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Portfolio optimization with contextual information

Problem: How to invest wealth among a set of assets?

x∗(ψ) := arg min
x :
∑n

i=1 xi=1, x≥0
VaR1−ε(ξ

ᵀx |ψ)
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What is contextual stochastic optimization?

• Optimization problems arising in practice almost always involve
unknown parameters ξ ∈ Rmξ

• Oftentimes, there is a relationship between unknown parameters and
some contextual data ψ ∈ Rmψ

• Contextual Optimization:
• Optimizes a policy, x : Rmψ → X

• I.e., action x ∈ X is adapted to the observed context ψ
• Contextual Stochastic Optimization problem minimizes the

expected cost of running the policy over the joint distribution of (ψ, ξ):

min
x(·)

E[c(x(ψ), ξ)] ⇔ x∗(ψ) ∈ argmin
x∈X

E[c(x , ξ)|ψ] a.s.
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What is conditional robust optimization?

• We introduce a Conditional Robust Optimization model for solving
contextual optimization problems in a risk-averse setting:

(CRO) x∗(ψ) ∈ argmin
x∈X

max
ξ∈U(ψ)

c(x , ξ), ∀ψ ∈ V

where U(ψ) is a conditional uncertainty set designed to contain
with high probability the realization of ξ conditionally on observing ψ.
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Estimate-then-Optimize with continuous adaptation
• We consider a continuously adapted conditional ellipsoidal set:

Uθ(ψ) := { ξ ∈ Rmξ : (ξ − µθ(ψ))
TΣ−1

θ (ψ)(ξ − µθ(ψ)) ≤ Rθ} ,

• Given a data set D = {(ψ1, ξ1), (ψ2, ξ2) . . . (ψN , ξN)}, an
estimate-then-optimize (ETO) approach takes the form:

Estimation:
minθ L

ξ|ψ
NLL(fθ(·),D)

Robust optimization:
x∗(ψ) := argminx∈X
maxξ∈Uθ∗ (ψ) c(x , ξ)

Uθ∗(·)D x∗(·)

where Lξ|ψNLL is the negative log likelihood for a conditional Gaussian
density estimator (see Barratt and Boyd [2021]):

ξ ∼ fθ(ψ) := N (µθ(ψ),Σθ(ψ))

and Rθ s.t. PD(ξ ∈ Uθ(ψ)) = 1− ε
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Related work in operations research literature

• Data-driven Distributionally Robust Optimization:
• Moment-based DRO: D & Ye (> 2000 citations !!!), etc.
• Divergence-based DRO: Ben-Tal et al. [2013], Duchi et al. [2021], etc.
• Wassertein-based DRO: Mohajerin Esfahani and Kuhn [2018], Gao and

Kleywegt [2023], etc.
• Contextual Stochastic Optimization:

• Hannah et al. [2010], Bertsimas and Kallus [2020], …: Conditional
distribution estimation used to formulate and solve the CSO problem.

• Donti et al. [2017], Elmachtoub and Grigas [2022], …: End-to-end
paradigm applied to solve the data driven CSO problem.

• Distributionally Robust CSO:
• Bertsimas et al. [2022], McCord [2019], Wang and Jacquillat [2020],

Kannan et al. [2020]: DRO approaches with ambiguity sets centered at
the estimated conditional distribution

• Nguyen et al. [2021],Esteban-Pérez and Morales [2022]: Wasserstein
DRO for non-parametric CSO
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Related work in data-driven robust optimization literature
• Estimate then RO:

• Goerigk and Kurtz [2023], Johnstone and Cox [2021]: learns
non-contextual uncertainty sets using deep learning, and conformal
prediction.

• Chenreddy et al. [2022] learns a contextual uncertainty set using an
integrated clustering then classification approach, Blanquero et al.
[2023] constructs contextual ellipsoidal sets by making normality
assumptions

• Sun et al. [2024] solves a robust contextual LP problem by calibrating a
predictive model to match robust objectives

• Ohmori [2021], Sun et al. [2023]: calibrates a box/ellipsoidal set to
cover the realizations of a kNN/residual-based conditional distribution.

• End-to-end RO
• Wang et al. [2023] learns non-contextual sets to maximize performance

across a set of randomly drawn parameterized robust constrained
problems while ensuring constraint satisfaction guarantees w.r.t the
joint distribution over perturbance and robust problems

• Costa and Iyengar [2023]: proposes a distributionally robust end-to-end
system that integrates point prediction and robustness tuning to the
portfolio construction problem
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Our contributions

• Limitation of existing CRO approaches:
1 Training disregards entirely the out-of-sample performance of the

solution obtained from robust optimization.

2 While the calibration process encourages marginal coverage:

P(ξ ∈ U(ψ)) ≥ 1− ε 4

it does not promote conditional coverage over all ψ:

P(ξ ∈ U(ψ)|ψ) ≥ 1− ε a.s. 6
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Desirable coverage properties for U(ψ)
The field of conformal prediction identifies two important properties for
conditional uncertainty sets
• Marginal coverage property: P(ξ ∈ U(ψ)) ≥ 1− ε
• Conditional coverage property: P(ξ ∈ U(ψ)|ψ) ≥ 1− ε a.s.

E.g., target coverage 1− ε = 90%:
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⇠

That is, for every value of the input Xtest, we seek to return prediction sets with 1 � ↵ coverage. This is
a stronger property than the marginal coverage property in (1) that conformal prediction is guaranteed to
achieve—indeed, in the most general case, conditional coverage is impossible to achieve [14]. In other words,
conformal procedures are not guaranteed to satisfy (7), so we must check how close our procedure comes to
approximating it.

The di↵erence between marginal and conditional coverage is subtle but of great practical importance, so
we will spend some time think about the di↵erences here. Imagine there are two groups of people, group A
and group B, with frequencies 90% and 10%. The prediction sets always cover Y among people in group A
and never cover Y when the person comes from group B. Then the prediction sets have 90% coverage, but
not conditional coverage. Conditional coverage would imply that the prediction sets cover Y at least 90% of
the time in both groups. This is necessary, but not su�cient; conditional coverage is a very strong property
that states the probability of the prediction set needs to be � 90% for a particular person. In other words,
for any subset of the population, the coverage should be � 90%. See Figure 10 for a visualization of the
di↵erence between conditional and marginal coverage.
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Figure 10: Prediction sets with various notions of coverage: no coverage, marginal coverage, or
conditional coverage (at a level of 90%). In the marginal case, all the errors happen in the same groups and
regions in X-space. Conditional coverage disallows this behavior, and errors are evenly distributed.

Feature-stratified coverage metric. As a first metric for conditional coverage, we will formalize the
example we gave earlier, where coverage is unequal over some groups. The reader can think of these groups
as discrete categories, like race, or as a discretization of continuous features, like age ranges. Formally,

suppose we have features X(val)

i,1 that take values in {1, . . . , G} for some G. (Here, i = 1, . . . , nval indexes the
example in the validation set, and the first coordinate of each feature is the group.) Let Ig ⇢ {1, . . . , nval}
be the set of observations such that X(val)

i,1 = g for g = 1, . . . , G. Since conditional coverage implies that the
procedure has the same coverage for all values of Xtest, we use the following measure:

FSC metric : min
g2{1,...,G}

1

|Ig|
X

i2Ig

n
Y

(val)

i 2 C
⇣
X

(val)

i

⌘o

In words, this is the observed coverage among all instances where the discrete feature takes the value g. If
conditional coverage were achieved, this would be 1 � ↵, and values farther below 1 � ↵ indicate a greater
violation of conditional coverage. Note that this metric can also be used with a continuous feature by binning
the features into a finite number of categories.
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Image from Angelopoulos and Bates, A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification, CoRR, 2021.

Angelopoulos and Bates [2022]
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(Single) Task-based Set (TbS) training

A task-based approach learns the estimator by trying to minimize the
decision loss, e.g. the portfolio risk based on VaR

Decision loss
VaRD(c(x∗

θ (ψ), ξ))

Robust optimization:
x∗
θ (ψ) := argminx∈X
maxξ∈Uθ(ψ) c(x , ξ)

Training of θ
minθ Decision loss(θ)

x∗
θ (·)

D

Uθ(·)
Uθ∗(·)
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Decision loss relaxation and derivatives
• Decision loss VaRD(c(x∗

θ (ψ), ξ)) suffers from multiple local optima.

Image from Mausser and Rosen, Beyond VaR: from measuring risk to managing risk, CIFEr, 1999.

• We therefore replace it with upper bound CVaRD(c(x∗
θ (ψ), ξ)).

∂CVaRi∼N(ỹi )

∂yi
= υi (y) with υ(y) ∈ argmax

υ∈RM
+:11T υ=1,υ≤((1−α)N)−1

υT y
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Decision loss relaxation and derivatives

Decision loss
CVaRD(c(x∗

θ (ψ), ξ))

Robust optimization:
x∗
θ (ψ) := argminx∈X
maxξ∈Uθ(ψ) c(x , ξ)

Training of θ
minθ Decision loss(θ)

x∗
θ (·)

D

Uθ(·)
Uθ∗(·)
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Robust optimization reformulation and derivatives
• We assume that c(x , ξ) is convex in x and concave in ξ, while X is a

convex set.

• Using Fenchel duality, one can follow Ben-Tal et al. [2015] to
reformulate the robust optimization problem as:

x∗
θ (ψ) := argmin

x∈X
max
ξ∈Uθ(ψ)

c(x , ξ) = arg min
v ,x∈X

δ∗(v |Uθ(ψ))− c∗(x , v)︸ ︷︷ ︸
f (x ,v ,Uθ(ψ))

where the support function

δ∗(v |Uθ(ψ)) := sup
ξ∈Uθ(ψ)

ξT v = µT v +
√

vTΣv

while the partial concave conjugate function is defined as

c∗(x , v) := inf
ξ

vT ξ − c(x , ξ)
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Robust optimization reformulation and derivatives
• We assume that c(x , ξ) is convex in x and concave in ξ, while X is a

convex set.
• Using Fenchel duality, one can follow Ben-Tal et al. [2015] to

reformulate the robust optimization problem as:

x∗
θ (ψ) := argmin

x∈X
max
ξ∈Uθ(ψ)

c(x , ξ) = arg min
v ,x∈X

δ∗(v |Uθ(ψ))− c∗(x , v)︸ ︷︷ ︸
f (x ,v ,Uθ(ψ))

• The derivatives of x∗
θ (ψ) := argminv ,x∈X f (x , v ,Uθ(ψ)) w.r.t. θ can

be obtained using implicit differentiation (see Blondel et al. [2022])
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Robust optimization reformulation and derivatives

Decision loss
CVaRD(c(x∗

θ (ψ), ξ))

Robust optimization:
x∗
θ (ψ) := argminv ,x∈X

f (x , v ,Uθ(ψ))

Training of θ
minθ Decision loss(θ)

x∗
θ (·)

D

Uθ(·)
Uθ∗(·)
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Comparative study with GMM environment

• (ψ, ξ) ∈ R2 × R2 drawn from a joint Gaussian mixture model with
two modes

• Data: 600 points for training, 400 for validation, 1000 for test
• Targeted confidence level of 90%
• Average is calculated over 10 runs

ETO-ACPS ETO-DbS TbS !! DTbS !!
Avg. CVaR 1.69± 0.05 1.64± 0.07 1.03 ±0.10 1.08 ± 0.13
Avg. VaR 1.12± 0.04 1.07± 0.02 0.72 ±0.07 0.75 ± 0.10

Avg. marginal cov. 91% ±1.4% 85%± 7.8% 23%± 6.1% 92%± 1.5%
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Second-task: Conditional coverage
Lemma
An uncertainty set Uθ(ψ) has an a.s. conditional coverage of 1− ε if and
only if

LCC(θ) := E[ (P(ξ ∈ Uθ(ψ)|ψ)− (1− ε))2 ] = 0

LCC(θ) can be approximated using:

L̂CC(θ) := ED[(gφ∗(θ)(ψ)− (1− ε))2]

where gφ∗(θ)(ψ) ≈ P(ξ ∈ Uθ(ψ)|ψ) is obtained using logistic regression of
membership variable y(ψ, ξ; θ) := 11{ξ ∈ Uθ(ψ)} on ψ.
• I.e., letting the augmented data set

Dθ
ψξy := {(ψ1, ξ1, y(ψ1, ξ1; θ)), . . . , (ψN , ξN , y(ψN , ξN ; θ))},

one solves φ∗(θ) ∈ argminφ L
y |ψ
NLL(gφ(·),Dθ

ψξy ) with

gφ(ψ) :=
1

1 + expφTψ+φ0
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Double Task-based Set (DTbS) training
We train Uθ(ψ) using the two tasks: produce good decision + produce
good conditional coverage:

Decision loss
CVaRD(c(x∗

θ (ψ), ξ))

Robust optimization:
x∗
θ (ψ) := argminv ,x∈X

f (x , v ,Uθ(ψ))

Training of θ
minθ Dec.L(θ) + Cov .L(θ)

Classification
yθ(ψ, ξ) := 11{ξ ∈ Uθ(ψ)}

Logistic regression
φ∗(θ) = argminφ L

y |ψ
NLL(gφ(·),Dθ

ψξy )

Coverage loss
ED[(gφ∗(θ)(ψ)− (1− ε))2]

x∗
θ (·)

D

Uθ(·)
Uθ∗(·)

yθ(., .)

gφ∗(θ)(·)

D
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Comparative study with GMM environment

Conditional Coverage Probability 

ETO-ACPS ETO-DbS TbS DTbS

(See uncertainty set animation (url))
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Comparative study with GMM environment

• (ψ, ξ) ∈ R2 × R2 drawn from a joint Gaussian mixture model with
two modes

• Data: 600 points for training, 400 for validation, 1000 for test
• Targeted confidence level of 90%
• Average is calculated over 10 runs

ETO-ACPS ETO-DbS TbS !! DTbS !!
Avg. CVaR 1.68± 0.04 1.66± 0.06 1.05 ±0.09 1.07 ± 0.09
Avg. VaR 1.12± 0.04 1.07± 0.02 0.72 ±0.07 0.75 ± 0.10

Avg. marginal cov. 91% ±1.4% 85%± 7.8% 23%± 6.1% 92%± 1.5%
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Portfolio optimization with market data
• Contextual info: Trading volume, volatility index (VIX), 10-year

treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold
price (GC=F), Dow Jones (DJI).

• Market data from Yahoo! Finance: 70 different stocks during period
from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).

• Target confidence level of 70%, 80%, or 90%

Model
Marginal coverage

2018 2019
70% 80% 90% 70% 80% 90%

ETO-ACPS 68% 78% 87% 71% 78% 89%
ETO-DbS 59% 75% 87% 61% 76% 86%

TbS 23% 24% 29% 26% 30% 32%
DTbS 71% 80% 93% 69% 78% 92%
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Concluding remarks

• We introduced a new conditional robust optimization approach for
solving risk averse contextual optimization problems.

• In CRO, deep neural networks can be used to:
• Represent richly structured uncertainty sets (see Goerigk and Kurtz

[2023], Chenreddy et al. [2022])
• Adapt uncertainty set continuously to covariates (this talk)

• Two types of training objectives:
• Decision performance: Producing decisions that achieve low VaR/CVaR
• Statistical performance: achieving the right marginal/conditional

coverage
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