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Supplementary Material

EC.1. Measures in D(S,µ,Ψ) Are Less Dispersed

Lemma EC.1. Given a distributional set D(S,µ,Ψ) with S convex and a random vector ξ such

that its distribution F ∈D(S,µ,Ψ), for all 0≤α≤ 1 the random vector ζ := α(ξ−µ)+µ also has

a distribution that lies in D(S,µ,Ψ).

Proof: We simply need to verify systematically the conditions imposed on the members of

D(S,µ,Ψ). First,

PF (ζ ∈ S) = PF (αξ+(1−α)µ∈ S) = 1 ,

since PF (ξ ∈ S) = 1, µ∈ S, and the fact that S is a convex set. Second, it is easy to see that

E F [ζ] =E F [αξ+(1−α)µ] =µ .

Finally, for any ψ(·) ∈Ψ, we have that

E F [ψ(αξ+(1−α)µ)] ≤ E F [αψ(ξ)+ (1−α)µ] = αE F [ψ(ξ)]+ (1−α)ψ(µ)

≤ E F [ψ(ξ)] ≤ 0 ,

where we applied Jensen’s inequality for the two first upper bounding steps. !

EC.2. Concavity of h(x,ξ) in ξ

Consider the second stage stochastic minimization problem

h(x, ξ) := minimizey f(x,y, ξ)
s.t. y ∈Y(x),

where Y(x) is any given closed and bounded set function of x. Here we make no assumption that

set Y(x) is a polyhedral or even a convex set.

We assume that f(x,y, ξ) is a concave function in the uncertain parameter-vector ξ. Note

that this assumption has been made in most previous stochastic and robust optimization models

(see Ben-Tal and Nemirovski (1998)).

Lemma EC.2. The minimum value function h(x, ξ) is a concave function in ξ.

This lemma implies that our Proposition 1 is also applicable to most linear and nonlinear two-

stage optimization problems. We omit including a detailed proof of this lemma as it is well known

that the pointwise infimum of a set of affine functions is a concave function (see Boyd and Van-

denberghe (2004) for more details).
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EC.3. Proof of Proposition 2

We follow similar steps as followed in the proof of Proposition 1. We first underline the fact that

implementing the MVP solution, a policy that does not adapt to the sequence of observable ξ,

leads to a worst-case expected cost that is equal to the optimal value of the MVP problem, which

we refer to as VMVP.

sup
F∈D(µ[1:T ])

E F

[

T
∑

t=1

ξTt Ctx̄t

]

= sup
F∈D(µ[1:T ])

T
∑

t=1

E F [ξ
T

t ]Ctx̄t

=
T
∑

t=1

µT

t Ctx̄t,

where D(µ[1:T ]) is short for D(S, [µ1,µ2, ...,µT ],Ψ). Here, we used the fact that x̄t does not adapt

to the observed uncertain parameters and the fact that all the distributions in the set that is

considered lead to the same expected value for the random vectors. We can therefore say that the

optimal value of the distributionally robust multi-stage stochastic program must be smaller than

VMVP.

Secondly, after verifying that the Dirac measure δµ[1:T ]
lies in the set D(µ[1:T ]) (the argument

being the same as in the proof of Proposition 1), one can show that VMVP is actually also a lower

bound for the same distributionally robust problem.

min
(x1,x2,...,xT )∈Xa.s.

sup
F∈D(µ[1:T ])

E F

[

T
∑

t=1

ξTt Ctxt(ξ[1:t])

]

≥ min
(x1,x2,...,xT )∈Xa.s.

E δµ[1:T ]

[

T
∑

t=1

ξTt Ctxt(ξ[1:t])

]

= min
(x1,x2,...,xT )∈Xa.s.

T
∑

t=1

µT

tCtxt(µ[1:t])

= VMVP .

Hence, we conclude that the MVP solution is an optimal solution for the distributionally robust

multi-stage stochastic program under D(µ[1:T ]). !

EC.4. Proof of Proposition 4

The proof consists of showing that the sequence of distributions F1, F2, ... with

Fk(ξ) = (1− (1+βk)
−1)δµ(ξ)+ (1+βk)

−1Gk(ξ) ,

satisfies E Fk
[ψ(ξ)] = 0 , ∀ψ ∈ Ψ,∀k and that given any ϵ > 0, one can choose k large enough so

that Fk satisfies:

PFk
(ξ ∈ S)≥ 1− ϵ

∥E Fk
[ξ]−µ∥ ≤ ϵ .
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Based on Condition 1, we can easily show the first part:

E Fk
[ψ(ξ)] = (1− (1+βk)

−1)E δµ[ψ(ξ)]+ (1+βk)
−1
EGk

[ψ(ξ)]

= (1− (1+βk)
−1)ψ(µ)+ (1+βk)

−1βk = 0 .

Based on Condition 2, we also have the property that EGk
[∥ξ∥] =O(β1/γ

k ), for some γ > 1. This is

due to the fact that there exists an a> 0, b∈R, and γ > 1:

EGk
[∥ξ∥]γ ≤ EGk

[∥ξ∥γ ] = (1/a)(EGk
[b+ a∥ξ∥γ ]− b)

≤ (1/a)(EGk
[ψ0(ξ)]− b) = (1/a)(βk − b) ,

where we used Jensen’s inequality and the fact that ψ0(ξ) =
∑

i θiψi(ξ) for some conical combination

of ψi ∈Ψ allowing us to derive

EGk
[ψ0(ξ)] =EGk

[

∑

i

θiψi(ξ)

]

=
∑

i

θiβk = βk .

Hence, we have that EGk
[∥ξ∥] =EGk

[∥ξ∥]γ/γ ≤ ((1/a)(βk− b))1/γ =O(β1/γ
k ).

Thus, we can demonstrate that both PFk
(ξ ∈ S) and E Fk

[ξ] will become feasible for k large

enough:

PFk
(ξ ∈ S) = (1− (1+βk)

−1)Pδµ(ξ ∈ S)+ (1+βk)
−1)PGk

(ξ ∈ S)≥ (1− (1+βk)
−1)Pδµ(ξ ∈ S) = 1− (1+βk)

−

∥E Fk
[ξ]−µ∥ ≤ (1− (1+βk)

−1)∥E δµ [ξ]−µ∥+(1+βk)
−1∥EGk

[ξ]−µ∥

≤ (1+βk)
−1(∥EGk

[ξ]∥+ ∥µ∥)≤ (1+βk)
−1(EGk

[∥ξ∥] + ∥µ∥) =O(β−(1−1/γ)
k ) .

Ultimately, based on the Lipschitz property of h(x, ·) demonstrated in Lemma 1, we can verify

that

sup
F∈D̄(S,µ,Ψ,ϵ)

E F [h(x,ξ)] ≥ sup
{k|Fk∈D̄(S,µ,Ψ,ϵ)}

E Fk
[h(x,ξ)]

= sup
{k|Fk∈D̄(S,µ,Ψ,ϵ)}

(1− (1+βk)
−1)h(x,µ)+ (1+βk)

−1
EGk

[h(x,ξ)]

≥ sup
{k|Fk∈D̄(S,µ,Ψ,ϵ)}

(1− (1+βk)
−1)h(x,µ)+ (1+βk)

−1
EGk

[h(x,µ)−R∥C2∥∥ξ−µ∥]

≥ sup
{k|Fk∈D̄(S,µ,Ψ,ϵ)}

h(x,µ)− (1+βk)
−1R∥C2∥EGk

[∥ξ∥+ ∥µ∥]

= sup
{k|Fk∈D̄(S,µ,Ψ,ϵ)}

h(x,µ)− (1+βk)
−1R∥C2∥∥µ∥− (1+βk)

−1R∥C2∥O(β1/γ
k )

= h(x,µ) .
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We can then resolve an approximate upper bound using Proposition 1 and the Lipschitz property

of h(x, ·):

sup
F∈D̄(S,µ,Ψ,ϵ)

E F [h(x,ξ)] ≤ sup
{z|∥z−µ∥≤ϵ}

sup
F∈D(Rd,z,Ψ)

E F [h(x,ξ)]

≤ sup
{z|∥z−µ∥≤ϵ}

h(x,z) ≤ h(x,µ)+O(ϵ) .

We are left with demonstrating near-optimality of the MVP solution. This is easily done using

the following argument, where for conciseness we let xMVP refer to the optimal solution of the

MVP problem, g(x) be equal to supF∈D̄(S,µ,Ψ,ϵ) c
T

1x+E F [h(x,ξ)], and xg be the member of X that

minimizes g(x).

g(xMVP)− g(xg) ≤ cT1xMVP+h(xMVP,µ)+O(ϵ)− cT1xg −h(xg,µ)

= min
x∈X

cT1x+h(x,µ)− (cT1xg +h(xg,µ))+O(ϵ) ≤ O(ϵ) ,

so that g(xMVP)≤ g(xg)+O(ϵ). !

EC.5. Proof of Lemma 2

We first re-parametrize as z(∆, δ) := 2µ+ δ∆. We therefore need to show that for any ∆∈Rd

g(δ) := ∥µ+ δ∆∥γα −
1

2γ−1
∥2µ+ δ∆∥γα + ∥µ∥γα ≥ 0 , ∀ δ ∈R .

This is done by showing that g(δ) is decreasing for negative δ’s, achieves the value of zero at δ =0

and is increasing for positive δ’s. The function g(δ) therefore achieves its minimum value of zero

at δ= 0 for any ∆. The simplest step is to show that g(0) = 0.

g(0) = ∥µ∥γα −
1

2γ−1
∥2µ∥γα + ∥µ∥γα = 0 .

The second step requires us to realize that g(δ) can be represented in terms of the convex function

g2(δ) = ∥µ+ δ∆∥γα:

g(δ) = g2(δ)− 2g2(δ/2)+ ∥µ∥γα .

One can verify that g2(δ) is convex using the fact that it is the composition of a function yγ , which

is convex and increasing over y ≥ 0 for γ ≥ 1, and of a convex function ∥µ+δ∆∥α. The convexity of

g2(δ) tells us that g′2(δ)≥ g′2(δ/2) for δ ≥ 0 and that g′2(δ)≤ g′2(δ/2) for δ ≤ 0. Thus, we can easily

verify the properties of the derivative of g(δ). While for δ ≥ 0, we have g′(δ) = g′2(δ)− g′2(δ/2)≥ 0,

we can also easily show that, for δ ≤ 0, we have g′(δ) = g′2(δ)− g′2(δ/2)≤ 0. This completes our

proof. !
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EC.6. Proof of Lemma 3

To make this demonstration, we use the fact that h(x2,ξ) = x2h(1,ξ). First, in the case where x2 =

0, we already verified that h(0,ξ) = 0. When x2 > 0, one can easily show that h(x2,ξ) = x2h(1,ξ)

for all ξ ∈Rd by replacing the inner variable y by z = y/x2. Thus, for all x2 ≥ 0, the objective of

problem (6) reduces to

sup
F∈D(Rd,0d,I)

{E F [−cx2 −h(x2,ξ)]} = sup
F∈D(Rd,0d,I)

{E F [(−c−h(1,ξ))x2]}

= sup
F∈D(Rd,0d,I)

{E F [(−c−h(1,ξ))]}x2 . !

EC.7. Proof of Lemma 4

Based on Lemma 1 of Delage and Ye (2010), considering that h(1,ξ) is F -integrable for all F ∈

D(Rd,0d, I) since

|E F [h(1,ξ)]|≤ E F [∥ξ∥1]≤
√
dE F [∥ξ∥2]≤

√
d
√

E F [∥ξ∥22] = d ,

by duality theory we can say that evaluating the supremum of such an expression is equivalent to

finding the optimal value of

minimize
Q,q,t

t+ I •Q

subject to t≥ max
y∈Y(1)

−c− ξTy− ξTQξ− qTξ ,∀ξ ∈R
d ,

where Y(1) = {y ∈ Rd|aTy = 0 & − 1 ≤ yi ≤ 1 , ∀ i}. This is necessarily a convex optimization

problem with linear objective function since each constraint is jointly convex in Q, q, and t. We

now show that the separation problem associated with the only constraint of this problem is NP-

hard. Thus, by the equivalence of optimization and separation (see Grötschel et al. (1981)) finding

the optimal value of this problem can be shown to be NP-hard.

Consider separating the solution Q= (1/4)I, q = 0m, and t= d− c from the feasible set. In this

case, we must be able to verify its feasibility with respect to the only constraint. This can be shown

to reduce to verifying if

sup
ξ∈Rd, y∈Y(1)

−ξTy− (1/4)ξTξ ≤ d .

After solving in terms of ξ, we get that we need to verify if the optimal value of the problem

maximize
y

yTy

subject to −1≤ yi ≤ 1 , ∀ i∈ {1,2, ..., d}

aTy= 0 ,
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is greater or equal to d or not. This is equivalent to showing if the set defined by

Υ(a) = { y ∈ {−1,1}d | aTy= 0 } ,

for any a ∈Rd, is empty or not since the extreme point of the unit box are the only ones for which

∥y∥2 ≥ d. Finally, one can easily confirm that the NP-complete Partition problem can be reduced

to verifying whether some Υ(a) is empty or not.

Partition Problem: Given a set of positive integers {si}di=1 with index set A= {1,2, ..., d} is

there a partition (B1,B2) of A such that
∑

i∈B1
si =

∑

i∈B2
si?

The reduction is obtained by casting ai := si for all i, and considering that a feasible solution

y ∈Υ(a) only exists if such a partition exists and identifies the partition through B1 = {i ∈A|yi =

1}. This completes our proof. !

EC.8. Proof of Proposition 6

We first represent D(S,µ, I) in the form proposed in Example 1, i.e., using

Ψ= {ψ :Rd →R | ∃Q≽ 0 , ψ(ξ) =Q • ((ξ−µ)(ξ−µ)T− I)}

It is indeed the case that this set Ψ satisfies Assumption 3 since the positive semi-definite cone

is one for which it is relatively easy to verify feasibility using singular value decomposition. In

formulating problem (8), we get that constraint (8b) takes the shape:

t≥wk
i + ξvki −αk

i −βk
i (ξ− ξki )− qi(ξ−µi)−Q • ((ξ−µi)

2eie
T

i − I) ,

⎧

⎨

⎩

∀ ξ ∈ [νi − τi,νi+ τi]
∀i∈ {1,2, ..., d}
∀k ∈ {1,2, ...,K}

A simple replacement of t for t+ I •Q leads to the equivalent formulation of problem (8)

minimize
t,q,Q,{wk,vk}K

k=1

t+ I •Q

subject to t≥wk
i + ξvki −αk

i −βk
i (ξ− ξki )− qi(ξ−µi)− (ξ−µi)

2Qi,i ,

⎧

⎨

⎩

∀ ξ ∈ [νi − τi,νi + τi]
∀i∈ {1,2, ..., d}
∀k ∈ {1,2, ...,K}

wk
i + vki ξ

m
i ≥ cT1x1 +h(x1,µ+(ξmi −µi)ei) ,

{

∀ i∈ {1,2, ..., d}
∀m, k ∈ {1,2, ...,K}

Q≽ 0 .

Since only the diagonal terms of Q are involved in both the objective function and the constraints,

one can arbitrarily set all off diagonal terms of Q to zero. Thus, we are left with

minimize
t,q,r,{wk,vk}K

k=1

t+eTr
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subject to t≥wk
i + ξvki −αk

i −βk
i (ξ− ξki )− qi(ξ−µi)− (ξi−µi)

2ri ,

⎧

⎨

⎩

∀ ξ ∈ [νi − τi,νi + τi]
∀i∈ {1,2, ..., d}
∀k ∈ {1,2, ...,K}

wk
i + vki ξ

m
i ≥ cT1x1 +h(x1,µ+(ξmi −µi)ei) ,

{

∀ i∈ {1,2, ..., d}
∀m, k ∈ {1,2, ...,K}

r≥ 0 .

We finally apply the S-Lemma (cf., Theorem 2.2 in Pólik and Terlaky (2007)) to replace, for

each fixed i and k, the set of constraints indexed over the interval [νi − τi,νi + τi] by an equivalent

linear matrix inequality:
[

ri
βk
i −vki +qi−2µiri

2
βk
i −vki +qi−2µiri

2
t−wk

i +αk
i −βk

i ξ
k
i −µiqi +µ2

i ri

]

≽−ski

[

1 −νi
−νi τ 2i

]

, ski ≥ 0 .

Now regarding the complexity of solving this semi-definite programming problem, it is well

known that in the standard form

minimize
x∈Rñ

cTx

subject to Ai(x)≽ 0 ∀i= 1,2, ..., K̃

the problem can be solved in O

(

(

∑K̃
i=1 m̃i

)0.5 (

ñ2
∑K̃

i=1 m̃
2
i + ñ

∑K̃
i=1 m̃

3
i

)

)

, where m̃i stands

for the dimension of the positive semi-definite cone (i.e., Ai(x) ∈ Rm̃i×m̃i) (see Nesterov and

Nemirovski (1994)). In the SDP that interest us, one can show that ñ= 1+(3K+2)d and that both

problems can be solved in O(K5d3.5) operations, with K being the number of scenarios for each

random variable that composes ξ. In calculating the total complexity of evaluating LB(x1,X2,{ξki })

under such a Ψ, we also need to account for O(KdTMVP) operations for evaluating the required

αk
i and βk

i . This completes our proof. !

EC.9. Proof of Proposition 7

We first present without proof a Lemma that describes how to approximate a concave function

on the real line to any level of accuracy by containing it between an outer and an inner piecewise

linear concave functions.

Lemma EC.3. Given any set of points {zi}Kk=1, a concave function g :R→R is contained between

the two piecewise linear concave functions. Specifically, ginner(z)≤ g(z)≤ gouter(z), where

gouter(z) := min
k∈{1,2,...,K}

g(zk)+ (z− zk)g
′(zk) ,

with g′(zk) ∈R as any super-gradient of g(z) at zk, and

ginner(z) := min
w,v

w+ zv

subject to w+ zkv ≥ g(zk) , ∀k ∈ {1,2, ...,K} .
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We then reduce the intractable task of evaluating MVSM(x1) to the search for a distribution

in the more manageable set D(S0,µ,Ψ). The analysis is also limited to the potential regret of

having committed to x1 instead of x̂2. This naturally leads to a lower bound for the MVSM which

considers distributions in the larger set D(S,µ,Ψ) and any alternative decision in X2

MVSM(x1) ≥ sup
F∈D(S0,µ,Ψ)

E F [c
T

1(x1 − x̂2)+h(x1,ξ)−h(x̂2,ξ)]

We then apply duality theory to the supF∈D(S0,µ,Ψ) operation. Considering the primal problem

as a semi-infinite linear conic problem

sup
F∈M

EF [c
T

1(x1 − x̂2)+h(x1,ξ)−h(x̂2,ξ)] (EC.1a)

subject to E F [11{ξ ∈ S0}] = 1 (EC.1b)

E F [ξ] =µ (EC.1c)

E F [r
Tψ(ξ)]≤ 0 , ∀r ∈K , (EC.1d)

the dual form takes the shape

minimize
t,q,r

t (EC.2a)

subject to t≥ cT1 (x1 − x̂2)+h(x1,ξ)−h(x̂2,ξ)− (ξ−µ)Tq− rTψ(ξ) , ∀ξ ∈ S0 (EC.2b)

r ∈K , (EC.2c)

where t, q, and r are the dual variables associated respectively with constraints (EC.1b), (EC.1c),

and (EC.1d). One can verify that there is no duality gap between primal and dual problems using

the weaker version of Proposition 3.4 in Shapiro (2001) and the fact that the Dirac measure δµ lies

in the relative interior of D(S0,µ,Ψ).

Exploiting the structure of S0 ⊆
⋃d

i=1{ξ |∃ ξ ∈ [νi− τi,νi+ τi] , ξ=µ+(ξ−µi)ei}, we can decom-

pose constraint (EC.2b) into d simpler constraints

t ≥ max
ξ∈[νi−τi,νi+τi]

gi(x1, ξ)− gi(x̂2, ξ)− qi(ξ−µi)− rTψ(µ+(ξ−µi)ei) ∀ i∈ {1,2, ..., d}(EC.3)

where gi(x, ξ) = cT1x+ h(x,µ+ (ξ − µi)ei). Note that if S0 = S0 ∩B∞(ν,τ ), then this set of con-

straints is entirely equivalent to the original one.

For any fixed i, we now go through a sequence of relaxation steps for constraint (EC.3).

t ≥ max
ξ∈[νi−τi,νi+τi]

gi(x1, ξ)− gi(x̂2, ξ)− qi(ξ−µi)− rTψ(µ+(ξ−µi)ei)

≥ max
ξ∈[νi−τi,νi+τi]

gi(x1, ξ)−min
k

{αk
i +(ξ− ξki )β

k
i }− qi(ξ−µi)− rTψ(µ+(ξ−µi)ei)

= max
k

max
ξ∈[νi−τi,νi+τi]

gi(x1, ξ)−αk
i − (ξ− ξki )β

k
i − qi(ξ−µi)− rTψ(µ+(ξ−µi)ei)

≥ max
k

max
ξ∈[νi−τi,νi+τi]

min
(w,v)∈Wi

{w+ ξv}−αk
i −βk

i (ξ− ξki )− qi(ξ−µi)− rTψ(µ+(ξ−µi)ei)

= max
k

min
(w,v)∈Wi

max
ξ∈[νi−τi,νi+τi]

w+ ξv−αk
i −βk

i (ξ− ξki )− qi(ξ−µi)− rTψ(µ+(ξ−µi)ei) ,
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where Wi is short for {(w,v) ∈ R2 | w + ξmv ≥ gi(x1, ξm)∀m ∈ {1,2, ...,K}}. The two relaxation

steps are obtained through the application of Lemma EC.3 to first replace g(x2,ξ) by its outer

approximation, and then g(x1,ξ) by its inner approximation. The last equality is obtained by

inversing the order of maxξ∈[νi−τi,νi+τi] and min(w,v)∈Wi
using Sion’s minimax theorem (see Sion

(1958)). Thus, we obtain the optimization problem presented in Definition 1. !
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