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Images obtained with a calibrated digital camera on Stanford University campus.

Abstract

When we look at a picture, our prior knowledge about the world allows us
to resolve some of the ambiguities that are inherent to monocular vision, and
thereby infer 3d information about the scene. We also recognize different ob-
jects, decide on their orientations, and identify how they are connected to their
environment. Focusing on the problem of autonomous 3d reconstruction of
indoor scenes, in this paper we present a dynamic Bayesian network model ca-
pable of resolving some of these ambiguities and recovering 3d information for
many images. Our model assumes a “floor-wall” geometry on the scene and
is trained to recognize the floor-wall boundary in each column of the image.
When the image is produced under perspective geometry, we show that this
model can be used for 3d reconstruction from a single image. To our knowl-
edge, this was the first monocular approach to automatically recover 3d recon-
structions from single indoor images.

Overview of the Algorithm

Assumptions on the Image

1. The image is obtained by perspective projection, using a calibrated camera
with a calibration matrix K.

2. The image contains a set of N vanishing points corresponding to N direc-
tions, with one of them normal to the floor plane.

3. The scene consists only of a flat floor and straight vertical walls (the “floor-
wall” model).

4. The camera’s vertical axis is orthogonal to the floor plane, and the floor is on
the lower part of the image.

5. The camera center (origin) is at a known height above the ground.

Autonomous Indoor 3d Reconstruction Algorithm

Under the above assumptions, given a single image the algorithm:

1. Extracts the vanishing points using standard techniques (e.g. [1, 9]) and iden-
tifies the vertical vanishing point.

2. Estimates the location of the floor boundary in every column of the image
using a trained Dynamic Bayesian Network and segments the floor pixels in
the image.

3. Applies perspective geometry to reconstruct the 3d geometry of the scene.

Floor Boundary Detection

Dynamic Bayesian Network

The Bayesian network models a joint distribution in an MxN image

P (D1:N ,Y1:N , B(1:M,1:N), X(1:M,1:N), C) = P (D1)P (Y1)P (C) ·
N
∏

j=2

P (Dj|Dj−1)P (Yj|Yj−1, Dj−1)

M
∏

i=1

P (B(i,j)|Yj)P (X(i,j)|B(i,j), C) ,

where:

• C is the floor chroma, taking on values corresponding to the means of 4
dominant chroma groups present in the bottom part of the image (identified
using K-means clustering).a

• Yj is the position of the floor boundary in column j.

• Dj indicates the orientation (in the image) of the floor boundary, taking on
values corresponding to the vanishing points in the image.

• B(i,j) indicates the presence of a floor boundary at (i, j).b

• X(i,j) denotes local image measurements made at (i, j). A total of 50 features
including standard multi-scale intensity gradients, local color samples, and
a similarity measure between local color samples and the floor chroma.c

• P (C), P (D1), P (Y1) are uniform distribution over their domain.

• P (Dj|Dj−1) is a multinomial distribution with constrained parameters to en-
sure invariance to vanishing point labelling.

• P (Yj|Yj−1, Dj−1) = P (f (j, Yj−1, Dj−1)+Nj|Yj−1, Dj−1), where Nj is a noise vari-
able and f (j, y, d) is a function that returns the one step prediction for the
boundary given its position Yj−1 and direction Dj−1. Nj was best modeled
by a mixture of two Gaussians (with variances σ2

1 and σ2
2).

• P (B(i,j)|Yj) is deterministic ( B(i,j) = 1{i − 0.5 ≤ Yj < i + 0.5}).

• P (X(i,j)|B(i,j), C) was described in a discriminative form

P (X(i,j)|B(i,j), C) =
P (B(i,j)|X(i,j), C)P (X(i,j)|C)

P (B(i,j)|C)
,

with P (B(i,j)|C) uniform over its domain, P (X(i,j)|C) normally distributed,

and P (B(i,j)|X(i,j), C) = 1/
(

1 + e−θ·φ(X(i,j),C)
)

.

aIn this work, we used the CIE-Lab color space for our measurements.
b(i, j) denotes (row, column).
cSimilarity was measured using Euclidean distance in the CIE-Lab color space.

Training the model’s parameters

We used standard maximum likelihood estimate to train the parameters for
P (X(i,j)|B(i,j), C) and P (X(i,j)|C). The parameters for P (Yj|Yj−1, Dj−1) and
P (Dj|Dj−1) were estimated using the EM algorithm since our training set did
not have explicit labels for the floor boundary directions.

Detecting the floor boundary

We applied the learned model to floor boundary detection in novel images by
finding the MAP estimate of the most likely sequence for (D, Y, B, C) given the
image.

(D, Y, B,C) = arg max
D,Y,B,C

P (D, Y, B,X, C)

In order to make inference tractable, we first add the constraint that Yj take only
discrete values (Yj ∈ {1, ..., M}). The floor boundary is found using standard
forward-backward belief propagation [6] on a junction tree that represents the
same distribution as our DBN.

Indoor Scene Reconstruction

Reconstruction of Floor

By perspective projection, the 3d location Qk of a pixel at position qk in the
image plane must satisfy:

Qk = αkK
−1qk,

for some αk. Thus, Qk is restricted to a specific line that passes through the
origin of the camera. Further, if this point lies on the floor plane with normal
vector nfloor, then we have

dfloor = −nfloor · Qk = −αk nfloor · (K
−1qk) ,

where dfloor is the known distance of the camera from the floor. Thus, the 3d
positions of the floor pixels can be exactly determined.

Reconstruction of Walls

For a point qk in the wall portion of column j of the image, its 3d location can
easily be determined using the knowledge that it is restricted to a vertical seg-
ment starting from the known 3d position Qb(j) of the known floor boundary
point in column j. This reduces to solving the following set of linear equations:

Qb(j) + λknfloor = Qk = αkK
−1qk,

where λk and αk are variables that we need to solve for.a
aIn the case that, due to noise in the measurements, this set of equations has no solution,

one can simply use the point that minimizes the distance between the two 3d lines:

(α̂k, λ̂k) = arg minαk,λk
‖Qb(j) + λknfloor − αkK

−1qk‖2.

Experimental Results

Accuracy of Algorithm

All 48 images used in these tests were taken with a calibrated digital camera
in 8 buildings of Stanford university’s campus and had size 960*1280. The 3d
reconstructions were obtained using a form of leave-one-out cross validation
(train on images from 7 buildings and test on the held-out building).
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Comparison of performance of our graphical model to three of
its simplified forms. (left) Analysis of floor boundary local-
ization error in the image. (right) Analysis of floor boundary
depth estimation error.

Robustness of Algorithm

On a database of 44 images, with similar resolution, that were obtained by do-
ing searches on http://images.google.com, the algorithm obtains a good esti-
mate of the floor boundary on 35 (80%) of the images, and generates accurate
3d reconstruction on 29 (66%) of them.

Hoiem et al. [5] has also developed independently an algorithm to accomplish
autonomous reconstruction on outdoor images. However, when applied to
indoor images, their algorithm does not explicitly use geometric information
such as that most walls lie in a small number of directions and that they connect
to each other only in certain ways. This lack of prior knowledge/constraints
about indoor environments explains the superior performance of our algorithm
on these images (i.e., their algorithm generated only 20 (45%) accurate 3d recon-
structions).
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Images obtained through http://images.google.com.
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