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The Diet Selection Problem  
(Bertsimas & O’hair, 2013)

• 8.3% of U.S. population (25.8 
million) have diabetes which 
can have serious 
complications

• Type II diabetes is known to 
be related to obesity

• Dietary change is among the 
most effective ways of 
preventing/controlling the 
disease

• A study made in the UK 
showed that only 20% of 
dieters last more than one 
month

2
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How can we identify 
optimal diets?
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The Portfolio Selection 
Problem

• An individual meets with his 
financial advisor to tell him 
he wishes to invest in a 
given industrial sector, 
country, etc.

• Since uncertain factors 
affect performance, a 
« good » portfolio is one 
where the risks of losses 
are best justified by the 
potential gains

4
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Why are these decisions 
difficult to make?

• Something important is at stake
• Someone is held accountable for the decision
• The performance measure is multi-dimensional
• The alternatives are numerous

• Numerical optimization can only help once the 
decision maker’s subjective preferences have 
been fully characterized.

5
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How can we elicit 
subjective preferences?

• An individual 
that wishes to 
control his diet 
can make 
pairwise 
comparisons of 
meals that he 
prefers

6
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• An investor can indicate what type of wealth 
evolution he is comfortable with

8
Jan 2012 Jan 2013 Jan 2014 Jan 2015 Jan 2016

+100%

+230%

Yahoo

Nasdaq

How can we elicit 
subjective preferences?
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The strength of utility theory
• In 1954, G. Debreu established that if the 

preference relation is complete, transitive, and 
continuous, then there exists a utility mapping 
such that 
 
where                   describe two alternatives

• This implies that any such preference relation 
can be numerically optimized

9

X ⌫ Y , u(X) � u(Y )

max

x2X
u(Z(x))

X,Y 2 RM
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The limitations of utility theory
• Issue #1: One cannot sit down and make all 

possible comparisons  
(e.g. 4657 recipes on ricardocuisine.com makes ).

10
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The limitations of utility theory
• Issue #1: One cannot sit down and make all 

possible comparisons  
(e.g. 4657 recipes on ricardocuisine.com makes ).

• Solutions : 
• Make simplifying assumptions about the 

structure of u() in order to allow interpolation
• Employ a scheme that handles uncertainty 

about u() 

10
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The limitations of utility theory

• Issue #2: One can easily provide false information 
about his preferences. (Kahneman & Tversky, 1979)

11



/34

The limitations of utility theory

• Issue #2: One can easily provide false information 
about his preferences. (Kahneman & Tversky, 1979)

Example	(adapted	from	Kahneman	&	Tversky,	1979)	

We	are	expec?ng	a	new	outbreak	of	the	flu	virus	H1N1	next	
winter	in	Canada.		Experts	believe	that	5000	people	will	die	if	
nothing	is	done.		

Which	program	should	be	adopted	?	

 
 

Drug	A	(well	studied):	4000	among	those	at	risk	would	be	saved	
Drug	B	(experimental):	80%	chance	that	everyone	is	saved,	20%	

that	none	are	saved

11
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We	are	expec?ng	a	new	outbreak	of	the	flu	virus	H1N1	next	
winter	in	Canada.		Experts	believe	that	5000	people	will	die	if	
nothing	is	done.		

Which	program	should	be	adopted	?	

Drug	A	(well	studied):	4000	among	those	at	risk	would	be	saved	
Drug	B	(experimental):	80%	chance	that	everyone	is	saved,	20%	

that	none	are	saved	
Drug	C	(same	as	A):	1000	people	would	end	up	dying	
Drug	D	(same	as	B):		20%	chance	that	all	those	at	risk	die,	80%	

that	none	of	them	die	

Many	select	Drug	A	&	D	but	do	not	mean	to	be	inconsistent.
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The limitations of utility theory

• Issue #2: One can easily provide false information 
about his preferences. (Kahneman & Tversky, 1979)

• Solutions : 
• Make simplifying assumption about the 

structure of u() in order to filter the errors
• Employ a scheme that handles uncertainty 

about u() 

11
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Uncertainty models for 
preferences

• Stochastic uncertainty:  
(e.g. Chajewska et al. 2000)  
 

12
u ⇠ Fu

revealed 
preferences u ⇠ F 0

u

u ⇠ Fu
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Uncertainty models for 
preferences

• Stochastic uncertainty:  
(e.g. Chajewska et al. 2000)

• Knightian uncertainty: 
(e.g. Hadar & Russell, 1969; Boutilier et al. 2006; Evren & Ok, 2011)

13

u 2 U

U U 0

u ⇠ Fu

revealed 
preferences
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Preference robust optimization
• Max-min utility (Hu & Mehrotra, 2015): 
 
 

• Dominance constraint (Dentcheva & Ruszczynski, 2003; Haskell et al., 2016): 
 
 
 
 

• Optimized dominance: choosing 
(Armbruster & D., 2015; D. & Li, 2017)  

14

maximize

x2X
min

u2U
u(Z(x))

maximize

x2X ,t2R
t

subject to u(Z(x)) � u(Z

t

) , 8u 2 U

maximize

x2X
f(x)

subject to u(Z(x)) � u(Z0) , 8u 2 U

{Zt}t2R , Zt ⌫ Zt0 , 8 t � t0



The role of preference robust 
optimization in decision 

making under uncertainty
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Decision making under 
uncertainty

• Let                be a probability space with    
and                           a random variable

• Preference between two R.V. depends on our 
attitude towards risk 
 
 

16

(⌦,⌃, P )

Z(x) : ⌦ ! R
|⌦| = M

Theorem. Every decision maker expresses some

level of aversion to risk
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(⌦,⌃, P )

Z(x) : ⌦ ! R
|⌦| = M

Theorem. Every decision maker expresses some

level of aversion to risk

St.	Petersburg	paradox	

I	offer	you	to	par?cipate	in	the	following	game:	
1. I	flip	an	unbiased	coin	
2. First	throw:	if	it	falls	on	«	head	»,	I	give	you	2$, 

																						otherwise	I	flip	again	
3. Second	throw:	If	it	falls	on	«	head	»,	I	give	you	4$, 

																											otherwise	I	flip	again	
4. K-th	throw:	If	it	falls	on	«	head	»,	I	give	you	2k$, 

																					otherwise	I	flip	again	

What	is	the	largest	amount	you	would	pay	to	play	this	game?
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E[Z] = 1

2 · 2 + 1
4 · 4 + · · ·+ ( 12 )

k · 2k + · · · = 1

,, , =16$
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How can one assess risk tolerance?  
[Grable & Lytton, Financial Services Review (1999)]

1. You have just finished saving for a « once-in-a-lifetime » 
vacation. Three weeks before you plan to leave, you lose your 
job. You would:

A. Cancel the vacation
B. Take a much more modest vacation
C. Go as scheduled, reasoning that you need the time to 

prepare for a job search
D. Extend your vacation, because this might be your last 

chance to go first-class

2. You are on a TV game show and can choose one of the 
following. Which would you take?

A. $1,000 in cash
B. A 50% chance at winning $ 5000
C. A 25% chance at winning $ 10,000
D. A 5% chance at winning $100,000

17
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Axiomatic assumptions
• Monotonicity: 
• Risk Aversion: 
• Law Invariance: 
• Independence: 
• Translation Invariance: 

• M+RA+LI+Indep. = Expected utility for some non-decreasing 
concave function (von Neumann & Morgenstern, 1944)

• M+RA+LI+TI = Law invariant convex risk measures: 
(Kusuoka, 2001)
• Scale Invariance : 

18

X � Y ) X ⌫ Y

X ⌫ Y ) ✓X + (1� ✓)Y ⌫ Y, 8 ✓ 2 [0, 1]

X =P Y ) Y ⇡ X

X ⌫ Y ) X + t ⌫ Y + t, 8 t

X ⌫ Y ) ↵X ⌫ ↵Y, 8↵ � 0

X ⌫ Y ) X �✓ Z ⌫ Y �✓ Z, 8Z, ✓ 2 [0, 1]
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What are we left with?
• In the case of expected utility, let             : 
 
 
 
 
 
 

19

E[v(Wk)] � E[v(Yk)], 8 k }

S := R

v(y)  v(x) + (y � x)@v(x), 8x, y 2 S
Monotonicity:
Risk aversion:

Pairwise comparisons:

U := {u | 9 v : S ! R, u(·) = E[v(·)], v(0) = 0

9 @v : S ! R, @v(·) � 0
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What are we left with?
• In the case of expected utility, let             : 
 
 
 
 
 
 

• Fortunately, we can replace       with finite set         that 
only includes the joint support of        ,      and
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What are we left with?
• In the case of risk measures, let                  : 
 
 
 
 
 
 
 
 

20

}⇢(Wk)  ⇢(Yk), 8 k

S := RM

⇢(Y ) � ⇢(X) + (Y �X)r⇢(X), 8X,Y 2 S
1Tr⇢(X) = �1, 8X 2 S

⇢(X) = XTr⇢(X), 8X 2 S

Monotonicity:
Risk aversion:
Translation invariance:

Pairwise comparisons:

Scale invariance:
Law invariance: (see details in Delage & Li, 2016)

U := {u | 9 ⇢ : S ! R, u(·) = �⇢(·), ⇢(0) = 0

9r⇢ : S ! R, r⇢(·)  0
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How do we optimize ?
• Consider maximizing worst-case utility surplus: 
 
 

• One can actually show that 
 
 
 
 
 
 
 

• Duality can be applied to get a finite dimensional optimization problem

21

maximize

x2X
 (x) := min

u2U
u(Z(x))� u(Z

t

)

min

u2U(S0)
E[ inf

↵,�:↵y+�u(y), 8 y2S0
↵Z(x) + � � u(Zt)]

| {z }
Expected utility

Convex risk measurez }| {
min

u2U(S0)
inf

↵,�:↵TX+�u(X), 8X2S0
↵

T
Z(x) + � � u(Zt)

 (x) =

8
>><

>>:
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How do we optimize ?
• Without further ado, here is the reformulation for 

expected utility (with                            ):  
 
 
 
 
 
 
 

22

Z(x) := h(x, ⇠(!))

maximize

x2X ,µ,⌫,�(1)
,�(2)

⌫0

X

i

µ

i,j

� (P(W0 = ȳ

j

)� P(Y0 = ȳ

j

))⌫0

�
X

k

(P(W
k

= ȳ

j

)� P(Y
k

= ȳ

j

))⌫

k

+(�

(1)
j

� �

(1)
j�1)� (�

(2)
j

� �

(2)
j�1) = P(Z

t

= ȳ

j

) 8 j

�

(2)
j

(ȳ

j+1 � ȳ

j

)� �

(1)
j�1(ȳj � ȳ

j�1)  0 8 j
X

j

ȳ

j

µ

i,j

 P(!
i

)h(x, ⇠(!

i

)) 8 i

X

j

µ

i,j

= P(!
i

) 8 i

µ � 0 , ⌫ � 0 , �(1) � 0 , �(2) � 0 ,

Linear inequalities {

Linear equalities

8
<

:

Linear equalities {
Convex constraints 

 if h is concave {
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How do we optimize ?
• Consider instead the case: 
 
 
 

• If t* is known to lie in some interval [t0, t1], then one can 
employ the bisection method on t:  
 
 
 

23

maximize

x2X ,t2R
t

subject to u(Z(x)) � u(Z

t

) , 8u 2 U

max

t2[t0,t1]
t : max

x2X
min

u2U
u(Z(x))� u(Z

t

) � 0
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Value of optimized dominance model

1. Optimized dominance reduces to max-min utility 
when 

• In expected utility this occurs if 
 
 
 

• With convex risk measures, this occurs if 

24

Zt := t & u(0) = 0

S ✓ [z
min

, z
max

]

u(Zt) = u0(Zt), 8u, u0 2 U , 8 t

Zt :=

⇢
z
max

with prob. t
z
min

with prob. 1� t
& 8u 2 U ,

⇢
u(z

max

) = 1

u(z
min

) = 0

�
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Zt := t2. When             , the proposed decision is guaranteed to 
be preferred to the largest available guaranteed return 

• As a consequence, it implements a conservative 
use of preference information 
 
 
 
 
 
 

26

Value of optimized dominance model
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Zt := t2. When             , the proposed decision is guaranteed to 
be preferred to the largest available guaranteed return 

• As a consequence, it implements a conservative 
use of preference information 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Example:	
Consider	the	following	two	risky	investments.  
 

Max-min	expected	u?lity	would	recommend	:	
 
 
 
 
 

U := {u | u concave, u(�100) = 0, u(2) = 1}

A

99%

 1%

   2$

-100$

B 100%
   0$

   u*=1

   u*=0

   E[u*(A)]=0.99

Value of optimized dominance model

   E[A]=0.98    E[B]=0
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Zt := t2. When             , the proposed decision is guaranteed to 
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Accounting for elicitation errors
• Since even the best intention   

can lead to making mistakes,  
 

• One can replace the comparison constraint with: 
 
 

• Bertsimas and O’hair (2015) even propose accounting for 
some preference reversals with : 
 

28

9z 2 {0, 1}K ,
P

zk  �,

⇢
u(Wk) � u(Yk)�Mzk

u(Yk) � u(Wk)�M(1� zk)

�
, 8 k

9� 2 RK , k�k1  �, u(Wk) + �k � u(Yk), 8 k = 1, . . . ,K

we might need to account for 
mislabeled comparisons



A brief survey of our 
numerical experiments
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Numerical experiments
• Experiments are made using empirical stochastic 

models based on historical weekly returns from 
Yahoo Finance

• We create a synthetic decision maker with some 
choice of         which is kept hidden

• Information comes from a number of comparisons 
made using        for sets of randomly picked

• Results are averaged over a large number of 
stochastic models and sets of comparisons

30

ū(·)

ū(·)

(Wk, Yk)
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Performance in terms of 
certainty equivalent*

* Certainty equivalent : 
31

ū(CE[Z(x)]) = ū(Z(x))
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Effect of elicitation strategy
• One can improve convergence rate by designing 

effective elicitation strategies
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Figure 3 Effect of increasing numbers of questions in a stochastic domination formulation: (a) presents the

expected return (in percentage points) and (b) presents the L1-distance between optimal allocation with K

queries and the optimal allocation with full knowledge. Shown are averages and standard errors from 1500

simulations.
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Figure 4 Effect of increasing numbers of questions in a robust certainty equivalent formulation: (a) presents

the certainty equivalent (in percentage points) of the optimal portfolio as measured with respect to the true

utility function and (b) presents the L1-distance between optimal allocation with K queries and the optimal

allocation with full knowledge. Shown are averages and standard errors from 500 simulations.

4.3.2. Results. While figure 3 relates to the stochastic dominance formulation, figure 4 relates

to the robust certainty equivalent formulation. Figures 3(a) and 4(a) show how our objective value

improves as we gain more knowledge about the investor’s preferences. Figures 3(b) and 4(b) focus

on the convergence of the optimal allocation.

For both formulations, we observe that the total gain between no knowledge of preferences except

risk-aversion and full knowledge is worth, on average, 0.4 percentage points of weekly return. We

can also see that the improvement in performance is quick for the initial 10–20 queries. In fact
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Quality of recovered u()
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Figure 2 Evolution of the bounding envelope of utility functions in U
2 and of the utility functions used by the

different approaches as observed in one experiment for a growing number of answered questions. The worst-case

utility function is obtained by solving the robust certainty equivalent optimization problem. Note that for the 80

questions scenario a zoomed in version of the curves are provide to highlight the irreducible fitting error of the

exponential utility.

maker’s true utility function over the weekly return now has a constant absolute risk aversion level

of 10: ū(y) := 1− e−10y. Note that although the decision maker is unaware that his preferences can

be represented by this function, we assume that he never contradicts the conclusions suggested

by such a utility function when comparing lotteries to each other. Our experiments consist of
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Quality of recovered u()
• Exponential utility 

model does not 
recover true 
utility function

• Piecewise linear 
model takes 
excessive risks 
when information 
is limited 

• Optimized 
dominance 
resolves both 
issues
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Figure 2 Evolution of the bounding envelope of utility functions in U
2 and of the utility functions used by the

different approaches as observed in one experiment for a growing number of answered questions. The worst-case

utility function is obtained by solving the robust certainty equivalent optimization problem. Note that for the 80

questions scenario a zoomed in version of the curves are provide to highlight the irreducible fitting error of the

exponential utility.

maker’s true utility function over the weekly return now has a constant absolute risk aversion level

of 10: ū(y) := 1− e−10y. Note that although the decision maker is unaware that his preferences can

be represented by this function, we assume that he never contradicts the conclusions suggested

by such a utility function when comparing lotteries to each other. Our experiments consist of
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Conclusion
• Many optimization problems involve objective functions 

that need to reflect the decision maker’s preferences
• PRO accounts for the limited knowledge about these 

preferences : axioms + pairwise comparisons
• PRO offers valuable guarantees with respect to the 

unrevealed preference relation
• PRO preserves difficulty of resolution: LP —> LP
• Many potential applications: game theory, revenue 

management, expert systems, recommendation 
systems…
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attention
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