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Motivating example

® Returns of different
assets are unknown but
may depend on historical
returns, economic
factors, investor
sentiments via social
media.

® Portfolio manager can
formulate an allocation
problem to minimize the
value-at-risk (VaR) of
the portfolio while
preserving an expected
return above a given
target.
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What is contextual stochastic optimization?

® QOptimization problems arising in practice almost always involve
unknown parameters £ € R™¢

e Oftentimes, there is a relationship between unknown parameters and
some observable contextual data ¢y € R™
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What is contextual stochastic optimization?

® Optimization problems arising in practice almost always involve
unknown parameters £ € R™¢

e Oftentimes, there is a relationship between unknown parameters and
some observable contextual data ¢y € R™

e Contextual Optimization:
® Optimizes a policy, x : R™ — X
® |.e., action x € X is adapted to the observed context ¢

® Contextual Stochastic Optimization problem minimizes the
expected cost of running the policy over the joint distribution of (¢, &):

fQi?E[C(X(tD),é)] & xX(P) € arger;;in Elc(x,)[¢] ass.

(see survey Sadana et al. [2024])

E. Delage (HEC Montréal) Data-Driven Conditional RO March 27th, 2025 3/40



What is conditional robust optimization?

® We introduce a novel Contextual Robust Optimization paradigm

for solving contextual optimization problems in a risk-averse setting:

Robust-CO min  max c(x(¢),
( ) min_max clx(v).o

where (1)) is a conditional uncertainty set designed to contain

with high probability the realization of £ conditionally on observing .
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What is conditional robust optimization?

® We introduce a novel Contextual Robust Optimization paradigm
for solving contextual optimization problems in a risk-averse setting:

Robust-CO min  max c(x(¢),
( ) min_max clx(v).o

where (1)) is a conditional uncertainty set designed to contain
with high probability the realization of £ conditionally on observing .
® A weak interchangeability property states:
x*(-yeargmin  max  c(x(¥),&
0 %(.) YEVEEU(Y) (), 4)

<= x* € argmin max c(x, S Vypey
@) §€X EEU () (:8) v

Conditional Robust Optimization (CRO)
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Desirable coverage properties for U(1))

The field of conformal prediction identifies two important properties for
conditional uncertainty sets
® Marginal coverage property: P(§ e U(¢)) > 1—€

e Conditional coverage property: P(§¢ € U()|Y)) > 1 —€ ass.
® Conditional coverage = Marginal coverage

E.g., target coverage 1 — ¢ = 90%:

Marginal = Bad
5“ Conditional = Bad é‘

Marginal = Good
Conditional = Bad 5

Marginal = Good
N Conditional = Good

Image from Angelopoulos and Bates, A Gentle ion to C

ion and Distribution-Free L inty Q ion, CoRR, 2021.
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Related work in operations research literature

e Contextual Stochastic Optimization:

® Hannah et al. [2010], Bertsimas and Kallus [2020], ..: Conditional
distribution estimation used to formulate and solve the CSO problem.

® Donti et al. [2017], Elmachtoub and Grigas [2022], ..: End-to-end
paradigm applied to solve the data driven CSO problem.

® Distributionally Robust CSO:
® Bertsimas et al. [2022], McCord [2019], Wang and Jacquillat [2020],
Kannan et al. [2020]: DRO approaches with ambiguity sets centered at
the estimated conditional distribution
® Data-driven Robust Optimization:

® Johnstone and Cox [2021], Goerigk and Kurtz [2023]: learns a
“non-contextual” uncertainty set using conformal prediction and NN.

® Ohmori [2021], Sun et al. [2023], Blanquero et al. [2023]: calibrates a
set to cover the realizations of a calibrated conditional distribution

® Sun et al. [2023], Patel et al. [2024] derive contextual sets using
conformal prediction

® Wang et al. [2023] learns a non-contextual set using a task-based obj.
with marginal feasibility guarantees
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Presentation overview

@ Introduction

@® Deep Data-Driven Robust Optimization (DDDRO)
© Deep Cluster then Classify (DCC) Algorithms

O Task-based CRO with Conditional Coverage

® Concluding Remarks

=] F = = = vAaC

E. Delage (HEC Montréal) Data-Driven Conditional RO



Outline

@® Deep Data-Driven Robust Optimization (DDDRO)
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Deep Data-Driven Robust Optimization (DDDRO)

® (Classic non-contextual RO model is written as

min max
XEX ceu C(Xv g)?
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Deep Data-Driven Robust Optimization (DDDRO)

® (Classic non-contextual RO model is written as

min max
XEX ceud C(X’ 5)7

® Goerigk and Kurtz [2023] describe the uncertainty set U in the form,
UW,R) ={ & eR™ : |fw(&) — il < R},

where fiy : R™ — RY is a deep neural network (DNN).
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Deep Data-Driven Robust Optimization (DDDRO)

® (Classic non-contextual RO model is written as

min max
xeX el C(X) g)?

® Goerigk and Kurtz [2023] describe the uncertainty set U in the form,
UW,R) ={eR™ :|fw() - hll < R},

where fiy : R™ — RY is a deep neural network (DNN).

® Given a dataset D¢ = {{1,&2... &N}, U is designed by training a NN
to minimize the one-class classification loss

N
1 .
min gy 22 I (s) ~ &7

where fy := (1/N) >_ie[n) o (§7) and the radius R is calibrated  for
1 — € coverage on the data set.
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lllustrative examples

0 50 100 150 200 250 300 100 150 200 250 300
(a) Gaussian data, NN set. 51 (c) Mixed Gaussian data, NN set. é‘l

Images from Goerigk and Kurtz. Data-driven robust optimization using deep neural networks. Ct and O i 151(C), 2023
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Solving robust optimization with deep uncertainty sets

® When using piecewise affine activation functions, (W, R) can be

represented as:

UW,R) =

Eiue{() 1}d><K><L CGRdXL ¢€Rd><L

Tt ut —'1 i, £
¢i

p kl .
=Y uj e¢z4’§:k L u by, Vi

#t = W’fd VRS

K k.l ¢ Vi K k,l—yp .
2 k=1 Uy < ¢j < Zk:l u; o, Vj, £

It =Rl <R

® The problem mMaxgcy(w,r) €(x,§) can therefore be formulated as a

mixed-integer second order cone program when c(x, &) is linear.
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Solving robust optimization with deep uncertainty sets

® When using piecewise affine activation functions, (W, R) can be
represented as:

3u€{0 1}d><K><L CERdXL ¢€Rd><L
K ”_1 ), £
¢i
UW,R) ={¢ Zk 1 sz £¢Z+Zk 1 klbfv Vj, €
#t = W‘fd Lve>2
L 0— .
Zszl “J,'(’ o < of < Zl,le ”;“ ay, Vit
I¢t—Rhll <R

® The problem mMaxgcy(w,r) €(x,§) can therefore be formulated as a
mixed-integer second order cone program when c(x, &) is linear.

® This can be integrated in a cutting plane method for solving the RO:
min t
XEX, t
subject to c(x, &) <t,VéeU CcU(W,R)
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Outline

© Deep Cluster then Classify (DCC) Algorithms
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Deep Cluster then Classify (DCC)

® We use D := {(¢1,&1), ..., (¢¥n,En)} to design data-driven
conditional uncertainty sets U/(1)).

® This approach reduces the side-information 1 to a set of K different
clusters and designs customized sets, i.e., U(1)) 1= U,y
® 2:R™ — [K] is a trained K-class cluster assignment function
® Each Uy, for k =1,..., K, is an uncertainty sets for £ calibrated on the
dataset Dé‘ = U(y,e)eD:a(y)=k1&} as in Goerigk and Kurtz [2023].
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Deep clustering using auto-encoder/decoder networks

We use an auto-encoder and decoder
network to identify a(-),

gve () 9vo (9)

£1(V,0) = aKZugVD (evew) —wil> |2
i=1

O

K N O

WZ |gVE _03(7#,')”2’ @)

=1 O

where
a(y) := argmin [lgv, (¥) — 6|

kelK]

and Ve and Vp are the network
parameters.
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Integrated DCC addresses shortcoming of DCC

@ DCC fails to tackle the conditional uncertainty set learning problem
as a whole
® Solution: IDCC optimizes Vg, Vp, 6, and {W*}K_, jointly using a loss
function that trades-off between the objectives used for clustering and
each of the K versions of one-class classifiers
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Integrated DCC addresses shortcoming of DCC

@ DCC fails to tackle the conditional uncertainty set learning problem
as a whole
® Solution: IDCC optimizes Vg, Vp, 6, and {W*}K_, jointly using a loss
function that trades-off between the objectives used for clustering and
each of the K versions of one-class classifiers

® DCC struggles for cases where clear separation of clusters isn't

possible.
® Solution: IDCC trains a parameterized random assignment policy
a(y) ~m():

o e exp{=Bllav() — 042}
(B =K =md) = ko = Bllev (@) — 0]

The random uncertainty set is U (v)) := U(W?3#) R3(¥))
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Experiments
Robust portfolio optimization with market data
® Decision model:

x*(1) := ar min max —&Tx
() gx;z,":lx,-=1,x20£eu(w) :

which captures the need to invest one unit of wealth among the
available assets while minimizing risk exposure.
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Experiments

Robust portfolio optimization with market data
® Decision model:

x* = ar min max —&Tx
(w) gx:ZLl xi=1, x>0 &€U(¢) §

which captures the need to invest one unit of wealth among the
available assets while minimizing risk exposure.

e Contextual info: Trading volume, volatility index (VIX), 10-year

treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold
price (GC=F), Dow Jones (DJI).
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Experiments

Robust portfolio optimization with market data
® Decision model:

x* = ar min max —&Tx
(w) gX:Z;’zl xi=1, x>0 &€U(¢) §

which captures the need to invest one unit of wealth among the
available assets while minimizing risk exposure.

e Contextual info: Trading volume, volatility index (VIX), 10-year

treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold
price (GC=F), Dow Jones (DJI).

® Market data from Yahoo! Finance: 70 different stocks during period
from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).
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Experiments

Robust portfolio optimization with market data
® Decision model:

x* = ar min max —&Tx
(w) gX:Z;’:l xi=1, x>0 &€U(¢) §

which captures the need to invest one unit of wealth among the
available assets while minimizing risk exposure.

e Contextual info: Trading volume, volatility index (VIX), 10-year

treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold
price (GC=F), Dow Jones (DJI).

® Market data from Yahoo! Finance: 70 different stocks during period
from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).

® Performance metric: out-of-sample VaR of —¢7x(v))
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Portfolio optimization: Comparison of avg. VaR across
portfolio simulations

3.5

3.0

o 251
> 20

Z 159

051 0.5

0.0
08 0.9 0.95 0.99 00

. 0.9 0.95
Confidence level Confidence level

(a) 2018 (b) 2019

m Ellipsoid = DDDRO = DCC m IDCC

= DAl

=] F
E. Delage (HEC Montréal) Data-Driven Conditional RO



Outline

@ Task-based CRO with Conditional Coverage
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Task-based CRO

® The IDCC approach suffers from two issues:

@ Training is done solely based on total variation measurements,
disregarding entirely the out-of-sample performance of the solution
obtained from robust optimization.

E. Delage (HEC Montréal) Data-Driven Conditional RO March 27th, 2025 19/40



Task-based CRO

® The IDCC approach suffers from two issues:

@ Training is done solely based on total variation measurements,
disregarding entirely the out-of-sample performance of the solution
obtained from robust optimization.

@ While the calibration process encourages marginal coverage by
making the coverage accurate for each cluster:

P(¢ € UW)IAW) = k) > 1— Yk v = PECUW) > 1—c v
it does not promote conditional coverage over all ¢:

PceU)|Pp)>1—€cas. %
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Task-based CRO

® The IDCC approach suffers from two issues:
@ Training is done solely based on total variation measurements,
disregarding entirely the out-of-sample performance of the solution

obtained from robust optimization.
@ While the calibration process encourages marginal coverage by

making the coverage accurate for each cluster:
P(€ cUW)a(W) = k) > 1— Wk o/ = P(ECUW)) >1—c v
it does not promote conditional coverage over all ¢:
PEeU()l) =21 —-cas. ¥

® |n this next part, we propose Task-based Conditional Robust
Optimization that promotes performance and conditional

coverage.
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Estimate-then-Optimize with continuous adaptation

® We consider a continuously adapted conditional ellipsoidal set:

Up(v) = { € €R™ (€ — po(1) 55 (V) (€ = po(¥)) < Ra},
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Estimate-then-Optimize with continuous adaptation

® We consider a continuously adapted conditional ellipsoidal set:

Up(¥h) = { €€ R™ : (€ — po(¥) TS5 (W) (€ — no(¥)) < Ro},

® Given a data set D = {(¢1,&1), (¥2,&2) ... (¥n,En) ), an
estimate-then-optimize (ETO) approach takes the form:

D Estimation:  |Up-(-)| XoPUSt optimization: ()
ming L8V (£,(-), D e
o L (fo(), D) MaXeery. (v) €(X; €)

where Eﬂﬂ_ is the negative log likelihood for a conditional Gaussian

density estimator (see Barratt and Boyd [2021]):

§~ fo(1h) == N (po(), Zo(¢))
and Ry s.t. PD(§ S Z/fg(lﬁ)) =1—c¢
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(Single) Task-based Set (TbS) training

A task-based approach learns the estimator by trying to minimize the
decision loss, e.g. the portfolio risk based on VaR

D ‘ Decision loss ’

| VaRp(c(x5(¥),€))

Robust optimization: X ()
* . 0

x3 (1) == arg minyecx
MaXecryy (v (X, )

() Training of ¢ Up~(*)
o ming Decision loss(6)
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Decision loss relaxation and derivatives

® Decision loss VaRp(c(x; (), &)) suffers from multiple local optima.

Value-at-Risk

Position, x;

Figure 3: Simulation-based trade risk profile

Image from Mausser and Rosen, Beyond VaR: from measuring risk to managing risk, CIFEr, 1999,
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Decision loss relaxation and derivatives

® Decision loss VaRp(c(x; (), &)) suffers from multiple local optima.

Value-at-Risk

Position, x;

Figure 3: Simulation-based trade risk profile

Image from Mausser and Rosen, Beyond VaR: from measuring risk to managing risk, CIFEr, 1999,

® We therefore replace it with upper bound CVaRp(c(x; (1)), §)).

OCVaRiun (1)

=vi(y) with v(y) € argmax vly
dyi

'uE]Rﬂ:TIT'uzl,US((l—a)N)_l
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Decision loss relaxation and derivatives

D ‘ Decision loss ’

| CVaRp(c(xg(¥),))

Robust optimization: x*(+)
. . 0

xz (1) := arg min,ex
maX£€u6(,¢,) C(X, g)

() Training of 6 Uy~ ()
0 ming Decision loss(0)
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Robust optimization reformulation and derivatives

® We assume that c(x, &) is convex in x and concave in £, while X is a
convex set.
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Robust optimization reformulation and derivatives

® We assume that c(x, &) is convex in x and concave in £, while X is a
convex set.

® Using Fenchel duality, one can follow Ben-Tal et al. [2015] to
reformulate the robust optimization problem as:

xp () := arg nggg{gaé)c(x ,§) =arg rrxnn 3 (viUp(¥)) — c(x, v)
(vl (1))

where the support function

S*(vV|Up(1)) :== sup ETv=pTv+VvTEv
£€llp(¢)

while the partial concave conjugate function is defined as

c(x,v) = irgf vig— c(x,€)
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Robust optimization reformulation and derivatives
® We assume that c(x, &) is convex in x and concave in £, while X is a
convex set.

¢ Using Fenchel duality, one can follow Ben-Tal et al. [2015] to
reformulate the robust optimization problem as:

xp (1) = arg QI;@%) c(x,€) = arg min & (vith(v)) — c.(x, v)
F(xv.o (1))

® The derivatives of x; (1)) := argmin, xcx f(x, v,Up(¢))) w.r.t. 6 can
be obtained using implicit differentiation (see Blondel et al. [2022])
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Robust optimization reformulation and derivatives

D ‘ Decision loss ’

| CVaRp(c(x(¥),))

Robust optimization: V10
Xg(,(/}) ‘= arg minv,xGX

f(x, v, U (1))
Training of 0 Up- (")
Up(+) —‘ ming Decision loss(6)
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Comparative study with GMM environment

(1, &) € R? x R? drawn from a joint Gaussian mixture model with
two modes

Data: 600 points for training, 400 for validation, 1000 for test

Targeted confidence level of 90%

® Average is calculated over 10 runs
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Comparative study with GMM environment

two modes

Targeted confidence level of 90%

® Average is calculated over 10 runs

(1, &) € R? x R? drawn from a joint Gaussian mixture model with

Data: 600 points for training, 400 for validation, 1000 for test

ETO-ACPS ETO-DbS TbS
Avg. CVaR 1.69 £ 0.05 1.64 £0.07 1.03 +0.10
Avg. VaR 1.12£0.04 1.07 £0.02 0.72 +£0.07
Avg. marginal cov. | 91% +1.4% | 8% +7.8% | 23% +6.1%
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Second-task: Conditional coverage

Lemma

An uncertainty set Uy(1)) has an a.s. conditional coverage of 1 — e if and
only if
Lcc(6) = E[(P(€ € Up()[e)) — (1~ )*] =0
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Second-task: Conditional coverage

Lemma

An uncertainty set Uy(1)) has an a.s. conditional coverage of 1 — e if and
only if

Lec(0) = E[(P(€ € Us(¥)]dh) — (1 - €)*] =0
Lcc(0) can be approximated using:
Lec(9) = Epl(gse(9) () — (1 — €))?]

where gy« (9) (1) ~ P(§ € Up(1)[1)) is obtained using logistic regression of
membership variable y (v, &;0) := M{¢ € Up(¢h)} on 1.
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Second-task: Conditional coverage

Lemma

An uncertainty set Uy(1)) has an a.s. conditional coverage of 1 — e if and
only if

Lcc(6) = E[(P(€ € Up()[e)) — (1~ )*] =0
Lcc(0) can be approximated using:
Lec(9) = Epl(gse(9) () — (1 — €))?]

where gy« (9) (1) ~ P(§ € Up(1)[1)) is obtained using logistic regression of
membership variable y(v,&;0) := M{& € Up(x))} on 9.
® |.e., letting the augmented data set

Dfﬂﬁy = {(¢17§1,Y(1/11a§1; 9))a SRR (¢N7£Nay(¢Na€N; ‘9))}a
one solves ¢*(f) € argmin, L’X,'ZAL(%(-),D{‘L@) with

1
14 exp¢T¢+¢o

8s(1) :
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Double Task-based Set (DTbS) training

We train Uy (1)) using the two tasks: produce good decision + produce
good conditional coverage:

D Decision loss

{_ CVaRn(c(x5(¥),€))

x5 (1) == argmin, cx

Robust optimization: x5 ()
f(x, v, Uy (1))

u Training of 6 Up+ (")
o) ming Dec.L(8) + Cov.L(6)

Classification
Yo(1,€) := M € Up(v) }

Coverage loss
yo(-s-) Ep[(g4+a) (%) — (1 —€))?]
Logistic regression
¢*(0) = argmin ﬁﬂfL(%(')’DZ;gy) gor0)(*)
[y

D
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Comparative study with GMM environment

Cumulative Probability
&
e

0% 20% 40% 60% 80% 90% 100%
Conditional Coverage Probability

B ETO-ACPS ¥ ETO-DbS TbS H DTbS

(See uncertainty set animation (url))
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http://tintin.hec.ca/pages/erick.delage/videoCRO.mp4

Comparative study with GMM environment

two modes

Targeted confidence level of 90%

® Average is calculated over 10 runs

(1, &) € R? x R? drawn from a joint Gaussian mixture model with

Data: 600 points for training, 400 for validation, 1000 for test

ETO-ACPS ETO-DbS TbS
Avg. CVaR 1.69 £ 0.05 1.64 £0.07 1.03 +0.10
Avg. VaR 1.12£0.04 1.07 £0.02 0.72 +£0.07
Avg. marginal cov. | 91% +1.4% | 8% +7.8% | 23% +6.1%
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Comparative study with GMM environment

two modes

Targeted confidence level of 90%

® Average is calculated over 10 runs

(1, &) € R? x R? drawn from a joint Gaussian mixture model with

Data: 600 points for training, 400 for validation, 1000 for test

ETO-ACPS ETO-DbS TbS I DTbS !l
Avg. CVaR 1.69 £ 0.05 1.64 £0.07 1.03 £0.10 | 1.08 £ 0.13
Avg. VaR 1.12£0.04 1.07 £0.02 0.72 £0.07 | 0.75 £ 0.10
Avg. marginal cov. | 91% +1.4% | 85% +7.8% | 23% +6.1% | 92% + 1.5%

E. Delage (HEC Montréal)
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Portfolio optimization with market data

e Contextual info: Trading volume, volatility index (VIX), 10-year

treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold
price (GC=F), Dow Jones (DJI).
® Market data from Yahoo! Finance: 70 different stocks during period

from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).

e Target confidence level of 70%, 80%, or 90%

Marginal coverage
Model 2018 2019
70% \ 80% \ 90% | 70% \ 80% \ 90%
ETO-ACPS || 68% | 78% | 87% | 71% | 78% | 89%
ETO-DbS || 59% | 75% | 87% | 61% | 76% | 86%
TbS 23% | 24% | 29% | 26% | 30% | 32%
DTbS 71% | 80% | 93% | 69% | 78% | 92%
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Portfolio optimization with market data

e Contextual info: Trading volume, volatility index (VIX), 10-year
treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold

price (GC=F), Dow Jones (DJI).

® Market data from Yahoo! Finance: 70 different stocks during period
from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).
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Concluding remarks

® We introduced a new contextual robust optimization approach for
solving risk averse contextual optimization problems.
® In CRO, deep neural networks can be used to:

® Represent richly structured uncertainty sets, e.g. DDDRO, IDCC

® Adapt uncertainty set continuously to covariates, e.g. ETO-ACPS,...,
DTbS.

® Two types of training procedures: “Estimate-then-optimize” vs.
“Task-based”
® Two types of training objectives:

® Statistical performance: achieving the right marginal/conditional
coverage
® Decision performance: producing decisions that achieve low VaR/CVaR
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