Preference robust optimization for decision making under uncertainty

Erick Delage* (joint work with Benjamin Armbruster** and Jonathan Y. Li***)

* HEC Montréal, CRC in decision making under uncertainty ** Northwestern University *** University of Ottawa

Canada C Research c Chairs c

Chaires de recherche du Canada

The Diet Selection Problem

(Bertsimas & O'hair, 2013)

- 8.3% of U.S. population (25.8 million) have diabetes which can have serious complications
- Type II diabetes is known to be related to obesity
- Dietary change is among the most effective ways of preventing/controlling the disease
- A study made in the UK showed that only 20% of dieters last more than one month

The Diet Selection Problem

(Bertsimas & O'hair, 2013)

- 8.3% of U.S. population (25.8 million) have diabetes which can have serious complications
- Type II diabetes is known to be related to obesity
- Dietary change is among the most effective ways of preventing/controlling the disease
- A study made in the LIK showed that d dieters last m month

How can we identify optimal diets?

Less than

2.400ma

300a

25g

2,400mg

375g

30g

Sodium

Total Carbohydrate

Dietary Fiber

The Portfolio Selection Problem

- An individual meets with his financial advisor to tell him he wishes to invest in a given industrial sector, country, etc.
- Since uncertain factors affect performance, a
 « good » portfolio is one where the risks of losses are best justified by the potential gains

The Portfolio Selection Problem

- An individual meets with his financial advisor to tell him he wishes to invest in a given industrial sector, country, etc.
- Since uncertain factors affect performance, a

 good » portfolio is one
 where the risks of loss
 are best ji
 How can we identify
 potential (optimal investments?

optimal investments?

Why are these decisions difficult to make?

- Something important is at stake
- Someone is held accountable for the decision
- The performance measure is multi-dimensional
- The alternatives are numerous
- Numerical optimization can only help once the decision maker's subjective preferences have been fully characterized.

How can we elicit subjective preferences?

 An individual that wishes to control his diet can make pairwise comparisons of meals that he prefers

How can we elicit subjective preferences?

• An investor can indicate what type of wealth evolution he is comfortable with

The strength of utility theory

 In 1954, G. Debreu established that if the preference relation is complete, transitive, and continuous, then there exists a utility mapping such that

 $X \succeq Y \quad \Leftrightarrow \quad u(X) \ge u(Y)$

where $X, Y \in \mathbb{R}^M$ describe two alternatives

• This implies that any such preference relation can be numerically optimized

 $\max_{x \in \mathcal{X}} \ u(Z(x))$

 Issue #1: One cannot sit down and make all possible comparisons

(e.g. 4657 recipes on ricardocuisine.com makes).

- Issue #1: One cannot sit down and make all possible comparisons
 (e.g. 4657 recipes on <u>ricardocuisine.com</u> makes).
- Solutions :
 - Make simplifying assumptions about the structure of u() in order to allow interpolation
 - Employ a scheme that handles uncertainty about u()

• Issue #2: One can easily provide false information about his preferences. (Kahneman & Tversky, 1979)

Example (adapted from Kahneman & Tversky, 1979)

We are expecting a new outbreak of the flu virus H1N1 next winter in Canada. Experts believe that 5000 people will die if nothing is done.

Which program should be adopted ?

Drug A (well studied): 4000 among those at risk would be saved Drug B (experimental): 80% chance that everyone is saved, 20% that none are saved Example (adapted from Kahneman & Tversky, 1979)

We are expecting a new outbreak of the flu virus H1N1 next winter in Canada. Experts believe that 5000 people will die if nothing is done.

Which program should be adopted ?

Drug C : 1000 people would end up dying Drug D : 20% chance that all those at risk die, 80% that none of them die Example (adapted from Kahneman & Tversky, 1979)

We are expecting a new outbreak of the flu virus H1N1 next winter in Canada. Experts believe that 5000 people will die if nothing is done.

Which program should be adopted ?

Drug A (well studied): 4000 among those at risk would be saved Drug B (experimental): 80% chance that everyone is saved, 20% that none are saved Drug C (same as A): 1000 people would end up dying Drug D (same as B): 20% chance that all those at risk die, 80% that none of them die

Many select Drug A & D but do not mean to be inconsistent.

- Issue #2: One can easily provide false information about his preferences. (Kahneman & Tversky, 1979)
- Solutions :
 - Make simplifying assumption about the structure of u() in order to filter the errors
 - Employ a scheme that handles uncertainty about u()

Uncertainty models for preferences

• Stochastic uncertainty: $u \sim F_u$ (e.g. Chajewska et al. 2000)

Uncertainty models for preferences

- Stochastic uncertainty: $u \sim F_u$ (e.g. Chajewska et al. 2000)
- Knightian uncertainty: $u \in \mathcal{U}$ (e.g. Hadar & Russell, 1969; Boutilier et al. 2006; Evren & Ok, 2011)

Preference robust optimization

• Max-min utility (Hu & Mehrotra, 2015):

maximize	min $u(Z($	x))
$x{\in}\mathcal{X}$	$u \in \mathcal{U}$	

• Dominance constraint (Dentcheva & Ruszczynski, 2003; Haskell et al., 2016):

$$\begin{array}{ll} \underset{x \in \mathcal{X}}{\text{maximize}} & f(x) \\ \text{subject to} & u(Z(x)) \ge u(Z_0) \ , \ \forall \, u \in \mathcal{U} \end{array}$$

• Optimized dominance: choosing $\{Z_t\}_{t\in\mathbb{R}}, Z_t \succeq Z_{t'}, \forall t \ge t'$ (Armbruster & D., 2015; D. & Li, 2017)

 $\begin{array}{ll} \underset{x \in \mathcal{X}, t \in \mathbb{R}}{\text{maximize}} & t\\ \text{subject to} & u(Z(x)) \geq u(Z_t) \ , \ \forall \, u \in \mathcal{U} \end{array}$

The role of preference robust optimization in decision making under uncertainty

Decision making under uncertainty

- Let (Ω, Σ, P) be a probability space with $|\Omega| = M$ and $Z(x): \Omega \to \mathbb{R}$ a random variable
- Preference between two R.V. depends on our attitude towards risk

Theorem. Every decision maker expresses some level of aversion to risk

Decision making under

St. Petersburg paradox

I offer you to participate in the following game:

- 1. I flip an unbiased coin
- 2. First throw: if it falls on « head », I give you 2\$, otherwise I flip again
- 3. Second throw: If it falls on « head », I give you 4\$, otherwise I flip again
- K-th throw: If it falls on « head », I give you 2^k\$, otherwise I flip again

What is the largest amount you would pay to play this game?

Decision making under

St. Petersburg paradox

, (LIBERTY 2013) =16\$

I offer you to participate in the following game:

- 1. I flip an unbiased coin
- 2. First throw: if it falls on « head », I give you 2\$, otherwise I flip again
- 3. Second throw: If it falls on « head », I give you 4\$, otherwise I flip again
- K-th throw: If it falls on « head », I give you 2^k\$, otherwise I flip again

W What if I tell you that the expected winning is infinite ?

$$\mathbb{E}[Z] = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + \dots + (\frac{1}{2})^k \cdot 2^k + \dots = \infty$$

How can one assess risk tolerance?

[Grable & Lytton, Financial Services Review (1999)]

- You have just finished saving for a « once-in-a-lifetime » vacation. Three weeks before you plan to leave, you lose your job. You would:
 - A. Cancel the vacation
 - B. Take a much more modest vacation
 - C. Go as scheduled, reasoning that you need the time to prepare for a job search
 - D. Extend your vacation, because this might be your last chance to go first-class
- Case yold y Bland was rate I am Crisham i and I am Crisham i am Crish
- 2. You are on a TV game show and can choose one of the following. Which would you take?
 - A. \$1,000 in cash
 - B. A 50% chance at winning \$ 5000
 - C. A 25% chance at winning \$ 10,000
 - D. A 5% chance at winning \$100,000

Axiomatic assumptions

- Monotonicity: $X \ge Y \implies X \succeq Y$
- Risk Aversion: $X \succeq Y \Rightarrow \theta X + (1 \theta)Y \succeq Y, \forall \theta \in [0, 1]$
- Law Invariance: $X =_P Y \Rightarrow Y \approx X$
- Independence: $X \succeq Y \Rightarrow X \bigotimes Z \succeq Y \bigotimes Z, \forall Z$
- Translation Invariance: $X \succeq Y \Rightarrow X + t \succeq Y + t, \forall t$
- M+RA+LI+Indep. = Expected utility for some non-decreasing concave function (von Neumann & Morgenstern, 1944)
- M+RA+LI+TI = Law invariant convex risk measures: (Kusuoka, 2001)
 - Scale Invariance : $X \succeq Y \Rightarrow \alpha X \succeq \alpha Y, \ \forall \alpha \ge 0$

• In the case of expected utility, let $\mathcal{S}:=\mathbb{R}$:

 $\mathcal{U} := \{ u \mid \exists v : \mathcal{S} \to \mathbb{R}, \, u(\cdot) = \mathbb{E}[v(\cdot)], \, v(0) = 0 \}$

 $\begin{array}{ll} \text{Monotonicity:} & \exists \, \partial v : \mathcal{S} \to \mathbb{R}, \ \partial v(\cdot) \geq 0\\ \text{Risk aversion:} & v(y) \leq v(x) + (y - x) \partial v(x), \ \forall \, x, y \in \mathcal{S}\\ \text{Pairwise comparisons:} & \mathbb{E}[v(W_k)] \geq \mathbb{E}[v(Y_k)], \ \forall \, k \end{array} \right\}$

- In the case of expected utility, let $\mathcal{S}:=\mathbb{R}$:

 $\mathcal{U} := \{ u \mid \exists v : \mathcal{S} \to \mathbb{R}, \, u(\cdot) = \mathbb{E}[v(\cdot)], \, v(0) = 0 \}$

Monotonicity: $\exists \partial v : \mathcal{S}' \to \mathbb{R}, \ \partial v(\cdot) \ge 0$ Risk aversion: $v(y) \le v(x) + (y - x)\partial v(x), \ \forall x, y \in \mathcal{S}'$ Pairwise comparisons: $\mathbb{E}[v(W_k)] \ge \mathbb{E}[v(Y_k)], \ \forall k$

• Fortunately, we can replace S with finite set S' that only includes the joint support of W_k , Y_k and Z_t

• In the case of risk measures, let $\mathcal{S}:=\mathbb{R}^M$:

$$\begin{split} \mathcal{U} &:= \{ u \mid \exists \, \rho : \mathcal{S} \to \mathbb{R}, \, u(\cdot) = -\rho(\cdot), \, \rho(0) = 0 \\ & \text{Monotonicity:} \quad \exists \, \nabla \rho : \mathcal{S} \to \mathbb{R}, \, \nabla \rho(\cdot) \leq 0 \\ & \text{Risk aversion:} \quad \rho(Y) \geq \rho(X) + (Y - X) \nabla \rho(X), \, \forall X, Y \in \mathcal{S} \\ & \text{Translation invariance:} \quad 1^T \nabla \rho(X) = -1, \, \forall X \in \mathcal{S} \\ & \text{Scale invariance:} \quad \rho(X) = X^T \nabla \rho(X), \, \forall X \in \mathcal{S} \\ & \text{Law invariance:} (\text{see details in Delage & Li, 2016}) \\ & \text{Pairwise comparisons:} \quad \rho(W_k) \leq \rho(Y_k), \, \forall k \end{split}$$

- In the case of risk measures, let $\mathcal{S}:=\mathbb{R}^M$:
- $$\begin{split} \mathcal{U} &:= \{ u \mid \exists \, \rho : \mathcal{S} \to \mathbb{R}, \, u(\cdot) = -\rho(\cdot), \, \rho(0) = 0 \\ & \text{Monotonicity:} \quad \exists \, \nabla \rho : \mathcal{S}' \to \mathbb{R}, \, \nabla \rho(\cdot) \leq 0 \\ & \text{Risk aversion:} \quad \rho(Y) \geq \rho(X) + (Y X) \nabla \rho(X), \, \forall X, Y \in \mathcal{S}' \\ & \text{Translation invariance:} \quad 1^T \nabla \rho(X) = -1, \, \forall \, X \in \mathcal{S}' \\ & \text{Scale invariance:} \quad \rho(X) = X^T \nabla \rho(X), \, \forall \, X \in \mathcal{S}' \\ & \text{Law invariance: (see details in Delage & Li, 2016)} \\ & \text{Pairwise comparisons:} \quad \rho(W_k) \leq \rho(Y_k), \, \forall \, k \end{split}$$
 - Fortunately, we can replace ${\cal S}_{}$ with finite set ${\cal S}'$ that only includes all $W_{k}, \; Y_{k}$, and $\; Z_{t}$

How do we optimize ?

• Consider maximizing worst-case utility surplus:

$$\underset{x \in \mathcal{X}}{\text{maximize}} \quad \psi(x) := \underset{u \in \mathcal{U}}{\min} \ u(Z(x)) - u(Z_t)$$

• One can actually show that

$$\psi(x) = \begin{cases} \min_{\substack{u \in \mathcal{U}(S') \ \alpha, \beta: \alpha^T X + \beta \le u(X), \ \forall X \in S'}} \inf_{\substack{\alpha^T Z(x) + \beta - u(Z_t) \\ \dots \\ u \in \mathcal{U}(S')}} \sum_{\substack{\alpha, \beta: \alpha y + \beta \le u(y), \ \forall y \in S'}} \alpha Z(x) + \beta - u(Z_t) \end{bmatrix} \\ \underbrace{\text{Expected utility}} \end{cases}$$

• Duality can be applied to get a finite dimensional optimization problem

How do we optimize ?

• Without further ado, here is the reformulation for expected utility (with $Z(x) := h(x, \xi(\omega))$):

How do we optimize ?

• Consider instead the case:

 $\begin{array}{ll} \underset{x \in \mathcal{X}, t \in \mathbb{R}}{\text{maximize}} & t\\ \text{subject to} & u(Z(x)) \geq u(Z_t) \ , \ \forall \, u \in \mathcal{U} \end{array}$

 If t* is known to lie in some interval [t₀, t₁], then one can employ the bisection method on t:

 $\max_{t \in [t_0, t_1]} t : \max_{x \in \mathcal{X}} \min_{u \in \mathcal{U}} u(Z(x)) - u(Z_t) \ge 0$

- 1. Optimized dominance reduces to max-min utility when $u(Z_t) = u'(Z_t), \ \forall u, u' \in \mathcal{U}, \ \forall t$
 - In expected utility this occurs if $\mathcal{S} \subseteq [z_{\min}, \ z_{\max}]$

 $Z_t := \left\{ \begin{array}{ll} z_{\max} & \text{ with prob. } t \\ z_{\min} & \text{ with prob. } 1-t \end{array} & \& \forall u \in \mathcal{U}, \left\{ \begin{array}{ll} u(z_{\max}) = 1 \\ u(z_{\min}) = 0 \end{array} \right\} \right.$

• With convex risk measures, this occurs if

$$Z_t := t$$

- 2. When $Z_t := t$, the proposed decision is guaranteed to be preferred to the largest available guaranteed return
 - As a consequence, it implements a conservative use of preference information

2. Example: Consider the following two risky investments. $\mathcal{U} := \{ u \mid u \text{ concave}, \ u(-100) = 0, \ u(2) = 1 \}$ Max-min expected utility would recommend : u*=1 2\$ E[u*(A)]=0.99 99% 100% В ► 0\$ E[A]=0.98 1% E[B]=0 u*=0 -100\$ 26/34

2. Example: Consider the following two risky investments. $\mathcal{U} := \{ u \mid u \text{ concave}, \ u(-100) = 0, \ u(2) = 1 \}$ Max-min expected utility would recommend : u*=1 2\$ E[u*(A)]=0.99 99% 100% В 0\$ E[A]=0.98 E[B]=0 1% -100\$ u*=0 0 2 26/34

2. Example: Consider the following two risky investments. $\mathcal{U} := \{ u \mid u \text{ concave}, \ u(-100) = 0, \ u(2) = 1 \}$ Max-min expected utility would recommend : u*=1 2\$ E[u*(A)]=0.99 99% 100% В 0\$ E[A]=0.98 E[B]=0 1% ~0.98 -100\$ u*=0 0 2 26/34

2. Example: Consider the following two risky investments. $\mathcal{U} := \{ u \mid u \text{ concave}, \ u(-100) = 0, \ u(2) \}$ 1} Max-min expected utility would recommend : u*=1 2\$ E[u*(A)]=0.99 99% E[u*(B)]=~0.98 u*=~0.98 100% В 0\$ E[A]=0.98 E[B]=0 1% ~0.98 u*=0 -100\$ 0 2 26/34

Accounting for elicitation errors

 Since even the best intention can lead to making mistakes, we might need to account for mislabeled comparisons

• One can replace the comparison constraint with:

 $\exists \delta \in \mathbb{R}^K, \|\delta\|_1 \leq \Gamma, \ u(W_k) + \delta_k \geq u(Y_k), \ \forall k = 1, \dots, K$

 Bertsimas and O'hair (2015) even propose accounting for some preference reversals with :

$$\exists z \in \{0,1\}^K, \ \sum z_k \le \Gamma, \ \left\{ \begin{array}{c} u(W_k) \ge u(Y_k) - M z_k \\ u(Y_k) \ge u(W_k) - M(1 - z_k) \end{array} \right\}, \ \forall k$$

A brief survey of our numerical experiments

Numerical experiments

- Experiments are made using empirical stochastic models based on historical weekly returns from Yahoo Finance
- We create a synthetic decision maker with some choice of $\bar{u}(\cdot)$ which is kept hidden
- Information comes from a number of comparisons made using $\bar{u}(\cdot)$ for sets of randomly picked (W_k, Y_k)
- Results are averaged over a large number of stochastic models and sets of comparisons

Performance in terms of certainty equivalent*

* Certainty equivalent : $\bar{u}(CE[Z(x)]) = \bar{u}(Z(x))$

31/34

Effect of elicitation strategy

• One can improve convergence rate by designing effective elicitation strategies

Quality of recovered u()

33/34

Quality of recovered u()

- Exponential utility model does not recover true utility function
- Piecewise linear model takes excessive risks when information is limited
- Optimized dominance resolves both issues

Conclusion

- Many optimization problems involve objective functions that need to reflect the decision maker's preferences
- PRO accounts for the limited knowledge about these preferences : axioms + pairwise comparisons
- PRO offers valuable guarantees with respect to the unrevealed preference relation
- PRO preserves difficulty of resolution: LP —> LP
- Many potential applications: game theory, revenue management, expert systems, recommendation systems...

Thank you for your attention

Bibliography

- Armbruster, Delage, Decision Making under Uncertainty when Preference Information is Incomplete, Management Science, 2015.
- Bertsimas, O'hair. Learning Preferences Under Noise and Loss Aversion: An Optimization Approach, Operations Research, 2013.
- Bokrantz. Distributed approximation of Pareto surfaces in multi criteria radiation therapy treatment planning, Physics in Medicine and Biology, 2013
- Boutilier, Patrascu, Poupart, Schuurmans. Constraint-based optimization and utility elicitation using the minimax decision criterion. Artificial Intelligence 2006.
- Chajewska, Koller, Parr. Making rational decisions using adaptive utility elicitation. AAAI 2000.
- Chan, Mahmoudzadeh, Purdie. A robust-cvar optimization approach with application to breast cancer therapy. EJOR, 2014.
- Debreu. Representation of a preference ordering by a numerical function. Decision Processes, 1954.
- Delage, Li, Minimizing Risk Exposure when the Choice of a Risk Measure is Ambiguous, accepted in Management Science.
- Evren, Ok. On the multi-utility representation of preference relations, Journal of Mathematical Economics, 2011.

Bibliography

- Föllmer, Schied. Convex measures of risk and trading constraints. Finance and Stochastics, 2002.
- Grable, Lytton. Financial risk tolerance revisited: the development of a risk assessment instrument. Financial Services Review, 1999.
- Hadar, Russell. Rules for Ordering Uncertain Prospects. American Economic Review, 1969.
- Haskell, Fu, Dessouky. Ambiguity in risk preferences in robust stochastic optimization. Decision Support, 2016.
- Hu, Mehrotra. Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization. IIE Transactions, 2015.
- Kahneman, Tversky. Prospect theory: An analysis of decision under risk. Econometrica, 1979.
- Kusuoka. On law invariant coherent risk measures. Advances in Mathematical Economics, 2001.
- Ogryczak, Ruszczynski. On stochastic dominance and mean-semideviation models. Math. Programming, 2001.
- Tversky, Kahneman. Judgment under uncertainty: Heuristics and biases. Science, 1974.
- von Neumann, Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, 1944.