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VVhy contextual stochastic
optimization!
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Practical motivation

Example I:
Shortest path over Los Angeles downtown (Kallus & Mao, 2022)

: Problem:find shortest path

traversing Los Angeles downtown area
from East to West
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Travel times over all arcs are uncertain.VVe
have relevant contextual information.




Practical motivation

Example |:
Shortest path over Los Angeles downtown (Kallus & Mao, 2022)

: Problem:find shortest path

traversing Los Angeles downtown area
. from East to West

/ -

Travel times over all arcs are uncertain.VVe
have relevant contextual information.

Period Temp. Wind speed Rain Visibility Day Month

Green path is optimal —— Midday 57.17 4 0 6.99 2 11
Blue path is optimal — AM 57.17 4 0 6.99 2 11




No. of Nurses

Practical motivation

Example 2:

Nurse Staffing in a Hospital (Ban & Rudin, 2019)

Decide how many nurse to schedule on a given day:
large penalty for under-/over-staffing

> A newsvendor model with uncertain demand

Historical data:
Demand and context
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Practical motivation

4 I
In uncertain environments: we should use available

contextual information to improve decisions
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Manage inventory Build portfolio Deliver packages




What is contextual
optimization!



Problem Definition
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Stochastic optimization
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Connection between CSO and policy optimization:

€ argminEplc(n(x),y)] & 7 (x) € argminEp(y ) |c(z,y)] a.s.
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Problem Definition

4 Stochastic optimization w

z* € argmin Ep(,)[c(z, y)| Comex

Conditional stochastic \
optimization (CSO)

(Contextual information / covariate / featuresj_

C S = j z*(aj) € arzgergin Ep(y|z)lc(z, yj
h(zP(y|z))

Conditional expected cost

Connection between CSO and policy optimization:

€ argminEplc(n(x),y)] & 7 (x) € argminEp(y ) |c(z,y)] a.s.

T X—>Z
H (7 ,P)

(Unconditional) expected cost

zc X




Overview of the three frameworks
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Decision rule/Policy
optimization
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Overview of the three frameworks
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Qutline of the Tutorial

® Decision rule optimization
® Sequential learning and optimization
® |[ntegrated learning and optimization

® Take-away messages



Decision rule optimization

Context | Decision rule | Decision
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Learning decision rules (LDRs)

= Find policy to minimize the expected cost

" Infinite dimensional problem

- Linear DRs to solve newsvendor problem [Ban & Rudin,

2019]
1 N
' H,I@) A{) = min — Tzt yh) 4+ A
pdmin  H(m Py) + M) mqu;c(q z',y') + Alall

= Linear DR have finite sample guarantees

- Linear DRs are asymptotically suboptimal in general



Decision rules on lifted space

= Linear in transformation of features: [Ban & Rudin, 2019]

= Policies in the reproducing kernel Hilbert space (RKHS)
[Bertsimas & Koduri, 2023]

- Piecewise affine decision rules [Zhang et al., 2023]

= Outperforms models with policy in the RKHS
= Policy Net [Oroojlooyjadid et al., 2020]
= Lack interpretability

= Challenge: Ensure constraints are satisfied



Distributionally robust optimization

= Estimation error: Empirical distribution
biased in low data regime

= One can robustify against all distributions in
an ambiguity set:

min sup H(m, Q

= E.g.:VWasserstein ambiguity set [Mohajerin
and Kuhn 201 8]
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DRO with causal transport

- [ Yang et al. 2023] raises issue that VWasserstein
distance distorts the conditional information
structure

= They suggest using a Causal transport metric,
which protects causal effects found in the data

= Tractable reformulations obtained when:
= Linear decision rules

= Cost function is affine



Sequential learning and
optimization
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Learning predictors

o

Data
N — {(wzvyz) =

1}.
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Predict / Estimate
Minimize estimation error.

méin o(fo,Pn) + Q(6)
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Learning predictors

-~

Datg |
Dy ={(=",y") }ilq

\

Predict / Estimate
Minimize estimation error.

méin o(fo,Pn) + Q(6)

~

—{ Optimize }

J

1 N

0

1=1

Non-=linear cost function

fo is 2 conditional density estimator

Maximum Log-Likelihood

f = arg min ~ > —log(Py, @i (y")) + Q(6)

20



Learning predictors

Dat e Predict / Estimate A
LD aia 73 }, Minimize estimation error. _{ Optimize J
N =1{(z"y")}, min p(fe, Pn) + Q(6)
N ’ J
Non-linear cost function Linear cost function

fo replaced with point predictor

fo is 2 conditional density estimator
(denoted g, )

Maximum Log-Likelihood Mean Square Error
N N
é:argminiZ—log(IP’ o (y") + Q9) 0 = argminiz lgo(x") — y*||* + Q(0)
0 N — fo(x") 0 N —

h(z, fo) = “3f9(a;)[yTZ] = Lt () [y]TZ — ge(w)TZ = h(z, go)
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Weighted SAA

Minimizing expected costs w.r.t. a distribution is often done through SAA:

min By, (o) (2, y)] with fo(@ Zéy (@)

zcZ
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Weighted SAA

Minimizing expected costs w.r.t. a distribution is often done through SAA:

min By, (o) (2, y)] with fo(@ Zéy (@)

zcZ

Residual based

Measure the error of a trained regression

model on the historical data

1 N
— N Z 599 (x)+e;
1=1




Weighted SAA

Minimizing expected costs w.r.t. a distribution is often done through SAA:

N

min Ey, (o) [c(z,y)] with fo(@) =) 8, wil@)

zcZ

1=

Residual based

Measure the error of a trained regression

model on the historical data

1 N
fo(x) == N Z(sge(w)—kei
1=1

Weight based

Measure proximity in feature space

between x and historical covariates x’

22



Proximity

in feature
space

Weighted SAA

= k-nearest neighbor: w};{NN(iB) = (l/k)]l[a)?’ e Ni(x)]

Kernel density estimats wiPE () = ]\/[C(a:,a:z)
n ; ¢ '
ernel density estimation ijl K(x,x9)
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Proximity
in feature
space

Supervised
learning

Weighted SAA

= k-nearest neighbor: w,};{NN(CIJ) = (1//6)]1[:137’ e Ni(x)]
K(x,x")
KDE . ’
= Kernel density estimation: Wi (x)

YN K(x, @)

= Decision tree: ?T(w) L= N _ '
SN M[R(x) = R(zd)]

g=1

= Random forest: average over set of decision trees.

23




Why do sequential learning and

Theoretical guarantees

optimization!

>Train once on historical data:
no need to solve optimization models during training

>Can perform better than non-contextual approach
>Can be trained using less data when model is well specified

>Converges to optimal contextual policy as the size of the
training set increases when model is well specified.

24




Some benchmark results (utter et al, 2023)

Compare sequential L&O and decision rules

Newsvendor

Problem on 4 data sets.

Proportion of instances where methods achieved best performance

Restaurant
100

75

50

Percent

25

Models:

W Linear rule Kernel weights " Decision tree weights
. Deep learning | K-nearest neighbour weights [l Random forest weights

25



Going beyond SLO:

Integrated learning and optimization



Going beyond SLO:

Integrated learning and optimization

Context | Predictor | Prediction | Decision | Decision . Task loss

L ’ fo folx) ’ model | ,* (z, fe)’i H(z*(-,,fg),I/P’N) i




Wrong predictions lead to suboptimal decisions

max yTz Y + € Yy
zeZ
— S U + € H€1H < HGQH
optimal N
decision .

Figure adapted from [Elmachtoub and Grigas 2022]
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ILO training pipeline

------------------------------------------------------
*

( )
Predicc:lti;)n Fixed decision rule Task loss
mode .
- - H(Z, PN)
N(O x,1) 2(e, N0 x,1)) := ...
\_ 3525 SRR TRRRRRRR
A ,

O — 06 — UVQH(Q(ZU,N(HTQ% 1))7@]\7)

* [Bengio 1997] : Task-aware point prediction under a fixed
decision rule

28



ILO training pipeline

------------------------------------------------------

Predicc‘.ltilon Decision model Task loss
mode )
() 2 (@, fol) | H(zPy)
—— = arg gélg h(z, fo(x)) S e

* [Bengio 1997] : Task-aware point prediction under a fixed
decision rule

* [Donti et al. 201 7] : Task-aware conditional density prediction
under CSO model

29



How to differentiate through argmin
operation Vyz*(z, fg) !

Context | Predictor | Prediction | Decision | Decision Task loss

v | Jo | gy | model |x(q, ) i H(='(-f0).Bx):

> SN e 7 A" IV e

- Implicit differentiation through KKT conditions for convex
problems

Unroll the operations made by the optimization process:
- Differentiate through its computational graph

- Implicit differentiation of the fixed point equations at local
optimum [Butler and Kwon, 2023] and [Kotary et al. 2023]

Replace optimizer with a differentiable deep neural network
(Grigas et al. 2021]

Libraries: TorchOpt [Bilevel], CvxpyLayer [Convex], PYEPO
:Linear] 30




Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
H(z"(z, fo),P) = Eplc(z"(x, fo), y)]

31



Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
et testaly)] Eple(z*(z, fo),y) — minsez c(z, )]
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Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
="Epfrteastil.y)] Eplc(2*(x, f5),y) — minsez c(z,y)]
- Non-convex and discontinuous in ¢
- Replace with SPO+:

mein Up | lspo+(90(T), Y)]

where

- gSPO—I—(@ay) = Sug(y—QQ)Tz+2gTz*(a3,y)—yTz*(w,y),
zZC
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Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
= Exfrtaesfaly)] Eelc("(, fo),y) — minzez c(2,y))
- Non-convex and discontinuous in ¢
- Replace with SPO+:

mein Up | lspo+(90(T), Y)]

where

- gSPO—I—(@ay) = Sug(y—QQ)Tz+2gTz*(a:,y)—yTz*(w,y),
zZC

= Solve an optimization problem at each data point
= SPO+ has slower convergence rate than SLO approach

= If model misspecified, SPO+ can outperform SLO

31



( RO T e E T PP EP TP PR T PP T EPE TP EPT Ty :
Prediction -  Imitation-

laver Decision model

- layer . based loss

A RO :

- Imitation performance metric:
H(z"(x, fo),P) = Eplc(z™(z, fo), y)]
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\

Prediction

layer

Decision model

--------------------------------------------------
-

Imitation-
based loss
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r e, _-

Prediction -  Imitation- |
laver Decision model

AU . based loss

Eflotsmefaly)] Es [d(="(x. fo), 2" (,y)
-~ Training based on perturbed optimizers:

- [Berthet et al., 2020] uses additive perturbation of point prediction
- [Dalle et al., 2022] uses multiplicative perturbations

= [Mulamba et al,, 2021] and [Kong et al., 2022] uses energy-based
optimizer
exp(—ah(z, fo(x))

zZ(x, fo) ~ [ exp(—ah(z, fo(x))dz

32



Network flow cost

ILO outperforms SLO

Procedure M ILO B sLo

* — ILO
[ " —— sLo

S [T

% Unmet Demand
LN o (00
o o o

N
o

30 = ==
\\ \Z < O 0
150\\\\ O“ z© 2 N\ et o 00\ )
0 1 2 3 4 5 ?*((\0 0/?‘ A ‘\)((\% Og*(\
Degree of model mis-specification ()GQ (\65\ N\'\C’(
\e°

Essential Medicine

Source: [Grigas et al. 2021 ] Source: [Chung et al. 2022]
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Comparison of different approaches

Load forecasting and generator scheduling problem
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Take-away messages

- Contextual stochastic optimization is a rapidly evolving
field that provides methods for identifying data-driven
decision that exploit most recently available information.

- Three types of approaches:
" Decision rule/policy optimization
-~ Sequential learning and optimization
" Integrated learning and optimization

"~ Four types of performance measures:
- Statistical accuracy of prediction model
- Task-based expected cost of induced policy (Link to survey paper)
- Task-based expected regret of induced policy
= Quality of imitation

- Many potential applications !

35
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