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Portfolio optimization with contextual information

Problem: How to invest wealth among a set of assets?

x*(¢) := arg min VaRi_({Tx|v)
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What is contextual stochastic optimization?

e Qptimization problems arising in practice almost always involve
unknown parameters £ € R™¢

e QOftentimes, there is a relationship between unknown parameters and
some contextual data ¢y € R™
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What is contextual stochastic optimization?

® Optimization problems arising in practice almost always involve
unknown parameters £ € R™

® Oftentimes, there is a relationship between unknown parameters and
some contextual data ¢ € R™

e Contextual Optimization:
® Optimizes a policy, x : R™ — X
® |.e., action x € X is adapted to the observed context
® Contextual Stochastic Optimization problem minimizes the
expected cost of running the policy over the joint distribution of (1, £):

min Ele(x(¢),&)] & x*(¢) € argminE[c(x, &) [¢] a.s.

x(+) XEX
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What is conditional robust optimization?

® We introduce a Conditional Robust Optimization model for solving
contextual optimization problems in a risk-averse setting:

CRO * € arg min max O,V ey
(CRO)  x'(¥) € argmin max c(x,¢), Vv

where (1)) is a conditional uncertainty set designed to contain
with high probability the realization of £ conditionally on observing .
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Estimate-then-Optimize with continuous adaptation

® We consider a continuously adapted conditional ellipsoidal set:

Up(h) :={ €€ R™ : (€ — po(¥) TS, (W) (€ — ma(¥)) < Ro},
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Estimate-then-Optimize with continuous adaptation

® We consider a continuously adapted conditional ellipsoidal set:
Up() = { € € R™ 2 (€ — no(¥)) 2y (V) (€ — no(¥)) < Ro},
® Given a data set D = {(¢1,&1), (¥2,&2) ... (¥n,€n)}, an

estimate-then-optimize (ETO) approach takes the form:

D Estimation: Up~(-) RO LT E <0
' * 0= arg mlnxe)(
0 NLL( 9( )7 ) maX§eL{9* () C(X7§)

where Lﬂﬂ_ is the negative log likelihood for a conditional Gaussian
density estimator (see Barratt and Boyd [2021]):

§~ fy(h) = N(po(¥), 2o (¢))
and Ry s.t. PD(§ S Z/fg(lﬁ)) =1—c¢
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Related work in operations research literature

® Data-driven Distributionally Robust Optimization:
® Moment-based DRO: D & Ye (> 2000 citations !!), etc.
® Divergence-based DRO: Ben-Tal et al. [2013], Duchi et al. [2021], etc.
® Wassertein-based DRO: Mohajerin Esfahani and Kuhn [2018], Gao and
Kleywegt [2023], etc.

e Contextual Stochastic Optimization:

® Hannah et al. [2010], Bertsimas and Kallus [2020], ..: Conditional
distribution estimation used to formulate and solve the CSO problem.

® Donti et al. [2017], Elmachtoub and Grigas [2022], ..: End-to-end
paradigm applied to solve the data driven CSO problem.

® Distributionally Robust CSO:

® Bertsimas et al. [2022], McCord [2019], Wang and Jacquillat [2020],
Kannan et al. [2020]: DRO approaches with ambiguity sets centered at
the estimated conditional distribution

® Nguyen et al. [2021],Esteban-Pérez and Morales [2022]: Wasserstein
DRO for non-parametric CSO
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Related work in data-driven robust optimization literature

® Estimate then RO:
® Goerigk and Kurtz [2023], Johnstone and Cox [2021]: learns
non-contextual uncertainty sets using deep learning, and conformal
prediction.
® Chenreddy et al. [2022] learns a contextual uncertainty set using an
integrated clustering then classification approach, Blanquero et al.
[2023] constructs contextual ellipsoidal sets by making normality
assumptions
® Sun et al. [2024] solves a robust contextual LP problem by calibrating a
predictive model to match robust objectives
® Ohmori [2021], Sun et al. [2023]: calibrates a box/ellipsoidal set to
cover the realizations of a kNN /residual-based conditional distribution.
® End-to-end RO
® Wang et al. [2023] learns non-contextual sets to maximize performance
across a set of randomly drawn parameterized robust constrained
problems while ensuring constraint satisfaction guarantees w.r.t the
joint distribution over perturbance and robust problems
® Costa and lyengar [2023]: proposes a distributionally robust end-to-end
system that integrates point prediction and robustness tuning to the

portfolio construction problem
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Our contributions

® |imitation of existing CRO approaches:

@ Training disregards entirely the out-of-sample performance of the
solution obtained from robust optimization.
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Our contributions

® |imitation of existing CRO approaches:

@ Training disregards entirely the out-of-sample performance of the
solution obtained from robust optimization.
® While the calibration process encourages marginal coverage:

Plet(y) z1-e v
it does not promote conditional coverage over all 9:

P cU)lp) >1—cas. %
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Desirable coverage properties for U(1))
The field of conformal prediction identifies two important properties for
conditional uncertainty sets

® Marginal coverage property: P(§{ € U(1))) > 1 —€
e Conditional coverage property: P(§¢ € U()|Y)) > 1 —€ ass.

E.g., target coverage 1 — ¢ = 90%:

Marginal = Bad Marginal = Good
5“ Conditional = Bad 6‘ Conditional = Bad

Marginal = Good
6“ Conditional = Good

Image from Angelopoulos and Bates, A Gentle

ion and Distribution-Fi L i Q i CoRR, 2021.
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Presentation overview
@ Introduction

@® Task-based Conditional Robust Optimization

© Task-based CRO with Conditional Coverage

O Concluding Remarks

A. Chenreddy, E. Delage (HEC)

Data-Driven Conditional RO



Outline

@® Task-based Conditional Robust Optimization
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(Single) Task-based Set (TbS) training

A task-based approach learns the estimator by trying to minimize the
decision loss, e.g. the portfolio risk based on VaR

D ‘ Decision loss ’

| VaRp(c(x5(¥),€))

Robust optimization: X ()
* . 0

x3 (1) == arg minyecx
MaXecryy (v (X, )

() Training of ¢ Up~(*)
o ming Decision loss(6)
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Decision loss relaxation and derivatives

® Decision loss VaRp(c(x; (), &)) suffers from multiple local optima.

Value-at-Risk

Position, x;

Figure 3: Simulation-based trade risk profile

Image from Mausser and Rosen, Beyond VaR: from measuring risk to managing risk, CIFEF, 1999,
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Decision loss relaxation and derivatives

® Decision loss VaRp(c(x; (), &)) suffers from multiple local optima.

Value-at-Risk

Position, X;
Figure 3: Simulation-based trade risk profile

Image from Mausser and Rosen, Beyond VaR: from measuring risk to managing risk, CIFEF, 1999,

® We therefore replace it with upper bound CVaRp(c(x;(),€)).

OCVaR,n(y:

7'(”) =vi(y) with v(y) € argmax vly
Ayi vERMATv=1,0<((1—a)N) 1
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Decision loss relaxation and derivatives

D ‘ Decision loss ’

| CVaRp(c(xg(¥),))

Robust optimization: x*(+)
. . 0

xz (1) := arg min,ex
maX£€u6(,¢,) C(X, g)

() Training of 6 Uy~ ()
0 ming Decision loss(0)
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Robust optimization reformulation and derivatives

® We assume that c(x, &) is convex in x and concave in £, while X is a
convex set.
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Robust optimization reformulation and derivatives

® We assume that c(x, &) is convex in x and concave in £, while X is a
convex set.

® Using Fenchel duality, one can follow Ben-Tal et al. [2015] to
reformulate the robust optimization problem as:

xp () := arg nggg{gaé)c(x ,§) =arg rrxnn 3 (viUp(¥)) — c(x, v)
(vl (1))

where the support function

S*(vV|Up(1)) :== sup ETv=pTv+VvTEv
£€llp(¢)

while the partial concave conjugate function is defined as

c(x,v) = irgf vig— c(x,€)
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Robust optimization reformulation and derivatives
® We assume that c(x, &) is convex in x and concave in £, while X is a
convex set.

¢ Using Fenchel duality, one can follow Ben-Tal et al. [2015] to
reformulate the robust optimization problem as:

xp (1) = arg QI;@%) c(x,€) = arg min & (vith(v)) — c.(x, v)
F(xv.o (1))

® The derivatives of x; (1)) := argmin, xcx f(x, v,Up(¢))) w.r.t. 6 can
be obtained using implicit differentiation (see Blondel et al. [2022])
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Robust optimization reformulation and derivatives

D ‘ Decision loss ’

| CVaRp(c(x(¥),))

Robust optimization: V10
Xg(,(/}) ‘= arg minv,xGX

f(x, v, U (1))
Training of 0 Up- (")
Up(+) —‘ ming Decision loss(6)
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Comparative study with GMM environment

(1, &) € R? x R? drawn from a joint Gaussian mixture model with
two modes

Data: 600 points for training, 400 for validation, 1000 for test

Targeted confidence level of 90%

® Average is calculated over 10 runs
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Comparative study with GMM environment

two modes

Targeted confidence level of 90%

® Average is calculated over 10 runs

(1, &) € R? x R? drawn from a joint Gaussian mixture model with

Data: 600 points for training, 400 for validation, 1000 for test

ETO-ACPS ETO-DbS TbS
Avg. CVaR 1.69 £ 0.05 1.64 £0.07 1.03 +0.10
Avg. VaR 1.12£0.04 1.07 £0.02 0.72 +£0.07
Avg. marginal cov. | 91% +1.4% | 8% +7.8% | 23% +6.1%
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Outline

© Task-based CRO with Conditional Coverage
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Second-task: Conditional coverage

Lemma

An uncertainty set Uy(1)) has an a.s. conditional coverage of 1 — e if and
only if
Lcc(6) = E[(P(€ € Up()[e)) — (1~ )*] =0
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Second-task: Conditional coverage

Lemma

An uncertainty set Uy(1)) has an a.s. conditional coverage of 1 — e if and
only if

Lec(0) = E[(P(€ € Us(¥)]dh) — (1 - €)*] =0
Lcc(0) can be approximated using:
Lec(9) = Epl(gse(9) () — (1 — €))?]

where gy« (9) (1) ~ P(§ € Up(1)[1)) is obtained using logistic regression of
membership variable y (v, &;0) := M{¢ € Up(¢h)} on 1.
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Second-task: Conditional coverage

Lemma

An uncertainty set Uy(1)) has an a.s. conditional coverage of 1 — e if and
only if

Lcc(6) = E[(P(€ € Up()[e)) — (1~ )*] =0
Lcc(0) can be approximated using:
Lec(9) = Epl(gse(9) () — (1 — €))?]

where gy« (9) (1) ~ P(§ € Up(1)[1)) is obtained using logistic regression of
membership variable y(v,&;0) := M{& € Up(x))} on 9.
® |.e., letting the augmented data set

Dfﬂﬁy = {(¢17§1,Y(1/11a§1; 9))a SRR (¢N7£Nay(¢Na€N; ‘9))}a
one solves ¢*(f) € argmin, L’X,'ZAL(%(-),D{‘L@) with

1
14 exp¢T¢+¢o

8s(1) :
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Double Task-based Set (DTbS) training

We train Uy (1)) using the two tasks: produce good decision + produce

good conditional coverage:

D

Decision loss

{_ CVaRn(c(x5(¥),€))

X (¥) == argminy xex

Robust optimization:
f(x,v,Up(1)))

% ()

Training of 6 Up-(+)

ming Dec.L(6) + Cov.L(6)

Classification
Yo(1h,€) := M{& € Up (1))

)

yo(--)

Coverage loss ]

[ Ep[(g4+a) (%) — (1 —€))?]

Logistic regression
¢*(0) = argmin, L3, (gs(),

[

0 }J
Dicy) | (o)()

D
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Comparative study with GMM environment

Cumulative Probability

0% 20% 40% 60% 80% 90% 100%
Conditional Coverage Probability

B ETO-ACPS ¥ ETO-DbS TbS H DTbS

(See uncertainty set animation (url))
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Comparative study with GMM environment

two modes

Targeted confidence level of 90%

® Average is calculated over 10 runs

(1, &) € R? x R? drawn from a joint Gaussian mixture model with

Data: 600 points for training, 400 for validation, 1000 for test

ETO-ACPS ETO-DbS TbS
Avg. CVaR 1.68 +0.04 1.66 + 0.06 1.05 +0.09
Avg. VaR 1.12£0.04 1.07 £0.02 0.72 +£0.07
Avg. marginal cov. | 91% +1.4% | 8% +7.8% | 23% +6.1%
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Comparative study with GMM environment

two modes

Targeted confidence level of 90%

® Average is calculated over 10 runs

(1, &) € R? x R? drawn from a joint Gaussian mixture model with

Data: 600 points for training, 400 for validation, 1000 for test

ETO-ACPS ETO-DbS TbS I DTbS !l
Avg. CVaR 1.68 +0.04 1.66 + 0.06 1.05 £0.09 | 1.07 £ 0.09
Avg. VaR 1.12£0.04 1.07 £0.02 0.72 £0.07 | 0.75 £ 0.10
Avg. marginal cov. | 91% +1.4% | 85% +7.8% | 23% +6.1% | 92% + 1.5%
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Portfolio optimization with market data

e Contextual info: Trading volume, volatility index (VIX), 10-year

treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold
price (GC=F), Dow Jones (DJI).
® Market data from Yahoo! Finance: 70 different stocks during period

from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).

e Target confidence level of 70%, 80%, or 90%

Marginal coverage

Model 2018 2019
70% \ 80% \ 90% | 70% \ 80% \ 90%
ETO-ACPS || 68% | 78% | 87% | 71% | 78% | 89%
ETO-DbS || 59% | 75% | 87% | 61% | 76% | 86%
TbS 23% | 24% | 29% | 26% | 30% | 32%
DTbS 71% | 80% | 93% | 69% | 78% | 92%
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Portfolio optimization with market data

e Contextual info: Trading volume, volatility index (VIX), 10-year
treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold
price (GC=F), Dow Jones (DJI).

® Market data from Yahoo! Finance: 70 different stocks during period
from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).

14 14
12 L 12 '
10 10
E 08 I & it E 08 I I
" oo | I L
04 1 04 L
02 02
o0 07 08 09 o0 07 08 09
Confit Level Confidence Level
(a) 2018 (b) 2019
B ETO-ACPS M ETO-DbS TbS B DTbS
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Outline

@ Concluding Remarks
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Concluding remarks

® We introduced a new conditional robust optimization approach for
solving risk averse contextual optimization problems.

® In CRO, deep neural networks can be used to:

® Represent richly structured uncertainty sets (see Goerigk and Kurtz
[2023], Chenreddy et al. [2022])
® Adapt uncertainty set continuously to covariates (this talk)

® Two types of training objectives:

® Decision performance: Producing decisions that achieve low VaR/CVaR
® Statistical performance: achieving the right marginal/conditional
coverage
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Thank you Professor Ye
for your mentoring, guidance, and support
throughout all these years.
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