a MP and a set of SPs:

[PEC-SP2’]minimize
x,y,ρ,θr,θz

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j +
∑
ω∈Ω

T∑
t=1

θztω + θr (18a)

subject to (1b), (1c), (8d), (14)− (16), (17c)

θr ≥ hr(y) (18b)

θztω ≥ hzω,t(y) ∀t∈ {1, . . . , T}, ω ∈Ω (18c)∑
j∈J

λtjy
t
j ≥

N−1∑
k=1

(ρtk+1,ω − ρtkω)dβtk
∑
i∈I

dtiωe ∀t∈ {1, . . . , T}, ω ∈Ω (18d)∑
j∈J

λtjy
t
j ≥ κt ∀t∈ {1, . . . , T}, (18e)

where, for each t, we consider the ordered list Ω′t := {ω′k}Nk=1 defined in Proposition 3 and let

κt := maxk=0,...,N−1dβtk
∑
i∈I

dt
i,ω′

N−k
e. While hr(y) is exactly as defined in (9), hzω,t(y,ρ) needs to be

redefined as PECSP-SPz
ω,t with the dual variables of µ1

jtω, µ2
itω and µ3

tω respectively. We provide

the details of the dual sub-problems associated with hzω,t(y) and Benders cut in Appendix B.4.

[PECSP-SPz
ω,t] h

z
ω,t(y,ρ) := min

ztw≥0

∑
j∈J

∑
i∈I

(1/N)ctlijz
t
ijω (19a)

subject to (10b), (10c) (19b)∑
i∈I

∑
j∈J zi

ztijω ≥
N−1∑
k=1

(ρtk+1,ω − ρtkω)dβk
∑
i∈I

dtiωe. (19c)

The implementation of the B&BC method is exactly similar to the procedure described in

Appendix B.3. Note again that imposing constraint (18d) in the MP ensures that the PECSP-SPs

are always feasible and bounded under Assumption 1 when new Benders cuts are needed by the

algorithm while otherwise some feasibility cuts can be generated based on the procedure described

in Appendix B.5. Furthermore, constraint (18e) implements the valid inequality proposed in Sec-

tion 4.2.3. Finally, it does not appear that tighter optimality cuts in Section 4.2.4 can be identified

for PEC-SP2’. We wish to note that it is also possible to equivalently reformulate PECSP problem

in a FSD form similar to the one studied in Drapkin and Schultz (2010) with the hope of employing

the proposed cutting pane method. Unfortunately, when doing so the resulting FSD model does

not satisfy the conditions imposed by the authors (e.g., continuous recourse variables, complete

recourse property) which motivates the need for designing a new decomposition scheme.
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6. Conservative Approximation Method

Although the exact B&BC method discussed above can be employed to solve PECSP, it might

struggle when solving large scale instances. This motivates us to propose an efficient conservative

approximation for PEC-SP2, which can significantly reduces the computational burden.

Proposition 5. Under Assumption 2, the probabilistic envelope constraint (12) is conserva-

tively approximated by∑
i∈I

∑
j∈J zi

ztijω′
N−k
≥ dβtk

∑
i∈I

dtiω′
N−k
e ∀t∈ {1, . . . , T}, k ∈ {0, . . . ,N − 1} , (20)

where βtk := supη<(k+1)/N β
t(η), and the ordered scenario set Ω′t := {ω′k}Nk=1 is defined such that for

all k < k′ we have
∑
i∈I

dt
iω′
k
≤
∑
i∈I

dt
iω′
k′

.

The proof can be found in Appendix A.5.

This gives rise to the following conservative approximation formulation for PECSP:

[CAPECSP] minimize
x,y,z,r

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j + (1/N)

∑
ω∈Ω

T∑
t=1

∑
j∈J

∑
i∈I

ctlijz
t
ijω +

T∑
t=1

∑
j∈J

∑
m∈J

αtrtmj

(21a)

subject to (1b)− (1e), (4b), (4c), (7c), (7d), (20)

xtj ∈ {0,1} , ytj ∈N ∀j ∈J , t∈ {1, . . . , T} . (21b)

Problem CAPECSP avoids the need to introduce extra binary variables ρtωk in the model. Fur-

thermore, it can still be treated using the B&BC method by exploiting the following decomposition:

[CAPECSP’] minimize
x,y,θz ,θr

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j + (1/N)

∑
ω∈Ω

T∑
t=1

θztω + θr (22a)

subject to (1b), (1c), (8d), (21b)

θr ≥ hr(y) (22b)

θztω ≥ hzω,t(y) ∀t∈ {1, . . . , T}, ω ∈Ω (22c)∑
j∈J

λtjy
t
j ≥ max

k∈{0,...,N−1}
dβtk

∑
i∈I

dtiω′
N−k
e ∀t∈ {1, . . . , T} , (22d)

where hr(y) is exactly as defined in (9), but hzω,t(y) needs to be redefined as:

[CAPECSP-SPz
ω,t] h

z
ω,t(y) := min

ztω≥0

∑
j∈J

∑
i∈I

(1/N)ctlijz
t
ijω (23a)

subject to (10b), (10c)∑
i∈I

∑
j∈J zi

ztijω ≥
N−1∑
k=0

1{ω= ω′N−k}dβtk
∑
i∈I

dtiωe. (23b)
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Note that once again that inequalities (8d) and (22d) ensure that the problems associated to hr(y)

and hzω,t(y) are both feasible and bounded under Assumption 1. For conciseness, we omit presenting

the details of the dual sub-problems associated with hzω,t(y) and Benders cut.

Regarding the CCSP model, given that it can be considered a special case of PECSP, one can

implicitly establish a conservative approximation model from Proposition 5. This gives rise to what

we will refer as the CACCSP model :

[CACCSP] minimize
x,y,z,r

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j + (1/N)

∑
ω∈Ω

T∑
t=1

∑
j∈J

∑
i∈I

ctlijz
t
ijω +

T∑
t=1

∑
j∈J

∑
m∈J

αtrtmj

subject to (1b)− (1e), (4b), (4c), (7c), (7d), (8d), (21b)∑
i∈I

∑
j∈J zi

ztijω′
k
≥ dβt

∑
i∈I

dtiω′
k
e ∀k≤ k̄t, t∈ {1, . . . , T}∑

j∈J

λtjy
t
j ≥ dβt

∑
i∈I

dtiω′
k̄t

e ∀t∈ {1, . . . , T} ,

where we already included the redundant constraint that ensures feasibility of the subproblems

when Assumption 1 holds.

7. Numerical Experiments

To evaluate the numerical performance of our B&BC method, we employ a set of randomly gener-

ated CCSP and PECSP instances of different sizes. The parameters in each instance are generated

as follows. First, each fixed operation cost f tj is generated independently and uniformly from

[1000, 1200], each marginal operation cost gtj from [100, 120], each marginal transportation cost ct

from [0.5, 1], and each ambulance redeployment cost αt from [3.5, 5]. We then generate each pos-

sible emergency request location and each ambulance base location independently and uniformly

over the [0,10]2 square. We also assume that the distribution is uniform over the set of scenarios,

which size depends on the problem instance. At each request location and for each scenario ω,

the number of requests dtiω that can be served is drawn independently and uniformly from the set

{1, . . . ,5}. The maximum number of emergency vehicles P t
j that can be hosted at each period t and

location j is uniformly drawn {5, 6, 7} while the service rate is fixed to λtj = 4. For CCSP model we

predefined the coverage level βt = β = 0.9, while the reliability level is set to ηt = η = 0.05 unless

stated otherwise. Finally, we fix the coverage envelope to βt(η) = η for the PECSP model.

All of our algorithms are implemented in C and use CPLEX 12.71. All runs were conducted on a

Desktop machine with Intel(R) Xeon(R) 3.30 GHz processor and 32 GB RAM in a Windows 64-bit

system. A single thread is used in all experiments. For all instances, the algorithms that employ

the B&BC method are run until an optimality gap below 1% is reached. In the case of experiments

where the CCSP model is solved, we set a maximum runtime of 3600 seconds for all algorithms,

while we let the maximum runtime be 7200 seconds for the PECSP model.
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In what follows we start in Section 7.1 by comparing the performance of our B&BC method to

the BB algorithm proposed in Beraldi and Bruni (2009) and to the CPLEX solver. We then in

Section 7.2 present an exhaustive computational study of the performance of employing B&BC on

the exact and approximate versions of the CCSP and PECSP models when T = 6.

7.1. Algorithmic Comparisons

In Beraldi and Bruni (2009), the authors propose a BB algorithm to solve a problem of the similar

form as CCSP yet where a single period is considered. It is therefore possible to compare the

numerical efficiency of both this BB algorithm and the B&BC method for solving the CCSP model.

Note however, that the B&BC cannot be directly applied to solve the model in Beraldi and Bruni

(2009) because of the difference in structure of the second stage cost.

To perform this analysis we ran experiments with instances of sizes that are comparable to the

sizes discussed in Beraldi and Bruni (2009). Specifically, we considered |I| ∈ {40, 80, 150}, |J | ∈
{20, 50, 100}, and N ∈ {10, 20, 30, 40, 100, 200} while the reliability level was considered with η ∈
{0.05, 0.10, 0.15} and β = 0.9. Our implementation of B&BC method includes valid inequalities and

tighter optimality cuts presented in sections 4.2.3 and 4.2.4 and is referred as VIOC-B&BC. Each

experiment involves running the algorithms on the same five instances of each class of problems.

We also use the CPLEX solver to solve directly this problem.

Table 2 presents the minimum, maximum, and average CPU time (in seconds) of all methods. In

the max column, we also report the proportion of instances that could not be solved exactly within

3600 seconds. A quick read of this table confirms that the B&BC method achieves significantly

better performance than BB algorithm and the CPLEX solver. In fact, BB algorithm is unable to

solve to optimality most of the problem instances that are considered within 3600 seconds while

the CPLEX solver fails to solve about 30% of instances (64 out of 270). In contrast, our B&BC

method allows us to solve nearly all problems (267 out 270) within an hour. In fact, we notice

that the BB algorithm’s performance quickly degrades as the number of scenarios considered is

increased and similarly, although less drastically, as η increases.

In order to understand the poor performance of the BB algorithm, one needs to know that

this algorithm starts with the search of all feasible and “non-dominated” assignments for ρ by

traversing, using a customized rule, a tree where each node defines a specific assignment of binary

values for ρ. Once all of these candidates are identified, the algorithm iteratively solves the MILP

associated to each of these candidates. While this can be efficient when η is small and the number

of feasible candidates is reasonable, it quickly becomes impossible to assemble such a list for larger

η’s and more importantly larger N (since the number of branches at each node grows linearly in

N). In contrast, our B&BC algorithm only solves a single MILP. Overall, it appears clear to us

that the B&BC method is much better suited to solve problems of realistic sizes as we discuss next.
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Table 2 Numerical performance comparisons with BB method in Beraldi and Bruni (2009) and the

CPLEX solver. We report the average (avg), maximum (max), minimum (min) CPU time (in seconds)

over each five instances.

|I| |J | η N
BB CPLEX VIOC-B&BC

avg max min avg max min avg max min

40 20

.05

10 70 134 2 141.8 337.7 45.3 .2 .2 .2
20 60 177 41 570 2,842.7 .7 .2 .3 .2
30 1,483 352 189 2.5 4.4 1 .3 .4 .2
40 3,005* >3,600[.4] 1,672 6.6 9.4 4.1 .3 .4 .2
100 - - - 91.3 143.1 49.6 .7 1.2 .4
200 - - - 1,205.3* >3,600[.2] 318 1.4 1.7 1

.10

10 144 379 5 1.2 2.4 .4 .2 .3 .1
20 489 1,374 115 3.8 5.1 2.9 .3 .5 .1
30 - - - 6.3 8.9 2.1 .1 .2 .1
40 - - - 23.1 51.4 10.8 .3 .4 .2
100 - - - 469.3 852.1 70.3 .6 .9 .3
200 - - - 2,455.3* >3,600[.6] 1,655.4 1.3 2.7 .8

.15

10 141 332 3 .4 .4 .3 .2 .2 .1
20 1,761* >3,600[.4] 317 5.6 10.9 3 .2 .3 .2
30 - - - 13.1 18.5 9.3 .2 .3 .1
40 - - - 41.3 80.3 16.9 .5 .6 .3
100 - - - 2,085* >3,600[.2] 731.2 1.1 2.9 .5
200 - - - 3,581.8* >3,600[.8] 3,581.8 1.3 1.9 .8

80 50

.05

10 106 253 4 2* >3,600[.6] 1.8 1.2 2 .6
20 301 1,276 29 728.3* >3,600[.2] 6.3 1.2 1.6 .8
30 2,791* >3,600[.6] 1,271 17.9 30.6 11.3 2.7 4.1 1.2
40 - - - 38.4 58.4 21.7 5.5 8.8 2
100 - - - 780.6 1,153.1 316.2 10.7 15.5 4.6
200 - - - - - - 59.6 200 13.1

.10

10 107 323 11 2.7* >3600[.2] 1.7 .6 .7 .5
20 1,577* >3,600[.2] 412 18.1 33 9.6 1.2 1.4 1
30 - - - 46.3 64 29 1.8 2.2 1.4
40 - - - 114.7 163.3 88.1 2.7 4.1 1.9
100 - - - 2,090.3* >3600[.2] 761.7 8.4 11.9 6.4
200 - - - - - - 737* >3,600[.2] 17.8

.15

10 144 593 11 2.5 4.4 1.4 .7 .9 .4
20 2,236* >3,600[.2] 1,328 26.3 33.9 13.9 1.1 1.3 .9
30 - - - 66.2 92.6 40.1 2.4 3.5 2
40 - - - 135.9 195.4 107.5 3.2 4.4 2.5
100 - - - 2,365.2* >3600[.4] 2,124.5 7.3 14.5 3
200 - - - - - - 731* >3,600[.2] 9

150 100

.05

10 779 1,900 157 6.5* >3600[.8] 6.5 16.8 32.3 7.9
20 1,133 3,054 307 62 89.1 41.3 27 43.7 17.8
30 3,061* >3,600[.8] 906 127.7 186.9 67.9 48.5 120 22.1
40 - - - 256.1* >3600[.2] 153.6 67.1 127 31.1
100 - - - 3,031.9* >3600[.6] 2,563.8 108 211 65.6
200 - - - - - - 277 543 156

.10

10 927 2,830 25 12.8 53.7 10.2 8.4 12.8 3.5
20 2,472 2,980 1,277 1,297.5 3,594.6 60 14.3 16.1 11.9
30 - - - 359 447.3 233.6 25.4 34.7 19.8
40 - - - 620.6 865.1 480.3 34 42.9 20
100 - - - 2,449.9* >3600[.8] 2,449.9 128 224 49.5
200 - - - - - - 842* >3,600[.2] 65.6

.15

10 1,587 2,672 109 13.1 815.8 13.1 15.6 32.2 5.4
20 3,384* >3,600[.6] 2,901 183.9 230.6 108.5 22.5 36.2 16.2
30 - - - 481.5 672.2 289.6 47.9 77.4 32.7
40 - - - 924.4 1,293.5 578.5 46.3 60.5 36.3
100 - - - - - - 145 203 73.9
200 - - - - - - 243 314 186

“-” means that none of the five instances were solved in less 3600 seconds.
“*” means the average was computed only on instances that are solved optimally in less 3600 seconds.
[·] in column of max means the proportion of unsolved instances in less 3600 seconds.



Peng, Delage, Li: PEC multiperiod stochastic EMS location
24

7.2. Numerical Performance of our B&BC algorithms

This section reports on a set of experiments performed using classes of problems of different sizes,

defined by the respective sizes of |I|, |J |, T , and N , for both the CCSP and PECSP model. The

definition of each class of problems is described in Appendix B.6. Each class of problems contains

10 randomly generated instances. Overall, the set of test instances includes 240 problems with

number of ambulance base locations ranging from 40 to 150, number of emergency request locations

ranging from 20 to 100, with 6 time periods, and with discrete distribution supported on a number

of scenarios ranging from 50 to 200. We believe that this set of problems covers well the size of

problems that should emerge in practice for small to medium sized territories.

We evaluated the CPU time needed to obtain a 1% sub-optimal solution using the following

variations of the method:

• Raw-B&BC refers to applying B&BC to solve either CCSP2’ and PECSP2’ in the CCSP and

PECSP studies respectively.

• VIOC-B&BC refers to applying B&BC to solve CCSP2’ with both valid inequalities and

strengthened optimality cut from sections 4.2.3 and 4.2.4.

• VI-B&BC refers to applying B&BC to solve PECSP2’ with valid inequalities (18e).

• CA-B&BC refers to applying B&BC to solve CACCSP and CAPECSP in the CCSP and

PECSP studies respectively.

Table 3 presents the maximum CPU time and the average time for MP and SPs required to

solve the 10 instances of each class of the CCSP model (C1-C12). We also report the proportion of

problems that could not be solved within 3600 seconds. The bottom row of Table 3 finally reports

the average of each of these statistics over the set of twelve problem classes. The first thing that

one might notice from this table is how the Raw-B&BC algorithm fails to solve most (i.e. 103

out of 120 instances) of the instances. In the case of VIOC-B&BC method, the performance is

surprisingly better given that the failure rate is below 2%. One might also notice that even with the

easier problems, the Raw-B&BC algorithm seems to struggle much more than the VIOC-B&BC

method in terms of maximum CPU time and average time for MP and SPs. This seems to confirm

that the use of the valid inequalities proposed in Section 4.2.3 and strengthened optimality cut

proposed in Section 4.2.4 play a critical role in improving the numerical efficiency. It seems to

be that conservative approximation does not speed up so much when comparing with the VIOC-

B&BC method. But we have confirmed that CA method can quickly identify the optimal solution

with a smaller tolerance (i.e. 0.1%) when comparing with the VIOC-B&BC method. Overall, one

can certainly draw the conclusion that both VIOC-B&BC and CA-B&BC algorithms are valuable

approaches for solving larger-scale CCSP models.
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Table 3 Numerical performance for CCSP with respect to three implementations summarized in

Section 7.2, in which we report the average time for MP (avmp) and SPs (avsp), maximum (max)

CPU time (in seconds) and the unsolved proportion (prop) within 3600 seconds over ten instances

for each data class (C1-C12), β= 0.9, η= 0.05.

Class
Raw-B&BC VIOC-B&BC CA-B&BC

avmp avsp max prop avmp avsp max prop avmp avsp max prop
C1 - - - 1 0.33 2 5 .00 0.03 1 2 .00
C2 13* 14* >3,600 .9 0.28* 3* >3,600 .1[2.18] 0.05* 3* >3,600 .1[1.55]
C3 61* 15* >3,600 .9 0.44 4 6 .00 2.65 4 40 .00
C4 80* 9* >3,600 .6 0.78 5 11 .00 0.10 6 10 .00
C5 25* 141* >3,600 .8 0.24 12 15 .00 0.51 19 82 .00
C6 37* 114* >3,600 .9 0.40 23 45 .00 0.12 22 41 .00
C7 - - - 1 17.95 56 465 .00 0.14 28 43 .00
C8 5* 72* >3,600 .9 1.19 47 91 .00 0.30 48 98 .00
C9 9* 545* >3,600 .6 0.23 80 163 .00 0.16 87 220 .00
C10 11* 1,415* >3,600 .8 0.40* 144* >3,600 .1[1.58] 0.12* 132* >3,600 .1[1.64]
C11 - - - 1 0.62 212 283 .00 0.29 280 594 .00
C12 58* 1,079* >3,600 .9 0.79 259 317 .00 0.24 300 440 .00

average 33* 378* - .86 2.0* 70* - .016 0.39* 78* - .016

“-” indicates that no instances were solved in less 3600 seconds.

“*” means the average was computed only on instances solved optimally in less 3600 seconds.

[·] in column of prop means the average optimality gap (in %) for instances beyond 3600 seconds.

Table 4 Numerical performance for PECSP with respect to four implementations summarized in Section

7.2, in which we report the average time for MP (avmp) and SPs (avsp), maximum (max) CPU time (in

seconds) and the unsolved proportion (prop) over ten instances for each data class (C13-C24).

Class
Raw-B&BC VI-B&BC CA-B&BC

avmp avsp max prop avmp avsp max prop avmp avsp max prop
C13 - - - 1[10.8] 108 4 498 .00 0.17 1 1 .00
C14 - - - 1[33.2] 3,667* 97* >7,200 .1[1.78] 0.11 1 5 .00
C15 - - - 1[44.7] 5,689* 858* >7,200 .4[3.11] 2.94 6 32 .00
C16 - - - 1[47.9] - - - 1[8.90] 2.63 9 35 .00
C17 199* 1,623* >7,200 .7[7.08] 545* 7* >7,200 .3[1.11] 3.54 2 35 .00
C18 - - - 1[36.9] 4,055* 821* >7,200 .7[2.28] 0.26 5 20 .00
C19 - - - 1[42.4] 3,125* 3,805* >7,200 .7[2.83] 0.07 6 11 .00
C20 - - - 1[49.5] - - - 1[2.28] 12.15 63 378 .00
C21 - - - 1[7.67] 377* 375* >7,200 .4[1.43] 0.14* 10* >7,200 .1[1.18]
C22 - - - 1[40.4] 1,268* 968* >7,200 .4[1.20] 0.62 44 145 .00
C23 - - - 1[45.7] 1,026* 5,374* >7,200 .7[3.54] 0.12 61 142 .00
C24 - - - 1[51.9] - - - 1[6.52] 0.12 155 242 .00

average 199* 1,623* - .98 2,207* 1,367* - .54 1.91* 30* - .008

“-” indicates that no instance were solved in less 7200 seconds.

“*” means the average was computed only on instances that are solved optimally in less 7200 seconds.

[·] in column of prop means the average optimality gap (in %) for instances beyond 7200 seconds.
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Table 5 The performance of conservative approximation for CCSP and PECSP when comparing with exact

methods of VIOC-B&BC and VI-B&BC, in which avg gap for VIOC-B&BC (or VI-B&BC) is averaged optimality

gap over ten instances for each data class, av CA opt is the average objectives for CA-B&BC and CA-B&BC,

av gap can be computed by E[(CA-opt−LB)/LB×100%], and ∆ measures the average gap difference (in

percentile points) between our conservative approximation and exact method.

CCSP PECSP

Class
VIOC-B&BC CA-B&BC

Class
VI-B&BC CA-B&BC

av LB av gap% av CA opt av gap% ∆% av LB av gapRC av CA opt av gap% ∆%
C1 83,877 0.82 84,209 0.40 -0.42 C13 33,459 0.96 33,869 1.23 0.27
C2 81,786 1.89 82,184 0.50 -1.39 C14 32,016 1.02 32,447 1.35 0.33
C3 84,222 0.74 84,462 0.29 -0.45 C15 33,871 1.77 34,333 1.46 -0.31
C4 80,832 0.83 82,068 0.32 -0.51 C16 33,739 8.90 34,815 3.20 -5.70
C5 152,438 0.70 153,225 0.52 -0.18 C17 63,900 0.90 64,590 1.08 0.18
C6 150,395 0.62 151,144 0.50 -0.12 C18 64,405 1.85 65,737 2.07 0.22
C7 149,757 0.76 150,555 0.53 -0.23 C19 63,411 2.31 64,282 1.37 -0.94
C8 152,434 0.81 153,846 0.54 -0.27 C20 64,406 1.84 63,916 0.76 -1.08
C9 278,551 0.86 280,682 0.76 -0.10 C21 128,061 1.03 128,880 0.64 -0.39
C10 277,601 0.46 278,554 0.35 -0.11 C22 127,039 0.84 127,633 0.47 -0.37
C11 279,645 0.41 280,519 0.31 -0.10 C23 133,069 3.05 135,110 1.53 -1.52
C12 279,337 0.46 280,315 0.36 -0.10 C24 127,879 6.52 129,189 1.02 -5.50

Table 4 presents the numerical performance of three algorithms for PECSP models of class C13-

C24 using a format that is exactly similar to Table 3 except that maximum runtime is 7200 seconds.

The observations here are similar as before concerning the superior performance of VI-B&BC over

Raw-B&BC, where only three instances are solved by Raw-B&BC while VI-B&BC can solve about

46% of instances. Yet, the fact that more than half of problems could not be solved to optimality

within 7200 seconds still raises some concerns regarding whether VI-B&BC can reliably be used

to solve PECSP model of realistic sizes. The CA-B&BC algorithm appears however much more

promising in this regard. All problem instances except one were solved within 2 hours. Furthermore,

over this set of 119 instances, the maximum resolution time was about 7 minutes.

The fact that the conservative models (CACCSP and CAPECSP) can be solved so efficiently

raises the question of what is the loss in terms of quality. Table 5 sheds some light on this issue by

presenting the average of the lower bound identified by the exact method VI-B&BC for PECSP

and its remaining optimality gap for problem instances of each class (C13-C24), and VIOC-B&BC

for CCSP and its remaining optimality gap for problem instances of each class (C1-C12). It also

presents for both types of problems the average optimal value of the solutions produced by the

conservative model, the average optimality gap (based on the obtained lower bounds). Finally, we

express in the sixth and twelfth columns the difference between the average gap for conservative

model and the average gap reached by exact method. Overall, regarding the CCSP model, we

surprisingly see that all the values of the difference in optimality gap for CA-B&BC are negative,

which indicates that the optimal solutions for conservative model are practically speaking optimal.
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Figure 1 ZIP code based geographical partition

for Northern Ireland, solid dots repre-

sent 80 emergency demand zones and

stars represent 63 potential base loca-

tions respectively (|I|= 80, |J |= 63).
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Figure 2 Average emergency demand in 24-hour

cycle, based on emergency demand data

during 03/2015-12/2016. The bars rep-

resent the 5% and 95% quantiles on the

hourly emergency demand respectively.

For the PECSP model, the sizes of average optimality gaps for CA-B&BC seem to confirm that the

solutions from the conservative model are of good quality. In fact, based on the fact that for 8 out

of 12 problem classes the difference in optimality gap for CA-B&BC is negative and the average

value is 1.98%. One might even argue that conservative solutions are of marginally better quality

than the feasible solutions reached for the exact method after 2 hours of computations.

8. A Northern Ireland Ambulance Service Health and Social Care
Trust Case Study

In this case study, we consider an EMS location problem in the region of Northern Ireland. We

start by describing the context in which we are assuming that this EMS network is being operated

together with the historical dataset that was used to perform our analysis. We then present and

discuss the structure of the optimal configurations obtained from solving the CCSP and PECSP

models before illustrating our findings regarding the trade-offs that can be made between expected

total cost and coverage reliability. We conclude this section by performing an out-of-sample analysis

that confirms that our conclusions should remain relatively valid when looking forward in time.

8.1. Context

We consider the territory to be divided into 80 emergency demand zones, each of which consists

of the area where the same 4-digit ZIP code is used. We also consider 63 potential locations for

ambulance bases based on existing EMS stations. Figure 1 illustrates these geographical details.

We have historical emergency demand request data gathered by the NIASHSCT over the period

ranging from April 2015 until December 2016. More than 113,000 emergency requests are reported
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in Northern Ireland over this period. Figure 2 shows statistics about the number of requests at

different hourly periods of a day during this period. We can observe that the statistics of emergency

requests are highly time-dependent. For example, emergency demand stays below 5 requests per

hour between 4:00am and 8:00am, while from 10:00am until 12:00am, it stays above 8 requests

per hour. Moreover, we observed that this demand is unevenly distributed over the territory. In

our CCSP and PECSP models, we consider that a day is divided into 6 periods of 4 hours each

(i.e. 12:00am - 4:00am, 4:00am - 8:00am, . . . , 8:00pm - 12:00am) and let each day of our historical

dataset identify a possible scenario for the emergency demand.1 Distances are computed using

geographical distances obtained by the ArcGIS, between the center of the ZIP code zone and the

location of the ambulance base. This appears reasonable given that most of the ZIP code regions are

relatively small (i.e. an area of 125 km2 on average). We let the time-dependent fixed-charge cost be

f1:T
j = [200 300 350 450 500 500]

ᵀ
, for all j, to model decreasing marginal cost as the ambulance

base is run for a longer time period, given that bases that are open need to stay open until the end of

the day. We further let the marginal transportation cost take the form c= [2 2 1 1 1.5 1.5]
ᵀ

and let

ambulance relocation costs as α= [5 5 4 4 4.5 4.5]
ᵀ

to model higher salaries for late night or early

morning shifts. The vehicle operating and maintenance cost gtj is set uniformly to 40. We assume

that each ambulance can serve at most λtj = 2 emergency requests in each time period while the

maximum capacity of each base is assumed to be P 1:T
j = [2 1 2 3 2 1]

ᵀ
irrespective of the location

j in order to simulate periods of the day where hospitals are more congested and cannot host as

many ambulances. Here we consider a maximum travel distance lzmax = 40 km for the coverage

of emergency demand and a maximum distance of lrmax = 60 km for relocation of vehicle. In all

experiments, the distribution of demand requests consists of the empirical distribution of a set of

observed daily demand realizations from the historical dataset. For the experiments conducted in

sections 8.2 and 8.3, both CCSP and PECSP use 100 observations (January 2016 - mid April 2016).

In Section 8.4, we will investigate the quality of solutions obtained from such empirical distributions

by varying the sample size. In all three subsections, CCSP and PECSP are approximated using

CACCSP and CAPECSP in order to accelerate computations and the two models are solved using

CA-B&BC and CA-B&BC respectively.

For the CACCSP model, we usually consider that EMS managers want to ensure 95% of the

emergency requests can be satisfies with more than 95% probability, i.e. that βt = β = 0.95 while

ηt = η = 5%. The exception will be in Section 8.3 where the sensitivity of total expected cost to

the choice of both β and η will be studied.

1 Note that the size of each period is similar to what is used in Schmid and Doerner (2010) and van den Berg and
Aardal (2015). Moreover, it is small enough to capture the time-dependent demand while avoiding the need for both
a more sophisticated optimization model that captures the transient behavior of ambulances, and for large number
of observations that can support the time and geographical emergency request dependencies.



Peng, Delage, Li: PEC multiperiod stochastic EMS location
29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

η

β
c
v
x

γ
(η

)

 

 

γ=0

γ=0.5

γ=0.8

γ=1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

η

β
m

a
x

γ
(η

)

 

 

γ=0

γ=0.5

γ=0.8

γ=1

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

tr
a

n
s
(

)

=-0.5

=-0.2

=0

=0.5

(c)
Figure 3 Examples of probabilistic coverage envelopes obtained using the parametric families βcvxγ (η) (in (a)),

βmaxγ (η) (in (b)) and βtransγ (η) (in (c)).

In the case of the CAPECSP model, we considered three parametric families of envelope. Given

a reference first stage solution (x̄, ȳ), e.g. an optimal solution to the DM formulation, we evalu-

ate the coverage profile β̄(η) that is achieved by this candidate solution (we refer the reader to

Appendix B.7 for more details on how to obtain β̄(η)). Assuming that this coverage profile is

considered as a benchmark for decision-makers, we assume in the first family of envelopes that

βcvxγ (η) := γ + (1− γ)β̄(η), i.e. she/he is interested in finding a solution that reduces by a factor

of (1− γ)−1 the proportion of uncovered population for each reliability level η since 1− βcvxγ (η) =

(1 − γ)(1 − β̄(η)). Note that βcvxγ (η) allows to generate a continuum of increasingly restrictive

envelopes between β̄(η) and 1 as γ goes from 0 to 1, i.e. if γ1 ≤ γ2 then βcvxγ1
(η)≤ βcvxγ2

(η) for all η.

Alternatively, we consider a second monotone parametric family of coverage envelopes that takes

the form βmaxγ (η) := max
(
γ, β̄(η)

)
, which simply imposes that the demand coverage is at least γ

over all scenarios. Finally, we consider the third family of “translated” benchmark, βtransγ (η) :=

min
(
1, max(0, β̄(η) + γ)

)
for any γ ∈ [−1,1], which also allows us to explore, using γ ≤ 0, how much

money could be saved by reducing “uniformly” the coverage profile. Examples of these parametric

families of probabilistic coverage envelopes are presented in Figure 3. In the study that follows, we

will employ βcvx0.5 (η) except for Section 8.3 where we study the sensitivity of the total expected cost

with respect to the choice of the β(η) function.

Remark 2. We note that while this case study employs real emergency request data to support

its findings, the choice of cost parameters f , g, c, and α and service rate λ should be only considered

reasonable guesses made by the authors based on values found in the EMS location literature (see

for instance Noyan (2010) and Boujemaa et al. (2017)). While we are confident that the practical

insights that will be drawn in our analysis should hold under more accurate choices of parameters,

additional efforts would be needed to calibrate the CACCSP and CAPECSP models in a way that

can provide precise guidelines on how to improve the EMS system in this region.
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Table 6 Characteristics of optimal strategies proposed by the CACCSP and CAPECSP models. The scenario

ω1 is a representative scenario for CACCSP and CAPECSP where lower coverage is achieved.

CACCSP: Expected total cost = 52,770$
Time periods 1 2 3 4 5 6
Total number of opened ambulance bases 11 21 21 21 21 21
Total number of occupied bases 11 21 15 14 13 21
Total number of bases providing service in ω1 8 7 14 0 10 19
Total emergency requests in ω1 13 10 36 46 26 37
Effective coverage level for ω1 1.000 1.000 0.972 0 0.962 0.973

CAPECSP: Expected total cost = 55,326$
Time periods 1 2 3 4 5 6
Total number of opened ambulance bases 12 22 22 22 22 22
Total number of occupied bases 12 22 15 13 15 22
Total number of bases providing service in ω1 6 7 13 11 10 18
Total emergency requests in ω1 13 10 36 46 26 37
Effective coverage level for ω1 1.000 1.000 0.917 0.804 1.000 0.865

8.2. Time-dependent Optimal EMS Location Configuration

We start by presenting in Table 6 some information about the structure of the two optimal strategies

obtained from solving the CACCSP and CAPECSP models. In particular, one might recognize

that a large number of ambulance bases are needed at time t = 2 and that these bases remain

open (based on our modeled requirement) although they are not all occupied in future periods.

This table also presents information about the optimal activity while geographical illustrations are

presented in the Appendix B.8. For the CACCSP and CAPECSP models respectively under the

same scenario ω1. In the case of CACCSP, we clearly see that scenario ω1 was identified as an

extreme scenario for time t= 4 where the number of emergency requests reaches 46. Consequently,

the plan for this scenario and time period simply recommends keeping all ambulances idle at their

bases. Scenario ω1 is also considered a hard scenario to cover by the CAPECSP model yet we see

that the use of a probabilistic envelope leads to an optimal strategy that still recommends covering

a reasonable proportion of the requests, albeit achieves an 80.4% coverage for the hard scenario

of t= 4. This is achieved at the price of incurring 2,556$ overhead in terms of expected total cost

and some reduced coverage for the more optimistic scenarios. Finally, we note that the possible

trade-off between expected cost and coverage at any reliability level η can easily be explored using

the PECSP or CAPECSP models. This is in fact the subject of our next section.

8.3. Trade-off between Cost Management and Coverage

We next performed a sensitivity analysis to investigate what are the trade-offs between expected

total cost and emergency request coverage performance. In particular, we first focus on the

CACCSP model and consider the effect of changing the reliability level η and the coverage target

β. The result of this analysis is presented in Figure 4 where one can already remark that a lower
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permitted violation probability η and a higher coverage target β necessarily leads to an increase in

expected total cost. Looking more closely at Figure 4(a), one might realize that the marginal cost

per percentile point (p.p.) of additional reliability becomes more expensive in the region where

η≤ 0.05. Specifically, for β = 0.95 the rate is around -3,005 $ per p.p. compared to a rate of around

-262 $ per p.p. for η ∈ [0.05, 0.9]. This is due to the fact that when η ≤ 0.05, EMS system must

now be prepared for the more extreme scenario, which typically occur in Winter, requiring a larger

fleet size to achieve a higher reliability, in turn which incurs larger fixed cost for resources that are

unused under most scenarios. The total expected cost also drastically falls to zero when η gets to 1

due to the fact that EMS system managers can then simply completely shut down its operations.

In Figure 4(b) one can observe that the effect of increasing the targeted coverage β on expected

total cost is nearly linear and grows at a rate between 532 $ per p.p. and 626 $ per p.p. depending

on the magnitude of η. It also appears that the marginal cost is higher when the permitted violated

probability is smaller possibly due to the fact that the emergency requests that need to be covered

in the more extreme scenario are either more numerous or more spread out on the territory. The

fact that the marginal cost appears nearly constant when η is fixed is particularly interesting.

Intuitively, this is due to the fact that as β is increased the EMS system manager can continue to

focus his efforts on the same scenarios of emergency demand, gradually investing in more resources

in order to increase his cover of these scenarios. This is unlike the case of a marginal change of

η, which can force the EMS system managers to deal with new and more extreme scenarios thus

creating a non-linear effect on the amount of resources needed.
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Figure 4 Sensitivity of optimal expected total cost to targeted coverage and reliability in the CACCSP model.

(a) presents the optimal expected total cost as a function of the permitted violation probability η for

different coverage level β. (b) presents the expected total cost as a function of the coverage level β

for different values of permitted violation probabilities η.
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Figure 5 Trade-off between expected total cost and expected coverage for CAPECSP model using βcvxγ (η),

βmaxγ (η) and βtransγ (η) with different values of γ and for CACCSP model with different values of η.

We also analysed the sensitivity of the optimal expected total cost of the CAPECSP model for

different choices of probabilistic coverage envelope β(η), regarding βcvxγ (η) and βmaxγ (η) with values

of γ ∈ {0, 0.1, 0.2, . . . , 1}, and βtransγ (η) with values of γ ∈ {−0.2, −0.1, 0, 0.1, . . . , 1}. Figure

5 presents the trade-off between expected coverage required by the probabilistic envelope, i.e.∫ 1

0
β(η)dη= 1

N

∑N−1

k=0 βk, and the expected total cost. In words, expected coverage reflects the overall

probability that an emergency request, drawn randomly from any scenario and uniformly from the

requests made in that scenario, ends up being served by an ambulance in the solution that satisfies

the PEC. For example, the expected coverage in the CACCSP model is 0.95 ·0.95+0.05 ·0 = 0.9025

when β = 0.95 and η = 0.05. First, one can notice from Figure 5 that given a targeted expected

coverage, the choice of probabilistic envelope has a significant impact on the investment that needs

to be made. In particular, the CAPECSP model that employs βmaxγ (η) identifies more expensive

solutions. This is because all of the investment goes in improving coverage in the most extreme

scenarios, which is more expensive (in $ per p.p.) than in the less extreme ones since extreme

scenarios have larger total demand. In particular, looking at the curve associated to βmaxγ (η), we

note that it costs about 8,528$ to raise the worst-case coverage from 58% to 70%, which effectively

accounts for less than 1 p.p. of expected coverage. Otherwise, we see that when using βcvxγ (η) the

marginal cost for improving expected coverage is nearly constant and close to 1,738$ per p.p. while

it is of nearly 1,072$ with βtransγ (η). Alternatively, one can estimate based on βtransγ (η) that it would

be possible to decrease the total expected cost by 587$ per p.p. of expected coverage reduction. In

this regard, we refer the reader to the seminal work of Keeney and Raiffa (1976) and to the extensive

literature that followed for guidance on how to identify the right subjective trade-off in such a multi-

objective environment. Finally, it is clear that the CAPECSP model allows us to identify strategies
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that strictly dominates the strategies obtained using the more restrictive CACCSP model. This is

done while controlling under which type of scenario is the coverage increased or decreased.

8.4. Out-of-Sample Analysis

This section focuses on a out-of-sample analysis of the quality of solutions obtained from the

CACCSP and CAPECSP models. Generally speaking this part of our study serves two purposes.

The first one is to highlight the peculiarities associated to the implementation of a solution of

the CACCSP/CAPECSP models given that these are approximated using scenarios. In particular,

one should expect in practice that the realized emergency demand scenario is not a member of

the assumed scenario list. The question therefore arises regarding how much coverage should be

provided since the optimal policy is not defined for this scenario. The second objective of this

study aims at verifying whether the performance of probabilistic coverage, that is estimated for an

optimal EMS location using historical data can be generalized into the future.

We first shed some light on how the solution of our CACCSP or CAPECSP models can be

implemented in practice. Specifically, we focus on the CACCSP model but a similar approach can

be used for CAPECSP. Given an optimal solution (x∗,y∗,r∗,z∗) to the CACCSP that employs an

empirical distribution based on the realizations {dk}Nk=1, one should commit to implementing the

plan prescribed by (x∗,y∗,r∗). The peculiarity comes at any time period t̄ where a realization d̄t̄

occurs and is most likely not part of {dt̄k}Nk=1. In order to identify the right assignment to proceed

with, one can solve once again the CACCSP model but with (x,y,r) = (x∗,y∗,r∗) being fixed,

and with a new set of empirical realizations {d′k}Nk=1 where each dtk
′
= dtk except for some randomly

chosen k̄ for which dt̄
k̄

′
= d̄t̄. One can then implement the new optimal assignment described as

ẑ t̄(d̄t̄) := z t̄
k̄

∗∗
. If the out-of-sample subproblems happen to be infeasible, then one can instead

simply maximize the coverage. The argument that supports this procedure is that one should

consider the new scenario as a scenario that is equally likely as any other anticipated scenario and to

verify how this new scenario might have been treated by the CACCSP decision model. Depending

on the characteristics of the observed scenario, the modified CACCSP model will decide whether it

should be considered as a scenario that is too extreme to cover or not. In what follows, our out-of-

sample experiments will confirm that this procedure produces a policy that has similar performance

to the performance anticipated by the in-sample version of CACCSP. A more rigourous motivation

for using the proposed out-of-sample policy for z is presented in Appendix B.9.

An out-of-sample experiment consists of the following. We first take a random subset of N days

from the “training” period of January 2016 to December 2016. The CACCSP (or CAPECSP) model

is then solved using the empirical distribution over the N observations. The optimal policy is then

implemented (as described above) on every day of the “testing” period spanning from April 2015
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to December 2015 (275 days) and statistics are obtained regarding the average empirical reliability

and coverage. In the case of the CACCSP, we let N ∈ {50, 100, 150} while for the CAPECSP model

we focus on N = 100. Each figure presents statistics calculated over 10 different experiments.
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Figure 6 Out-of-sample empirical reliability for CACCSP in (a) and out-of-sample empirical coverage profile for

CAPECSP in (b) in 10 out-of-sample experiments. (a) presents box plots for the reliability achieved by

the solutions of CACCSP model with β= 0.95 and η= 0.05 for different training set sizes. The red

line identifies the target reliability level 1−η= 95%. (b) presents the average, minimum and maximum

values for empirical coverage achieved by the solutions of CAPECSP model at time t= 1 and using a

training set of N = 100 observations.

We next turn to evaluating the out-of-sample performance of the chance constraints. In this

regard, Figure 6(a) presents statistics about the reliability of the coverage for the six time periods

and three training set sizes. To be precise, in each experiment, we tested the implementation of the

optimal in-sample CACCSP policy on 275 test scenarios and computed the probability of covering

β
∑

i d
t
iω for each period on this training set. The box plots indicate the minimum, maximum, mean,

and first and third quartiles of these values over the 10 experiments. First, we can observe from

this figure that the in-sample policy has a reasonably good out-of-sample performance in terms of

reliability. In most experiments and for most time periods, the policy is able to achieve the 95%

reliability that it was aiming for, and often reaches 100% reliability (t= 3,4,5). In the case where

this target is not reached we see that most of the time, the violation is below 5%. The figure also

exhibits a daily pattern. The policy is typically less reliable in the morning and the evening then

during the middle of the day. This might be due to the fact that the model is more flexible in the

middle of the day with large ambulance station capacities, and lower relocation and travel costs,

which allows the model to more easily satisfy the requests. Finally, we believe it is possible to

qualitatively state that as more training samples are used in CACCSP, the empirical reliability

starts concentrating more around the 95% target.
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Finally, we briefly investigate the out-of-sample performance of the PEC policy. To do so, we

focus on the performance achieved for time period t= 1 and with a training set of size N = 100,

although our observations are similar for other time periods. We present in Figure 6(b) statistics

about the out-of-sample empirical coverage profile. This is calculated in each experiment using

f6(b)(η) := sup

β
∣∣∣∣∣∣ 1

275

275∑
ω′=1

1

∑
i∈I

∑
j∈J zi

ẑtij(d
t
ω′)≥ β

∑
i∈I

dtiω′

≥ 1− η

 ,

where {dω′}275
ω′=1 is the out-of-sample test set and ẑt(dtω′) is the out-of-sample implementation of

the PEC policy as described earlier in this section, and can be compared to the targeted prob-

abilistic envelope βcvx0.5 (η) (red curve) used in CAPECSP. Overall, Figure 6(b) seems to indicate

that out-of-sample empirical coverage is of surprisingly good quality when comparing the in-sample

performance (green curve), and significantly outperforms the needed reference level (red curve).

9. Concluding Remarks

In this paper, we extend the chance constrained EMS location model presented in Beraldi and

Bruni (2009) to a multiperiod setting and propose a novel PEC formulation that allows the EMS

manager to control the relative level of EMS coverage achieved under every possible scenarios of

emergency demand. This gives rise to two stochastic programming models (CCSP and PECSP).

In order to solve instances with realistic sizes, we develop a solution scheme that is based on

the B&BC method and some enhancements that are based on valid inequalities and strengthened

optimality cuts. We also propose a conservative approximation model that can be solved using

B&BC significantly faster. We compare the numerical performance of our solution schemes to the

BB method presented in Beraldi and Bruni (2009), and the CPLEX solver. Our results demonstrate

that the gain in performance is significant especially for larger-scale instances.

We also presented a case study that exploited data from NIASHSCT, where we are able to

illustrate the differences between the solutions obtained from CACCSP and CAPECSP models, the

use of a reference coverage profile in the design of probabilistic envelopes, and the recommended

procedure for implementation of the delayed assignment decisions. Our out-of-sample analysis

confirms that the policies obtained using 100 historical observations perform reasonably well on

test data where characteristics of the distribution might have changed due to the passage of time.

We suspect that the models and empirical analysis presented in this paper should benefit a

number of other types of applications in the public sector, e.g. fire station location, humanitarian

relief location, etc. In particular, we believe that PEC constraints are among the most natural

way of encoding the expectations that stakeholders have in terms of reliability when faced against

uncertain operating conditions.
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Appendix A: Proof of Propositions

A.1. Proof of Proposition 1

The first step of this proof consists in demonstrating that constraint (5) is equivalent to constraint (7b) in

CCSP. This can be seen from the fact that z is integer in CCSP, hence any assignment that satisfies (5)

must have
∑

i∈I

∑
j∈J z

i
ztij ≥ dβt(1− ρtω)

∑
i∈I d

t
iωe= (1− ρtω)dβt

∑
i∈I d

t
iωe since ρtω is binary. The reverse is

more straightforward, namely since constraint (5) is a relaxation of (7b).
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The next step is to demonstrate that by relaxing the integrality constraint on r and z, we still produce

optimal integer solutions. Let (x∗,y∗,ρ∗,r∗,z∗) be any optimal solution of CCSP2, we will show that there

exists integer valued assignments r̄∗ and z̄∗ for which (x∗,y∗,ρ∗, r̄∗, z̄∗) is also necessarily optimal for CCSP2.

Since CCSP2 is a relaxation of CCSP, we will therefore conclude that both problems are equivalent.

We focus on the case of z̄∗ since the case of r̄∗ is similar. Specifically, for any fixed time period t and

scenario ω, we know that any optimal solution to the following problem produces equivalent optimal solutions

for CCSP2:

minimize
ztω≥0

∑
i∈I

∑
j∈J

pω c lijz
t
ijω (24a)

subject to
∑
i∈I

ztijω ≤ λtjytj
∗ ∀j ∈J (24b)∑

j∈J z
i

ztijω ≤ dtiω ∀i∈ I (24c)

∑
i∈I

∑
j∈J z

i

ztijω ≥ dβt
∑
i∈I

dtiωe(1− ρtω
∗
) . (24d)

One can actually show that the above problem can be reformulated as the following minimum cost network

flow problem (MCNFP).

minimize
ztω≥0,w≥0,s≥0,q≥0

∑
i∈I

∑
j∈J

pω c lijz
t
ijω

subject to
∑
i∈I

ztijω + sj = λtjy
t
j

∗ ∀j ∈J

wi−
∑
j∈J z

i

ztijω = 0 ∀i∈ I

q−
∑
i∈I

wi =−dβt
∑
i∈I

dtiωe(1− ρtω
∗
)

− q−
∑
i∈I

si = dβt
∑
i∈I

dtiωe(1− ρtω
∗
)−
∑
j∈J

λtjy
t
j

∗

wi ≤ di ∀i∈ I ,

where s ∈ R|J |, w ∈ R|I|, and q ∈ R. Based on the integrality theorem for this family of problem, it is

known (see Bertsimas and Tsitsiklis (1997)) that there necessarily exists an integer valued optimal solution

in contexts where all parameters in the set of constraints of the MCNFP are integers. This is necessarily the

case for the instances that arise using CCSP2 since we assume that λtj is an integer, and since any feasible

y and ρ also are. We can therefore conclude that there is an integer assignment for z̄∗ that can replace the

original optimal assignment while preserving the optimality of (x∗,y∗,ρ∗,r∗, z̄∗) with respect to CCSP.

A similar argument can be used for the case of r where the MCNFLP more naturally takes the form of:

minimize
r≥0

T∑
t=1

∑
m∈J

∑
j∈J

αtrtmj (25a)

subject to
∑
m∈J r

j

rtmj −
∑
m∈J r

j

rtjm = yt+1
j − ytj ∀j ∈J , t∈ {1, . . . , T − 1} (25b)

∑
m∈J r

j

rTmj −
∑
m∈J r

j

rTjm = y1
j − yTj ∀j ∈J . (25c)
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To obtain the integer solutions for z∗ and r∗ once the first stage decisions x∗, y∗ and ρ∗ are known, one

can simply solve (24) for each ω and t and (25) with integer constraints on z and r. This completes our

proof. �

A.2. Proof of Proposition 2

This proof is divided into two parts. We first show that CCSP2 is equivalent to CCSP2’. We then confirm

that solutions that satisfy constraints (8d) and (8e) give rise to versions of the CCSP-SPr and CCSP-SPzω,t

models that are necessarily feasible and bounded.

In demonstrating the equivalence between CCSP2 and CCSP2’, we start by remarking that CCSP2’ follows

from exploiting an epigraph reformulation of the operations
∑
j∈J

∑
i∈I

pωc
tlijz

t
ijω and

T∑
t=1

∑
m∈J

∑
j∈J

αtrtmj in the

objective function, and adding constraints (8d) and (8e) to the model. We therefore only need to show that

the latter two constraints are redundant in CCSP2. First, we can obtain constraint (8e) directly from the

constraints (4b) and (7b):∑
j∈J

λtjy
t
j ≥
∑
j∈J

∑
i∈I

ztijω ≥ (1− ρtω)dβt
∑
i∈I

dtiωe , ∀t∈ {1, . . . , T},∀ω ∈Ω .

Moreover, constraints (1d) and (1e) imply that

∑
j∈J

yt+1
j =

∑
j∈J

ytj +
∑
m∈J r

j

rtmj −
∑
m∈J r

j

rtjm

=
∑
j∈J

ytj , ∀t∈ {1, . . . , T − 1} .

We are left with showing that, under Assumption 1, both CCSP-SPr and CCSP-SPzω,t are always feasible

and bounded when constraints (8d) and (8e) are satisfied.

In the case of CCSP-SPr, boundedness follows from the fact that r ≥ 0 and that α ≥ 0. As for the

feasibility of this slave problem, this follows from the fact that
∑

j∈J y
t
j =

∑
j∈J y

t+1
j for all t, and that we

assumed vehicles can be transferred from any location to any other location in a single period.

In the case of CCSP-SPzω,t, boundedness again follows from the non-negativity of ztω and monotonicity of

the objective function. As for feasibility, since we know that
∑

j∈J λ
t
jy
t
j ≥ (1− ρtω)dβt

∑
i∈I d

t
iωe, we know

that in this transportation problem there is enough offer to cover the demand. Since every source i∈ I can

serve every demand node j ∈J , we conclude that a feasible assignment can necessarily be found.

This completes our proof. �

A.3. Proof of Proposition 3

For fixed t, let the ordered scenario set Ω′t := {ω′k}Nk=1 be such that for all k < k′ we have that
∑
i∈I

dtiω′
k
≤∑

i∈I
dtiω′

k′
. One can simply rewrite constraints (6) and (8e) as∑

ω′∈Ω′t

pω′ρ
t
ω′ ≤ ηt ∀t∈ {1, . . . , T}. (26)

∑
j∈J

λtjy
t
j ≥ dβt

∑
i∈I

dtiω′e(1− ρtω′) ∀ω′ ∈Ω′t, t∈ {1, . . . , T} (27)

We will prove our claim by contradiction. In order to do so, let (y,ρ) satisfy constraints (27) and (26) yet

violate constraint (11), namely∑
j∈J

λtjy
t
j <β

t
∑
i∈I

dtiω′
k

∀k≥ k̄t ,
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given that y is integer valued. Since constraint (27) holds, then it must be that ρtωk
= 1 for all k ≥ k̄t. This

in turn can be used to show that

ηt ≥
∑
ω′∈Ω′t

pω′ρ
t
ω′ ≥

∑
k:k≥k̄t

pω′
k
ρtω′

k
=

N∑
k=k̄t

pω′
k
> ηt .

Since this necessarily leads to a contradiction ηt > ηt, we must conclude that any solution that satisfies (26)

and (27) must also satisfy constraint (11). �

A.4. Proof of Proposition 4

This result is obtained by remarking that for any t∈ {1, . . . , T} and any k ∈ {0, . . . ,N − 1} the constraint

∑
ω∈Ω

(1/N)1

∑
i∈I

∑
j∈J z

i

ztijω ≥ βt(η)
∑
i∈I

dtiω

≥ 1− η ∀η ∈ [k/N, (k+ 1)/N)

is equivalent to

∑
ω∈Ω

(1/N)1

∑
i∈I

∑
j∈J z

i

ztijω ≥ βt(η)
∑
i∈I

dtiω

≥ 1− k/N ∀η ∈ [k/N, (k+ 1)/N) .

Since the sum operator can only reach values in {j/N}j∈{0,...,N}. Hence, the constraint can be reformulated

equivalently as

inf
η∈[k/N, (k+1)/N)

∑
ω∈Ω

(1/N)1

∑
i∈I

∑
j∈J z

i

ztijω ≥ βt(η)
∑
i∈I

dtiω

≥ 1− k/N ,

yet since 1

{∑
i∈I

∑
j∈J z

i

ztijω ≥ β
∑
i∈I

dtiω

}
is left continuous and decreasing with respect to β, it is necessary and

sufficient to verify that

∑
ω∈Ω

(1/N)1

∑
i∈I

∑
j∈J z

i

ztijω ≥ sup
η∈[k/N, (k+1)/N)

βt(η)
∑
i∈I

dtiω

≥ 1− k/N .

This constraint is exactly equivalent to

∑
ω∈Ω

(1/N)1

∑
i∈I

∑
j∈J z

i

ztijω ≥ βtk
∑
i∈I

dtiω

≥ 1− k/N ,

which can then be reformulated using binary variables ρ. We thus conclude that constraint (12) is equivalent

to the condition that there exists ρ∈ {0, 1}N×N×T that satisfies∑
i∈I

∑
j∈J z

i

ztijω ≥ βtk(1− ρtkω)
∑
i∈I

dtiω ∀t∈ {1, . . . , T}, ω ∈Ω, k ∈ {0, . . . ,N − 1} (28)

(1/N)
∑
ω∈Ω

ρtkω ≤ k/N ∀t∈ {1, . . . , T}, k ∈ {0, . . . ,N − 1} . (29)

The next step of this proof consists of showing that the inequality in constraint (29) can be replaced

with an equality without affecting the feasibility of z. In particular, for any feasible z, given some ρ̄ that

confirms the feasibility of z using (28) and (29), if (1/N)
∑
ω∈Ω

ρ̄tkω <k/N for some k and some t then it must

be that (1/N)
∑
ω∈Ω

ρ̄tkω ≤ (k − 1)/N and that there is a ω̄ such that ρ̄tkω̄ = 0, otherwise (1/N)
∑
ω∈Ω

ρ̄tkω = 1>
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(N −1)/N ≥ k/N . One can actually show that ρ̂ constructed by copying ρ̄ at every index except for ρ̂tkω̄ := 1

will also satisfy both constraints. Namely,∑
i∈I

∑
j∈J z

i

ztijω̄ ≥ βtk(1− ρ̄tkω̄)
∑
i∈I

dtiω̄ ≥ βtk(1− ρ̂tkω̄ + 1)
∑
i∈I

dtiω̄ ≥ βtk(1− ρ̂tkω̄)
∑
i∈I

dtiω̄

(1/N)
∑
ω∈Ω

ρ̂tkω = (1/N)
∑
ω∈Ω

ρ̄tkω + (1/N)≤ (k− 1)/N + 1/N ≤ k/N .

Based on this argument, we can conclude that there always exists a ρ̄ that confirms feasibility of z based on

constraints (28) and (29) and also satisfies constraint (14).

The third step of this proof is to show that constraint (15) can also be imposed without affecting the

feasibility of z. In particular, for any feasible z, given some ρ̄ that confirms the feasibility of z using (28)

and (14), if ρ̄tkω > ρ̄tk+1,ω for some t̄, ω̄, and k̄, then one can simply construct a ρ̂ that mimics ρ̄ except for

ρ̂t̄
k̄ω̄

:= ρ̄t̄
k̄+1,ω̄ = 0 and for ρ̂t̄

k̄ω̄′ := 1, where ω̄′ is any scenario for which ρ̄t̄
k̄ω̄′ = 0< ρ̄t̄

k̄+1,ω̄′ . One can verify that

such an index ω̄′ always exists because of constraint (14). One can as a last step confirm that all constraints

are satisfied for ρ̂:∑
i∈I

∑
j∈J z

i

z t̄ijω̄ ≥ β̄tk̄+1(1− ρ̄t̄k̄+1,ω̄)
∑
i∈I

dt̄iω̄ ≥ β̄tk̄(1− ρ̄t̄k̄+1,ω̄)
∑
i∈I

dt̄iω̄ = β̄tk̄(1− ρ̂t̄k̄,ω̄)
∑
i∈I

dt̄iω̄∑
i∈I

∑
j∈J z

i

z t̄ijω̄′ ≥ β̄tk̄(1− ρ̄t̄k̄,ω̄′)
∑
i∈I

dt̄iω̄′ ≥ β̄tk̄(1− ρ̂t̄k̄,ω̄′)
∑
i∈I

dt̄iω̄′∑
ω∈Ω

ρ̂t̄k̄ω =
∑
ω∈Ω

ρ̄t̄k̄ω − ρ̄t̄k̄ω̄ + ρ̂t̄k̄ω̄ − ρ̄t̄k̄ω̄′ + ρ̂t̄k̄ω̄′ =
∑
ω∈Ω

ρ̄t̄k̄ω − 1 + 0− 0 + 1 = k

ρ̂t̄k̄ω̄ = 0≤ ρ̂t̄k̄+1,ω̄

ρ̂t̄k̄ω̄′ = 1≤ 1 = ρ̂t̄k̄+1,ω̄′ .

This allows us to conclude that there always exists a ρ̄ that confirms feasibility of z based on constraints

(28) and (14) and also satisfies constraint (15).

The final step consists in demonstrating that for all ρ that satisfies constraint (15), constraint (28) is

equivalent to constraint (13). This can be shown by arguing that for all t and all ω:∑
i∈I

∑
j∈J z

i

ztijω ≥ βtk(1− ρtkω)
∑
i∈I

dtiω ∀k ∈ {0, . . . ,N − 1}

⇔
∑
i∈I

∑
j∈J z

i

ztijω ≥
(

max
k∈{0,...,N−1}

βtk(1− ρtkω)

)∑
i∈I

dtiω

⇔
∑
i∈I

∑
j∈J z

i

ztijω ≥ ( max
k:ρt

kω
=0
βtk)
∑
i∈I

dtiω

⇔
∑
i∈I

∑
j∈J z

i

ztijω ≥

βtN−1(1− ρtN−1,ω) +
∑

k∈{0,...,N−2}

βtk(ρ
t
k+1,ω − ρtkω)

∑
i∈I

dtiω ,

where the second equivalence follows from the fact that βtk is a non-decreasing sequence, and the third

equivalence follows from the fact that ρ satisfies constraint (15).

This completes the proof. �
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A.5. Proof of Proposition 5

First, constraint (20) can be relaxed by dropping the rounding operation in the right-hand side thus obtaining∑
i∈I

∑
j∈J z

i

ztijω′
N−k
≥ βtk

∑
i∈I

dtiω′
N−k

∀t∈ {1, . . . , T}, k ∈ {0, . . . ,N − 1} . (30)

Then, based on the definition of Ω′t, we have that for all k < k′,
∑
i∈I

dtiω′
k
≤
∑
i∈I

dtiω′
k′

. This allows us to state

that any assignment for z that satisfies constraint (30), must also satisfy∑
i∈I

∑
j∈J z

i

ztijω′
N−k
≥ βtk

∑
i∈I

dtiω′
k′

∀t∈ {1, . . . , T},1≤ k′ ≤N − k, k ∈ {0, . . . ,N − 1} . (31)

Hence, we must also have that

1

N

∑
ω∈Ω

1

∑
i∈I

∑
j∈J z

i

ztijω ≥ βtk
∑
i∈I

dtiω

≥
N−k∑
k′=1

1/N = 1− k

N
. (32)

Yet, we already showed in the proof of Proposition 4 (see Appendix A.4) that under Assumption 2, constraint

(32) and constraint (12) are equivalent.

This completes our proof. �

Appendix B: Additional Supplemental Material

B.1. Variations of facility operation cost in problem (1)

It is worth observing that there are a number of structures that have been proposed in the literature for

modeling the cost of opening, operating, and closing facilities such as ambulance bases and conditions on

their use. In the most general version of the DM formulation, one would replace Constraint (1c) with the

following ones:

wtj ≥ xtj −xt−1
j , ∀ j ∈J , t∈ {1, . . . , T}

vtj ≥ xt−1
j −xtj , ∀ j ∈J , t∈ {1, . . . , T}

xTj = x0
j , ∀ j ∈J ,

where wtj and vtj are additional binary decision variables modeling the decisions to open or close the base

location j at time period t respectively, and where x0
j is a binary variable that is used to ensure that the plan

is consistent from one day to the other and accounts for opening (and closing) decisions at the first period

of the day. One could include fixed opening or closing cost in the objective function or constraints such as:

vt
′

j ≤ 1−wtj , ∀ t′ ∈ {mod(t, T ),mod(t+ 1, T ),mod(t+ ∆, T )} , ∀ t∈ {1, . . . , T} ,

which control the minimum amount of time ∆ during which a base might need to stay open. We refer

interested readers to the following literature for example of formulation and ways of reformulating such

constraints to obtain tighter linear relaxations, i.e. Owen and Daskin (1998), Arabani and Farahani (2012),

and Nickel and da Gama (2015).
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B.2. Additional Details Regarding the Benders Decomposition of CCSP

In this appendix, we describe in more the details the application of Benders decomposition to the resolution

of CCSP2’. We start by describing how both hr(y) and hzω,t(ȳ, ρ̄) can be represented as the supremum over

a set of hyperplanes. We then describe the a relaxation of CCSP2’, referred as the MP, and how upper and

lower bounds can be obtained for CCSP2’ using optimal solutions of this problem.

Focusing first on hr(y), based on linear programming duality theory, we know that, given any fixed ȳ

that satisfies constraints (8d), a supporting hyperplane at ȳ can be identified by solving the dual problem

associated to CCSP-SPr.

[CCSP-DSPr] hr(ȳ) := max
µr≥0

T−1∑
t=1

∑
j∈J

µrjt(ȳ
t
j − ȳt+1

j ) +
∑
j∈J

µrjT (ȳTj − ȳ1
j ) (33a)

subject to αt +µrjt−µrmt ≥ 0 ∀m∈J rj , j ∈J , t∈ {1, . . . , T} , (33b)

where {µrjt}j∈J ,t∈{1,...,T} are the dual variables associated with constraints (9b) and (9c). Strong duality

necessarily applies for CCSP-SPr under Assumption 1, since Proposition 2 guarantees that this problem

is feasible. Furthermore, since it is also bounded, the existence of an optimal solution for CCSP-DSPr is

guaranteed. A supporting hyperplane at ȳ therefore necessarily takes the form:
T−1∑
t=1

∑
j∈J

µ̄r∗jt (y
t
j − yt+1

j ) +
∑
j∈J

µ̄r∗jT (yTj − y1
j ) ,

where µ̄r∗ is an optimal solution to CCSP-DSPr.

Similarly, in the case of CCSP-SPzω,t, for a given solution (ȳ, ρ̄) that satisfies (8e), the dual problem takes

the form:

[CCSP-DSPzω,t] h
z
ω,t(ȳ, ρ̄) = max

µ1
tω,µ

2
tω,µ

3
tω

−
∑
j∈J

λtj ȳ
t
jµ

1
jtω −

∑
i∈I

dtiωµ
2
itω +µ3

tω(1− ρ̄tω)dβt
∑
i∈I

dtiωe (34a)

subject to −µ1
jtω −µ2

itω +µ3
tω ≤ pωctlij ∀i∈ I, j ∈J zi (34b)

µ1
tω ≥ 0,µ2

tω ≥ 0, µ3
tω ≥ 0 , (34c)

where µ1
tω ∈R|J |, µ2

tω ∈R|I|, µ3
tω ∈R are the dual vectors for constraints (10b)-(10d) respectively. Hence, a

supporting hyperplane can be obtained in the form:

−
∑
j∈J

λtjy
t
jµ̄

1∗
jtω −

∑
i∈I

dtiωµ̄
2∗
itω + µ̄3∗

tω(1− ρtω)dβt
∑
i∈I

dtiωe ,

where µ̄1∗, µ̄2∗, and µ̄3∗ are optimal solutions of CCSP-DSPzt,ω.

Given a subset of supporting hyperplanes for CCSP-SPr and CCSP-SPzω,t, which we will represent using

{µ̄rτ}τ∈Gr and {(µ̄1τ
tω , µ̄

2τ
tω , µ̄

3τ
tω)}τ∈Gz

tω
for some index sets Gr and Gz

tω, one can formulate a MP that returns

a triplet (x,y,ρ), which is feasible in CCSP2’ and which optimal value provides a lower bound for CCSP2’:

minimize
x,y,ρ,θr,θz

T∑
t=1

∑
j∈J

f tjx
t
j +

T∑
t=1

∑
j∈J

gtjy
t
j +

T∑
t=1

∑
ω∈Ω

θztω + θr (35a)

subject to (1b), (1c), (6), (7e), (8d), (8e)

θr ≥
∑
j∈J

∑
t=1,...,T−1

µ̄rτjt (ytj − yt+1
j ) +

∑
j∈J

µ̄rτjT (yTj − y1
j ), ∀τ ∈Gr (35b)

θztω ≥−
∑
j∈J

λtjy
t
jµ̄

1τ
tωj −

∑
i∈I

dtiωµ̄
2τ
tωi + µ̄3τ

tω(1− ρtω)dβt
∑
i∈I

dtiωe, ∀τ ∈Gz
tω, t∈ {1, . . . , T}, ω ∈Ω. (35c)
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Furthermore, for any feasible solution (x̄, ȳ, ρ̄, θ̄r, θ̄z) of (35), one can obtain an upper bound for CCSP2’

through,

uobj =

T∑
t=1

∑
j∈J

f tj x̄
t
j +

T∑
t=1

∑
j∈J

gtj ȳ
t
j +

T∑
t=1

∑
ω∈Ω

hzω,t(ȳ, ρ̄) +hr(ȳ). (36)

We present the detailed procedure of the BD implementation in Algorithm 1. Note that the iteration count

is denoted by v. It is well known that Algorithm 1 always terminates in a finite number of iterations (even

when stoptime=∞) as long as one makes sure that each ūr∗ and (ū1∗
tω, ū

2∗
tω, ū

3∗
tω) are vertices of the feasible

set described in each CCSP-DSP problem. This is due to the fact that the number of vertices of each of

these feasible sets is finite so that in the worst-case, one will eventually add all of them to problem (35) and

finally obtain that lobjv = uobjv.

Algorithm 1 Benders Decomposition Implementation

1: Input A tolerance ε≥ 0 and maximum run time stoptime

2: Initialize v= 0,LB =−∞,UB = +∞, θr = θztω = 0,Gr =Gz
tω = ∅ for all t and ω.

3: while (runtime≤ stoptime and UB−LB > ε) do

4: Set v= v+ 1, solve the MP.

5: Record optimal solution (xv,yv,ρv, θrv,θzv) and optimal objective lobjv.

6: Update LB =: lobjv.

7: Fix x̄ :=xv, ȳ := yv, and ρ̄ := ρv and solve CCSP-DSPr and all CCSP-DSPz
ω,t.

8: Obtain hztω(ȳ, ρ̄) and hr(ȳ) together with (ūr∗, ū1∗, ū2∗, ū3∗).

9: Add µ̄r∗ to Gr, and, for all t∈ {1, . . . , T} and ω ∈Ω, add (µ̄1
tω, µ̄

2∗
tω, µ̄

3∗
tω) to Gz

tω

10: Update UB =: min{UB,uobjv} where uobjv is as described in (36).

11: end while

12: return UB and corresponding optimal solution (xv
∗
,yv

∗
,ρv

∗
) for which uobjv

∗
=UB.

B.3. Implementation of the Branch-and-Benders-Cut Algorithm

Algorithm 2 describes the procedure of our implementation of the Branch-and-Benders-Cut Method.

B.4. Deriving the Benders Cuts by solving Dual Sub-Problems of PECSP-DSPz
ω,t

We start by noting that, the sub-problems regarding the relocation decisions in the PECSP model are the

same as these in the CCSP model, so here we omit it for conciseness. For the PECSP-SPzω,t defined in

equation (19), given a pair (ȳ, ρ̄) that is feasible according to the MP, we can apply duality theory to get an

equivalent dual sub-problem:

[PECSP-DSPzω,t]

hzω,t(ȳ, ρ̄) = max
µ1

tω,µ
2
tω,µ

3
tω

−
∑
j∈J

λtj ȳ
t
jµ

1
jtω −

∑
i∈I

dtiωµ
2
itω +µ3

tω

N−1∑
k=1

(ρtk+1,ω − ρtkω)dβtk
∑
i∈I

dtiωe (37a)

subject to −µ1
jtω −µ2

itω +µ3
tω ≤ (1/N)ctlij ∀i∈ I, j ∈J zi (37b)

µ1
tω ≥ 0, µ2

tω ≥ 0, µ3
tω ≥ 0, (37c)
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Algorithm 2 Branch-and-Benders-Cut Implementation

1: Input A tolerance ε≥ 0 and maximum run time stoptime

2: Initialize UB = +∞, LB =−∞, N = {root} where root is the linear relaxation of MP.

3: Initialize Gr =Gz
tω = ∅ for all t∈ {1, . . . , T}, and ω ∈Ω.

4: while (N is nonempty and UB−LB > ε and runtime≤ stoptime) do

5: Select a node o′ ∈N and remove it from N ←N/o′.

6: Solve linear relaxation of o′ with Gr and Gz
tω sets to obtain optimal solution (x̄, ȳ, ρ̄, θ̄r, θ̄z)

and consider optimal value as lobj .

7: if lobj < UB then

8: if (x,y,ρ) is not integer valued then

9: Update LB := max(LB, lobj).

10: Branch on a non-integer variable, resulting in nodes o∗ and o∗∗.

11: N ←N ∪{o∗, o∗∗}.

12: else

13: Solve CCSP-DSPr and CCSP-DSPz
ω,t to obtain hzω,t(ȳ, ρ̄) and hr(ȳ) together with

(ūr∗, ū1∗, ū2∗, ū3∗).

14: Compute uobj as described in (36).

15: if uobj− lobj > ε/2 then

16: Add µ̄r∗ to Gr, and, for all t∈ {1, . . . , T} and ω ∈Ω, add (µ̄1
tω, µ̄

2∗
tω, µ̄

3∗
tω) to Gz

tω

17: N ←N ∪{o′}.

18: end if

19: if uobj− lobj ≤ ε/2 then

20: UB = uobj, (x∗,y∗,ρ∗, θr∗,θz∗) = (x̄, ȳ, ρ̄, θ̄r, θ̄z).

21: end if

22: end if

23: end if

24: end while

25: return UB and corresponding optimal solution (x∗,y∗,ρ∗, θr∗,θz∗).

where µ1
tω ∈R|J |, µ2

tω ∈R|I|, µ3
tω ∈R are the dual vectors for constraints (10b), (10c) and (19c) respectively.

Therefore, following a similar procedures as in Appendix B.2, we can obtain the corresponding Benders

cuts,

θztω ≥−
∑
j∈J

λtjy
t
jµ̄

1τ
tωj −

∑
i∈I

dtiωµ̄
2τ
tωi + µ̄3τ

tω

N−1∑
k=1

(ρtk+1,ω − ρtkω)dβtk
∑
i∈I

dtiωe, ∀τ ∈Gz
tω, t∈ {1, . . . , T}, ω ∈Ω, (38)
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where (µ̄1τ ,µ̄2τ ,µ̄3τ ), τ ∈Gz
tω is an optimal solution of PECSP-DSPzω,t

B.5. Deriving Feasibility Cuts for CCSP and PECSP

We start by noting that when Assumption 1 does not hold, the subproblems CCSP-SPr and CCSP-SPz
ω,t

can become infeasible even though the pair (y,p) is feasible in the MP. When it is the case, one needs to

generate a corresponding feasibility cut and add it to the constraints of the MP until all subproblems become

feasible.

For the CCSP model, the sets of feasibility cuts regarding CCSP-SPr and CCSP-SPz
ω,t can be defined

as

0≥
∑
j∈J

∑
t=1,...,T−1

µ̂rτjt (ytj − yt+1
j ) +

∑
j∈J

µ̂rτjT (yTj − y1
j ), ∀τ ∈Hr (39)

and

0≥−
∑
j∈J

λtjy
t
jµ̂

1τ
tωj −

∑
i∈I

dtiωµ̂
2τ
tωi + µ̂3τ

tω(1− ρtω)dβt
∑
i∈I

dtiωe, ∀τ ∈Hz
tω, t∈ {1, . . . , T}, ω ∈Ω (40)

respectively, where {µ̂rτ}τ∈Hr is the set of extreme rays of CCSP-DSPr (see definition in Appendix B.2),

and {µ̂1τ
tω , µ̂

2τ
tω , µ̂

3τ
tω}τ∈Hz

tω
is the set of extreme ray of CCSP-DSPz

ωt defined in Appendix B.2. Given a fixed

assignment for y and ρ, an extreme rays responsible for infeasibility of (39) or (40) can be obtained directly

from solving subproblems CCSP-DSPr and CCSP-DSPz
ω,t when using a primal simplex algorithm.

In the case of the PECSP model, the set of feasibility cuts associated to PECSP-SPz
ω,t defined in Section

5.2 can be characterized as

0≥−
∑
j∈J

λtjy
t
jµ̂

1τ
tωj −

∑
i∈I

dtiωµ̂
2τ
tωi + µ̂3τ

tω

N−1∑
k=1

(ρtk+1,ω − ρtkω)dβtk
∑
i∈I

dtiωe, ∀τ ∈Hz
tω, t∈ {1, . . . , T}, ω ∈Ω. (41)

where {µ̂1τ
tω , µ̂

2τ
tω , µ̂

3τ
tω}τ∈Hz

tω
is the set of extreme rays of PECSP-DSPz

ω,t defined in Appendix B.4.

B.6. Details about the test data classes used in Section 7.2

The size of test data classes regarding the MILP based formulation is described in Table 7.

B.7. Constructing the Coverage Profile Associated to a Solution

Given a solution (x∗,y∗), one can computed the coverage profile that this solution achieved for a specific

set of equiprobable scenarios {dω}ω∈Ω with |Ω|=N as follows. First, for each ω ∈ Ω, one should solve the

following linear program

β̄∗ω := maximize
z,β

β

subject to
∑
i∈I

ztij ≤ λtjytj
∗ ∀j ∈J , t∈ {1, . . . , T}∑

j∈J z
i

ztij ≤ dti ∀i∈ I, t∈ {1, . . . , T}

∑
i∈I

∑
j∈J z

i

ztij ≥ β
∑
i∈I

dti ∀t∈ {1, . . . , T}

ztij ∈N ∀i∈ I, j ∈J , t∈ {1, . . . , T}.

Letting β̄∗[k] represent the k-th smallest element of the list {β̄∗ω}ω∈Ω, it is then possible to construct β̄(η) :=

β̄∗[bηN+1c], where b·c is the round down to nearest integer operation. Note that, in our case study, we used

the N = 100 observations from January 2016 to middle of April 2016.
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Table 7 Details about the test data classes for CCSP (i.e., C1-C12) and PECSP (i.e., C13-C24)

including the number of emergency demand zones (|I|), base locations (|J |), time periods (T = 6) and

scenarios (N). Note that first stage variables consist of x, y, ρ and r while second stage variables

consist of z.

Class |I| |J | N
First Stage Second Stage

# of variables # of constraints # of variables # of constraints
C1 40 20 50 2,940 346 240,000 18,300
C2 40 20 100 3,240 346 480,000 36,600
C3 40 20 150 3,540 346 720,000 54,900
C4 40 20 200 3,840 346 960,000 73,200
C5 80 50 50 15,900 856 1,200,000 39,300
C6 80 50 100 16,200 856 2,400,000 78,600
C7 80 50 150 16,500 856 3,600,000 117,900
C8 80 50 200 16,800 856 4,800,000 157,200
C9 150 100 50 61,500 1,706 4,500,000 75,300
C10 150 100 100 61,800 1,706 9,000,000 150,600
C11 150 100 150 62,100 1,706 13,500,000 225,900
C12 150 100 200 62,400 1,706 18,000,000 301,200
C13 20 10 20 3,120 2,570 24,000 3,720
C14 20 10 40 10,320 9,770 48,000 7,440
C15 20 10 60 22,320 21,770 72,000 11,160
C16 20 10 100 60,720 60,170 120,000 18,600
C17 40 20 20 5,040 2,470 96,000 7,320
C18 40 20 40 12,240 9,940 192,000 14,640
C19 40 20 60 24,240 21,940 288,000 21,960
C20 40 20 100 62,640 60,340 480,000 36,600
C21 80 50 20 18,000 3,250 480,000 15,720
C22 80 50 40 25,200 10,450 960,000 31,440
C23 80 50 60 37,200 22,450 1,440,000 40,800
C24 80 50 100 75,600 60,850 2,400,000 78,600

B.8. Geographical Configuration of Optimal EMS Location Strategies

Figures 7 and 8 present the geographical configuration of the time-dependent optimal EMS location strategies

obtained for CACCSP and CAPECSP respectively.

B.9. Mathematical Motivation for the Procedure used in the Out-of-Sample Analysis of

Section 8.4

Given some fixed t, let the set {dtω}ω∈Ω of random demand vectors be identically and independently drawn

from a distribution Q. Let also d̃ be the out-of-sample observation for this random vector which is also drawn

independently from Q. For the sake of simplicity, we assume that Q is a continuous distribution.

In what follows, we demonstrate that the procedure that is described in Section 8.4 to decide of the vehicle

assignment at time t when observing the out-of-sample scenario d̃t both in the CACCSP and CAPECSP

models is consistent with the guarantees that are sought by the chance constraints and probabilistic envelope

constraints of these respective models.
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(f) t= 6, β̃6 = 0.973

Figure 7 Time-dependent optimal EMS location configuration for CACCSP under scenario ω1 over 6 time periods

(β= 0.95, η= 0.05). We also report the empirical coverage for each time period by β̃t under scenario

ω1. Solid dots represent the emergency demand zones, stars represents the opened bases and the black

line represents the assignment respectively.
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(f) t= 6, β̃6 = 0.865

Figure 8 Time-dependent optimal EMS location configuration for CAPECSP under scenario ω1 over 6 time

periods with βcvx0.5 (η). We also report the empirical coverage for each time period by β̃t under scenario

ω1. Solid dots represent the emergency demand zones, stars represents the opened bases and the black

line represents the assignment respectively.
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First, given an envelope function βt(·) = β̄(·), in both the CACCSP and CAPECSP models, the coverage

that is imposed on the out-of-sample scenario d̃t can be defined as follows:

β̃ = sup
η<(N−Rank(d̃)+1)/N

β̄(η) = sup
ε>0

β̄((N −Rank(d̃t) + 1)/N − ε) ,

where Rank(d̃t) is the rank of
∑

i∈I d̃
t
i in the list of {

∑
i∈I d

t
iω}ω∈Ω/ω1

where we assume without loss of

generality that the first scenario was the one removed randomly among the set of size |Ω|. In particular, since

both {dtω}ω∈Ω and d̃t are i.i.d. and Q is continuous, we can conclude that, given d̃t, the random variable

Rank(d̃t)− 1 is distributed according to a binomial distribution Binomial((N − 1)p̃, (N − 1)p̃(1− p̃)) where

p̃= PQ(
∑

i∈I d
t
iω ≤

∑
i∈I d̃

t
i). We are now ready to argue that in the case of the CACCSP model for all η̂ > η,

there exists a N := |Ω| such that P(β̃ ≥ β̄(η))≥ 1− η̂, where by P we denote the probability with respect to

the joint distribution of {dtω}ω∈Ω and d̃. On the other hand, for the CAPECSP, we will show that if β̄(·)
is continuous, then for all ε > 0, there exists an N := |Ω| such that |β̃− β̄(1− p̃)| ≤ ε with high probability.

This confirms that the procedure we propose as a policy to decide how much to cover once the demand is

known is well motivated if we assume that the number of samples in Ω is large enough.

Looking more closely at the case of the CACCSP model, we can consider some ∆< η̂− η and that N is

large enough to show that:

P(β̃ ≥ β̄(η)) = P(sup
ε>0

β̄((N −Rank(d̃) + 1)/N − ε)≥ β̄(η)) (42)

= P((N −Rank(d̃) + 1)/N > η) (43)

= P((N − (N − 1)p̃− ξ)/N > η) (44)

≥ P
(
N − (N − 1)p̃

N
≥ η+ ∆

)
·

P
(
N − (N − 1)p̃− ξ

N
> η

∣∣∣∣N − (N − 1)p̃

N
≥ η+ ∆

)
(45)

=
N

N − 1
(1− η−∆)P

(
ξ

N
<∆

∣∣∣∣N − (N − 1)p̃

N
≥ η+ ∆

)
(46)

≥ N

N − 1
(1− η−∆)P

(
| ξ
N
|<∆

∣∣∣∣N − (N − 1)p̃

N
≥ η+ ∆

)
(47)

≥ N

N − 1
(1− η−∆)E

[
1− p̃(1− p̃)(N − 1)

∆2N2

∣∣∣∣N − (N − 1)p̃

N
≥ η+ ∆

]
(48)

≥ N

N − 1
(1− η−∆)

(
1− N − 1

4∆2N2

)
→N→∞ (1− η−∆) (49)

> 1− η̂ for some large enough N , (50)

where ξ := Rank(d̃)− (N − 1)p̃− 1 is the centered version of Rank(d̃) such that E[ξ] = 0. In details, we have

that the first and second steps follows from the definition of β̃ while the third step follows from our definition

of ξ. The fourth step follows from looking at only the events such that p̃ is small enough. Considering that

p̃ is the quantile of a certain random variable, we necessarily have that P(p̃≤ p) = p which leads to equation

(46) after simplifying the second term. We then exploit Chebyshev inequality to get expression (48) using

the fact that E[ξ/N ] = 0 and E[ξ2/N2] = (p̃(1− p̃)(N − 1))/N2. We obtain our last expression using the fact

that p̃(1− p̃) is maximized at p̃= 0.5 and that (N/(N − 1))(1− (N − 1)/(4∆2N2)) converges to 1 as N goes

to infinity.
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In the case of the CAPECSP model, we can start by assuming that β(·) is K-Lipschitz continuous which

in particular implies that β̃ = β̄((N −Rank(d̃) + 1)/N). Furthermore, we can bound with high probability

the difference between the targeted coverage β̄(1− p̃) and coverage β̃ obtained by our procedure as follows:

|β̄(1− p̃)− β̃|= |β̄(1− p̃)− β̄((N −Rank(d̃) + 1)/N)|

≤K|1− p̃− (N −Rank(d̃) + 1)/N |

=K

∣∣∣∣p̃− (N − 1)p̃

N
− ξ

N

∣∣∣∣
≤K

(∣∣∣∣p̃− (N − 1)p̃

N

∣∣∣∣+ ∣∣∣∣ ξN
∣∣∣∣)≤K( 1

N
+

∣∣∣∣ ξN
∣∣∣∣)

≤K(
1

N
+

√
(N − 1)p̃(1− p̃)

N
√
δ

) ,

with probability larger than 1− δ based on Chebyshev inequality. Hence, since the last expression converges

to 0 as N goes to infinity, it must be that for any level of confidence 1− δ and accuracy ε > 0 there exists

some N such that

P(|β̄(1− p̃)− β̃| ≤ ε)≥ 1− δ .
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