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The Diet Selection Problem

(Bertsimas & O’hair, 2013)

eo0ce B Main Dishes | Ricardo B
€ (O @ nhttps://www.ricardocuisine.com/en/recipes/main-dist c
RELITFED
MAIN DISHES APPETIZERS DESSERTS INGREDIENTS

e 8.3% of U.S. population (25.8

million) have diabetes which
can have serious
complications

Type Il diabetes is known to
be related to obesity

Dietary change is among the
most effective ways of
preventing/controlling the
disease

A study made in the UK
showed that only 20% of
dieters last more than one
month

@@ Nutrition Facts

2 | Serving Size 2/3 cup (55g)
— u.,"' Servings Per Container About 8

== "8l Amount Per Serving

Calories 230 Calories from Fat 40

% Daily Value*
12%

* Percent Daily Values are based on a 2,000 calorie diet.
Your daily value may be higher or lower depending on
your calorie needs.

Calories: 2,000 2,500
Total Fat Less than  65¢g 809
Sat Fat Lessthan  20g 259
Cholesterol Less than  300mg 300mg
Sodium Lessthan 2,400mg  2,400mg
Total Carbohydrate 3009 3759
Dietary Fiber 25¢g 309

. | Total Fat 8g .
Saturated Fat 1g 5% . —
P> Trans Fat Og %;J {' ”‘
#| Cholesterol Omg 0% -
AT sodium 160mg 7%
Total Carbohydrate 37¢g 12%
Dietary Fiber 49 16%
[  Sugars 1g | &
o Protein 3g [;
L3l I |
o Vitamin A 10% | £
| Vitamin C 8% [
Calcium 20%
Iron 45%
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The Portfolio Selection
Prob\em

e An individual meets with his
financial advisor to tell him
he wishes to invest in a
given industrial sector,
country, etc.

e Since uncertain factors
affect performance, a
« good » portfolio is one
where the risks of losses
are best justified by the
potential gains




The Portfolio Selection
Problem ‘

e An individual meets with his
financial advisor to tell him
he wishes to invest in a
given industrial sector,
country, etc.

e Since uncertain factors
affect performance, a
« good » portfolio is one
where thepr=
are best |
potential

How can we identity
optimal investments?
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Why are these decisions
difficult to make”

Something important is at stake

Someone is held accountable for the decision
The performance measure is multi-dimensional
The alternatives are numerous

Numerical optimization can only help once the
decision maker’s subjective preterences have
been fully characterized.
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How can we elicit
subjective preferences?

* An individual
that wishes to &
control his diet ‘-
can make
pairwise
comparisons of
meals that he
prefers




How can we elicit
subjective preferences?

* An investor can indicate what type of wealth
evolution he is comfortable with
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The strength of utility theory

* In 1954, G. Debreu established that if the
preference relation is complete, transitive, and
continuous, then there exists a utility mapping
such that

XY & uX)>ulY)
where X,Y € R™ describe two alternatives

e This implies that any such preference relation
can be numerically optimized

max u(Z(x))
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The limitations of utility theory

e |ssue #1: One cannot sit down and make all
possible comparisons
(e.g. 4657 recipes on ricardocuisine.com makes ).

*MUNCHING, GOBBLING ™
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The limitations of utility theory

 |ssue #1: One cannot sit down and make all

possible comparisons
(e.g. 4657 recipes on ricardocuisine.com makes ).

e Solutions :

 Make simplitying assumptions about the
structure of u() in order to allow interpolation

* Employ a scheme that handles uncertainty
about u()
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The limitations of utility theory

e |ssue #2: One can easily provide false information
about his preferences. (Kahneman & Tversky, 1979)
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Example (adapted from Kahneman & Tversky, 1979)

We are expecting a new outbreak of the flu virus HIN1 next
winter in Canada. Experts believe that 5000 people will die if
nothing is done.

Which program should be adopted ?
Drug A (well studied): 4000 among those at risk would be saved

Drug B (experimental): 80% chance that everyone is saved, 20%
that none are saved
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Example (adapted from Kahneman & Tversky, 1979)

We are expecting a new outbreak of the flu virus HIN1 next
winter in Canada. Experts believe that 5000 people will die if
nothing is done.

Which program should be adopted ?

Drug C: 1000 people would end up dying
Drug D : 20% chance that all those at risk die, 80% that none of

them die
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Example (adapted from Kahneman & Tversky, 1979)

We are expecting a new outbreak of the flu virus HIN1 next

winter in Canada. Experts believe that 5000 people will die if
nothing is done.

Which program should be adopted ?

Drug A (well studied): 4000 among those at risk would be saved
Drug B (experimental): 80% chance that everyone is saved, 20%
that none are saved
Drug C (same as A): 1000 people would end up dying
Drug D (same as B): 20% chance that all those at risk die, 80%
that none of them die

Many select Drug A & D but do not mean to be inconsistent.
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The limitations of utility theory

e |ssue #2: One can easily provide false information
about his preferences. (Kahneman & Tversky, 1979)

e Solutions :

 Make simplitying assumption about the
structure of u() in order to filter the errors

« Employ a scheme that handles uncertainty
about u()

11 /34



Uncertainty models for
poreferences

» Stochastic uncertainty: u ~ Fy,
(e.g. Chajewska et al. 2000)

revealed
preferences




Uncertainty models for
poreferences

e Stochastic uncertainty: w ~ Fy,
(e.g. Chajewska et al. 2000)

. Knightian uncertainty: © € U
(e.g. Hadar & Russell, 1969; Boutilier et al. 2006; Evren & Ok, 2011)
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Preference robust optimization

Max-min utility (Hu & Mehrotra, 2015):

maximize min u(Z(x))
reX uelU

Dominance constraint (Dentcheva & Ruszczynski, 2003; Haskell et al., 2016):

maximize f(x)

subject to u(Z(x)) >u(Zy), Vuel

Optimized dominance: choosing { Z; }1er, Z¢ = Zp , V't > t’
(Armbruster & D., 2015; D. & Li, 2017)

maximize t
reX ,teR

subject to u(Z(x)) > u(Zy) , Vuel
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The role of preference robust
optimization In decision
making under uncertainty




Decision making under
uncertainty

e Let (£2,%,P) be a probability space with |2 = M
and Z(z):Q — R arandom variable

* Preference between two R.V. depends on our
attitude towards risk

Theorem. FEvery decision maker expresses some
level of aversion to risk
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Decision making under
Lincertaintyv

0SS

0SS

St. Petersburg paradox

| offer you to participate in the following game:

1. | flip an unbiased coin

2. First throw: if it falls on « head », | give you 28,
otherwise | flip again

3. Second throw: If it falls on « head », | give you 48,

otherwise | flip again

4. K-th throw: If it falls on « head », | give you 2*S,

otherwise | flip again

What is the largest amount you would pay to play this game?
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Decision making under

0SS

0SS

Lincertaintyv

St. Petersburg paradox

| offer you to participate in the following game:

1. | flip an unbiased coin

2. First throw: if it falls on « head », | give you 28,
otherwise | flip again

3. Second throw: If it falls on « head », | give you 48,

otherwise | flip again

4. K-th throw: If it falls on « head », | give you 2*S,

otherwise | flip again

WI What if | tell you that the expected winning is infinite ?

E[Z]:%-2+i-4—|—---—|—(%)k-2k—|—---:oo[/54




How can one assess risk tolerance”

[Grable & Lytton, Financial Services Review (1999)]

1. You have just finished saving for a « once-in-a-lifetime »
vacation. Three weeks before you plan to leave, you lose your
job. You would:

A. Cancel the vacation
B. Take a much more modest vacation

C. Go as scheduled, reasoning that you need the time to
prepare for a job search

D. Extend your vacation, because this might be your last
chance to go first-class

2. You are on a TV game show and can choose one of the
following. Which would you take?

A. $1,000 in cash

B. A 50% chance at winning $ 5000
C. A 25% chance at winning $ 10,000
D. A 5% chance at winning $100,000




Axiomatic assumptions

Monotonicity: X >Y = X =Y

Risk Aversion: X »Y = X+ (1-0)Y =Y,V0 € |0,1]
Law Invariance: X =p Y =Y ~ X

Independence: X »Y = X&8Z - Y&$87Z V2
Translation Invariance: X =Y = X +t>Y +¢, Vt

M+RA+LI+Indep. = Expected utility for some non-decreasing
concave function (von Neumann & Morgenstern, 1944)

M+RA+LI+TI = Law invariant convex risk measures:
(Kusuoka, 2001)

e Scalelnvariance: X =Y = aX = aY, Va>0

18 /34



What are we left with?

* |n the case of expected utility, let S :==R :

U:={u|dv:S—=>R, u(-) =E[v(-)], v(0) =0

Monotonicity:  J0v:S = R, dv(-) >0
Risk aversion:  v(y) <wv(x)+ (y — x)ov(x), Va,y €S

Pairwise comparisons:  Eju(Wy)] > E[v(Ys)], VE }
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What are we left with?

* |n the case of expected utility, let S :==R :

U:={u|dv:S—=>R, u(-) =E[v(-)], v(0) =0

Monotonicity:  39v:S8'—= R, dv(-) >0
Risk aversion:  v(y) < v(z) + (y — z)ov(z), Va,y €S’

Pairwise comparisons:  Eju(Wy)] > E[v(Ys)], VE }

« Fortunately, we can replace & with finite set S’ that
only includes the joint support of Wy, Yy and Z;
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What are we left with?

e |n the case of risk measures, let S := RM

U:={u|Tp:S =R, u(-)=—p(), p(0) =0
Monotonicity:  dVp:S = R, Vp(-) <0
Risk aversion: p(Y) > p(X)+ (Y — X)Vp(X), VX, Y €S
Translation invariance: 17Vp(X)=-1,VX € S
Scale invariance: p(X)=X!1Vp(X), VX €S
Law invariance: (see details in Delage & Li, 2016)

Pairwise comparisons: p(Wx) < p(Yi), VEk }
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e |n the case of risk measures, let S := RM

U:={u|Tp:S =R, u(-)=—p(), p(0) =0
Monotonicity:  3IVp:S' = R, Vp(-) <0
Risk aversion: p(Y) > p(X)+ (Y — X)Vp(X), VX, Y € S’
Translation invariance: 17Vp(X) = -1, VX €8’
Scale invariance: p(X) = X!1Vp(X), VX €8’
Law invariance: (see details in Delage & Li, 2016)
Pairwise comparisons: p(Wx) < p(Yi), VEk }

« Fortunately, we can replace S with finite set S’ that only
includes all Wg, Yk, and Z;
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How do we optimize ?

e Consider maximizing worst-case utility surplus:

maximize
reX

Y(x) :=min u(Z(x)) — u(Zy)

ueU

* One can actually show that

Y(x) =

Convex risk measure

/N

Ve

~

. . T, —
UEIZI/lll(%’) a,B:aTX—l—ﬁlgnu(X)’VXesf « (ZC) —|—6 ’LL( t)
min K inf a(x)+ 6 —ulZ
uEU(S’) [a,B:aerBSu(y),VyES' () + 5 = ulZ)

Expected utility

« Duality can be applied to get a finite dimensional optimization problem
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How do we optimize ?

e Without further ado, here is the reformulation for
expected utility (with Z(z) := h(z, £(w)) ):

maximize V0
.SUEX,[,L,V,A(l) ?A(2)

Linear equalities

+A A =P APy = Pz, = 5;) v
AP Fye1 = ) = A1 (5 — -1) SOV

Convex constraints _ .
If his concave { Zy‘jm’j S Plwh(z, elwi)) Vi

Linear inequalities {

J
Linear equalities { Zm,j = P(w;) Vi
j

p>0,v >0, A >0 2% >0, 22 /34



How do we optimize ?

e Consider instead the case:

maximize t
reX,teR

subject to u(Z(x)) > u(Zy), Vuel

e |ft*is known to lie in some interval [to, t1], then one can
employ the bisection method on t:

max t:max min u(Z(x)) —u(Zs) >0
tE[tO,tl] reX uelU
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Value of optimized dominance model

1. Optimized dominance reduces to max-min utility

when
U(Zt) = U/(Zt), \V/’U,,U/ S Z/{, Vi

* In expected utility this occurs if S C |Zmin, Zmax]

7, — { Zmax  With prob. t & Vuel. { U(Zmax ) :é }

Zmin  With prob. 1 —¢ U( Zmin)

e With convex risk measures, this occurs if
Zt =1

24 /34



Value of optimized dominance model

2. When 4; :=t, the proposed decision is guaranteed to
be preferred to the largest available guaranteed return

 As a conseqguence, it iImplements a conservative
use of preference information
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Value of optimized dominance model

Example:
Consider the following two risky investments.

U := {u | u concave, u(—100) =0, u(2) = 1}

Max-min expected utility would recommend :

E[U*(A)]=099 Q9%

100%
Oante

E[A]=0.98 1% EE=6
-100$ u*=0
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Example:
Consider the following two risky investments.

U := {u | u concave, u(—100) =0, u(2) = 1}

Max-min expected utility would recommend :

-100 o 2
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Value of optimized dominance model

Example:
Consider the following two risky investments.

U := {u | u concave, u(—100) =0, u(2) = 1}

Max-min expected utility would recommend :

-100 0




Value of optimized dominance model

Example:
Consider the following two risky investments.

U := {u | u concave, u(—100) =0, u(2) = 1}

Max-min expected utility would recommend :

E[U*(A)]=0.99 ggo, E[u*(B)]=~0.98
100%
(B os
E[A]=0.98 19 E[B]=0 f o
-100% U=0)

u*=~0.98

.
v
.

-100




Value of optimized dominance model

2. Example:
Consider the following two risky investments.
U := {u | u concave, u(—100) =0, u(2) = 1}
= sup{t : miny ey Elu(Z(x)] — u(t) > 0} = essinf Z(x)
Optimized dominance with Z; := t would recommend :
2%
essinf=-100 20 essinf=0
100%
‘_. 03
1% L [RETERRS
-100% ; :
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Accounting for elicitation errors

* Since even the best intention
can lead to making mistakes,
we might need to account for
mislabeled comparisons

* One can replace the comparison constraint with:

36 € RE, ||6]|y < T, u(Wi) + 6 > u(Ye), Vh=1,..., K

* Bertsimas and O’hair (2015) even propose accounting for
some preference reversals with :

K w(Wy) 2 ul(Yy) — Mz
3z € {0, 11K, Sz, < T, { u(Yk() Z)u(Wk() —)M(l—Zk) } vk

28 34



A brief survey of our
numerical experiments



Numerical experiments

Experiments are made using empirical stochastic
models based on historical weekly returns from
Yahoo Finance

We create a synthetic decision maker with some
choice of @(-) which is kept hidden

Information comes from a number of comparisons
made using u(-) for sets of randomly picked (W3, Yz)

Results are averaged over a large number of
stochastic models and sets of comparisons

30 /34



Performance in terms of
certainty equivalent™
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* Certainty equivalent: u(C'E|Z(x)]) = u(Z(x))



Effect of elicitation strategy

 One can improve convergence rate by designing
effective elicitation strateqies

05
1 i
0.4} i I,
L
T

=
8}

Random Utility Split
Random Relative Utility Split

Certainty Equivalent (in pp)

0.1 — Objective—driven
Full Knowledge
0 ' ' ' -

Number of questions
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Utility value

Utility value

Quality of recovered u

Utility value

5 questions 20 questions 80 questions
1
1
0.8
06 0.95
04 Exponential
09 = = = Ground truth
0.2 { Envelope
0 0.85
-10 0 10 -5 0 5
! 1
0.8
06 0.95
04 Piecewise linear
0.9 = = = Ground truth
02 Envelope
0 0.85
-10 0 10 -5 0 5
! 1
0.8
06 0.95
04 Worst—case
1 09 = = = Ground truth
) 0.2 ,' Envelope
0 0 0.85 /
-10 0 10 -10 0 10 -5 0 5 33 34

Returns (in p.p.) Returns (in p.p.) Returns (in p.p.)



Utility value

Utility value

Quality of recovered u

5 questions

-10 0 10

Returns (in p.n.)

20 questions

-10 0 10

-10 0 10
Returns (in p.p.)

80 questions

Exponential
= = = Ground truth
Envelope

Piecewise linear

0.9 = = =Ground truth
Envelope
0.85
-5 0 5

0.95

Worst—case

0.9 = = = Ground truth
Envelope
0.85
-5 0 5

Returns (in p.p.)

e Exponential utility

model does not
recover true
utility function

Piecewise linear
model takes
excessive risks
when information
IS limited

Optimized
dominance
resolves both
ISSUEs
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Conclusion

Many optimization problems involve objective functions
that need to reflect the decision maker’s preterences

PRO accounts for the limited knowledge about these
preferences : axioms + pairwise comparisons

PRO offers valuable guarantees with respect to the
unrevealed preference relation

PRO preserves difficulty of resolution: LP —> LP

Many potential applications: game theory, revenue
management, expert systems, recommendation
systems...
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