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Abstract
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1 Introduction

In their seminal work on entry, Mankiw and Whinston [1986] compare the number of firms

that enter a market under free entry against the second-best solution, that is, against the

number of firms that a social planner chooses in order to maximize social welfare.1 To this

end, they consider a two-stage game where in the first stage, the number of firms is established

by either free or regulated entry, and in the second one, there is Cournot competition. In

any case (free or regulated entry), each firm must pay an entry cost.

Mankiw and Whinston [1986] find that if in the second stage of the game, individual equi-

librium output decreases with entry (business-stealing effect), free entry leads, in general, to

a larger number of firms.2 Later on, Amir et al. [2014] showed that if the per-firm equilibrium

output increases with entry (business-enhancing effect), the number of firms under free entry

is lower than the second-best solution (that is, there is “under-entry”). Hence, in a stan-

dard Cournot oligopoly, excessive or under-entry crucially depends on whether competition

is business-stealing or business-enhancing.

We introduce positive network effects to the entry problem studied by Mankiw and Whin-

ston [1986] and Amir et al. [2014], and find that under-entry is more common in network

industries. As it is the case in a non-network industry, under-entry in the presence of network

effects is obtained when there is business-enhancing competition, but more interestingly, it

can also be attained in the presence of business-stealing effects, which is a major reversal to

the standard model with no network effects.

Another reason for under-entry to be more plausible in the presence of network effects is

that the scope for the business-enhancing effect is broader in network industries. As deeply

discussed by Amir [1996] and Amir and Lambson [2000], business-enhancing competition is

rare in a standard Cournot oligopoly (with no network effects), and thus, under-entry is

as well. For instance, if an inverse demand function is log-concave, competition is always

1In the second-best problem, the regulator controls only the number of firms in the market. In the
first-best, the social planner controls both entry and output.

2Specifically, if ne is the number of firms under free entry, and n∗ is the second-best solution, Mankiw and
Whinston [1986] show that ne ≥ n∗ − 1 under business-stealing competition. That is, free entry might lead
to a lower number of firms, but only by one firm. For simplicity, we refer to this result as “excessive entry”.
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business-stealing. Log-concavity is a condition satisfied by many inverse demand functions

used in the literature, for example, by a linear inverse demand function. With network

effects, there might be business-enhancing competition even if the inverse demand function

is log-concave.

In particular, we consider oligopolies with positive network effects and complete compat-

ibility. Markets with positive network effects are such that the consumers’ willingness-to-pay

increases with the number of buyers that are expected to purchase a compatible good (the

expected size of the network). This effect is also known as “demand-side economies of scale”.

By complete compatibility, we mean that, as defined by Katz and Shapiro [1985], the goods

are compatible no matter which firm produced them, and therefore, there is one single-

network. Some examples are the telephone (landline and cell phones), some instant messag-

ing applications, DVDs, fashion, and goods created under the umbrella of a standard-setting

organization.3

Amir and Lazzati [2011] provide a thorough study of industries with network effects and

complete compatibility. They analyze the important issue of viability (the existence of a

non-zero equilibrium), and the effects of entry on the industry. In particular, they prove that

per-firm equilibrium profits may increase or decrease with entry of new competitors.

The purpose of our paper is two-fold. First, we weaken the conditions in Amir and

Lazzati [2011] that lead to decreasing or increasing individual equilibrium profits with respect

to entry. Then we compare the second-best solution against the free entry outcome based

on the comparative statics of entry on the resulting individual output. We focus on the

case where per-firm profits decrease with entry since such is the case in a standard Cournot

oligopoly (with no network effects); in addition, the results for increasing per-firm profits are

trivial and thus, only briefly discussed.

As we mentioned before, we show that in the presence of network effects, the standard

result of under-entry prevails when competition is business-enhancing, but under-entry is

3Nayyar [2004] studies the effects of entry in the long-distance telephone services market in the US following
the forced divestiture of AT&T in 1984; he focuses on price dispersions and abstracts from incorporating
network effects into the model. Some of the equilibrium consequences of standard-setting organizations are
discussed in Shapiro [2000] and Samano and Santugini [2020].
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also possible under business-stealing competition. Intuitively, if the network effect is suffi-

ciently strong, it can offset the business-stealing effect, mimicking the results of the business-

enhancing competition.

In the absence of network effects, and with business-stealing competition, consumers are

better off with free entry than with a regulated industry, since consumer surplus is increasing

in the number of firms and free entry leads lo a larger number of them. The opposite may

happen in a network industry, since under-entry is possible, the consumers may prefer the

industry to be regulated.

Some related studies are Gama [2019] and Woo [2013]. The former conducts a similar

analysis on endogenous entry in network industries, but instead of studying industries with a

single-network (like this paper), Gama [2019] considers industries with firm-specific (incom-

patible) networks. In that case, the results on entry are aligned with those of a non-network

industry.4 Such study is based on the setting by Amir et al. [2019], and the comparative

statics analysis in Gama et al. [2020].

Woo [2013] compares free versus socially optimal entry in an industry with status effects

of consumption, that is, when agents consider others’ consumption to determine if theirs is

enough to maintain or improve their social status. Woo shows that under sufficiently strong

status effects, there is excessive entry, and his approach differs from ours in that his analysis

is based on the utility function rather than on the demand function.5

Another work concerned with social welfare and network effects is Guimaraes et al. [2020].

The authors review efficiency in dynamic coordination games with timing frictions and in-

cludes applications in network industries. One takeaway is that it is actually efficient that

the agents stay in a low-quality network when the social transaction costs of switching to a

higher-quality network are larger than the social future gains. Such is the case of the QW-

ERTY keyboard, which is intrinsically worse than the Dvorak alternative, but potentially

preferred by the social planner. A similar argument can be made for Windows over Linux,

4With firm-specific networks, individual equilibrium output always decreases with entry, and under-entry
may hold but only by one firm.

5Other (recent) studies that consider endogenous entry are Suzuki [2020] and Schröder and Sørensen
[2020]. The first one with innovation in a dynamic general equilibrium setting, the second one in a model of
monopolistic competition with endogenous quality.

4



see Guimaraes and Pereira [2016] for more details.

The next section provides the setting of the model and our assumptions, Section 3 presents

the results, and Section 4 concludes. In the Appendix we present the proofs to our results.

2 The Model

Before specifying the two entry games under study, we describe the oligopoly model with

network effects and the equilibrium concept since they are not standard in the literature. To

do so, we follow the setup in Amir and Lazzati [2011].

We consider an oligopoly with n identical firms and positive network effects, in the sense

that a consumer’s willingness-to-pay increases with the number of people purchasing a com-

patible good. There is also complete compatibility, that is, the firms produce homogenous

goods that are perfectly compatible with each other, therefore, there is a single-network

conformed by all the goods in the industry. Given the positive externalities in demand, con-

sumers form a belief on the size of the network, the “expected size of the network”, that

cannot be directly influenced by the firms.

Since the firms are identical, all of them face the same inverse demand function P (z, s),

where z denotes total output, and s is the expected size of the network. Every consumer

buys at most one unit of the good, therefore, the expected size of the network is equivalent

to the expected number of buyers in the industry. For simplicity, we assume that production

is costless.

By symmetry, the profit of any given firm is π(x, y, s) = xP (x + y, s), where x is the

individual output of the firm and y denotes the joint output by the other (n− 1) firms, that

is, z = x+ y. Then, each firm solves

max
x≥0

π(x, y, s). (1)

As we said earlier, s is an exogenous parameter for the firm, since the latter cannot affect

the consumers’ expectations about the size of the network.

The equilibrium concept for this model is defined as follows. It is due to Katz and Shapiro

[1985] and it is called fulfilled or rational expectations Cournot equilibrium (henceforth RECE
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or simply “equilibrium”).

Definition 1 A RECE consists of a vector of individual outputs (x∗1, x
∗
2, ..., x

∗
n) and an ex-

pected network size s such that:
1. x∗i ∈ arg max{xP (x+

∑
j 6=i x

∗
j , s)−K : x ≥ 0} for i = 1, 2, . . . , n; and

2.
∑n

i=1 x
∗
i = s.

The RECE establishes that in equilibrium, both the consumers and the firms correctly

predict the market outcome, and the expectations of the consumers are fulfilled. With

complete compatibility, there is only one single-network composed by all the consumers of

the compatible products. Although the firms compete in quantity, they cannot influence the

consumers’ expectations of the network size, so that they are “network-size taking”. The

firms work together to build a common network, yet, they compete with each other to serve

it.

To guarantee the existence of a symmetric RECE, we make the following assumptions.

Besides ensuring that at least one symmetric equilibrium exists, Assumptions (A1)-(A3) im-

ply that no asymmetric equilibria exist (Amir and Lazzati [2011], Theorem 2). The subindices

of P (z, s) denote partial derivatives.

(A1) P : R+×R+ → R+ is twice continuously differentiable, P1(z, s) < 0 and P2(z, s) > 0.

(A2) Each firm’s individual output is bounded by X > 0.

(A3) P (z, s)P12(z, s)− P1(z, s)P2(z, s) > 0, for all (z, s).

In particular, P1 < 0 reflects the law of demand, and P2 > 0 the demand-side economies

of scale (willingness-to-pay increases with the expected size of the network). The firms’

capacity constraint imposed by (A2) is a technical requirement that guarantees the existence

of equilibria and prevents technical problems with unbounded output, but the results do not

depend on the magnitude of X.

Assumption (A3) implies that the elasticity of demand increases with the expected size

of the network, which is a characteristic of industries with network effects.6 A consumer’s

reaction to a price change is reinforced by the reaction of the rest of the consumers, which

moves in the same direction.

6Specifically, (A3) implies that ∂ε
∂s ≥ 0, where ε = −

[
∂P (z,s)
∂z

z
P (z,s)

]−1
is the elasticity of demand.
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Since the equilibria are symmetric and for ease in the notation, we will denote the equi-

librium variables with the sub-index n, whenever there are n identical firms. That is, xn

denotes the per-firm equilibrium output and zn = nxn the equilibrium industry output; πn

and Wn are the corresponding individual profits and social welfare, respectively.

Now we turn to the description of the (two) two-stage games under consideration, where

in each of them we consider the subgame-perfect equilibria. The first two-stage game consists

of a free entry game and firms make decisions in the two stages. In the first stage, firms decide

whether to enter the market or not, if they decide to enter, they pay the entry cost K > 0.

In the second stage, the firms compete in quantity according to the model described above.

If πn (per-firm equilibrium profit in the second stage) decreases with n, the number of

firms under free entry is ne ∈ N such that

πne −K ≥ 0 and πne+1 −K < 0.7

The second two-stage game under consideration is the second-best problem, where the

industry is regulated. In this game, the regulator first establishes the number of firms by

maximizing social welfare; to enter the market, a firm must pay the entry cost K > 0. In

the second stage, the firms compete in quantity according to the model described in the first

part of this section, the oligopoly model with network effects and complete compatibility.

Therefore, the second-best solution is n∗ ∈ N that solves the regulator’s problem

max
n
{Wn − nK}, (2)

where Wn is the social welfare corresponding to the equilibrium in the second stage of the

game.

Now that we have presented the two games, we state a final assumption in addition to

(A1)-(A3) to guarantee that at least one firm survives in the market in both games.

(A4) π1 > K, K > 0.

In the next Section we characterize the properties of the equilibria of the (two) two-

stage games introduced here. Our goal is to understand the entry outcomes of the two

7Notice that πn and Wn (below) do not include the entry cost K > 0. In this sense, our notation is
different from that in Mankiw and Whinston [1986], but in line with Amir et al. [2014].
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games and how they compare to each other. For a better discussion of our results, it is

important to keep in mind that in a standard (non-network) Cournot oligopoly with costless

production, per-firm equilibrium profits always decrease with the number of firms (Amir

and Lambson [2000], Theorem 2.2-c). In addition, whether there is excessive or under-

entry in the standard Cournot oligopoly depends on whether there are business-stealing or

business-enhancing effects, respectively (Amir et al. [2014], Proposition 1). Specifically, with

business-stealing competition, there might be under-entry, but only by one firm (ne ≥ n∗−1),

otherwise, ne ≤ n∗ with business-enhancing competition. Our results show that this is no

longer the case when there are network effects.

3 Results

In the absence of network effects, excessive entry is a direct consequence of the business-

stealing effect (Mankiw and Whinston [1986] and Amir et al. [2014]), that is, if individual

output decreases with competition, free entry leads to a larger number of firms than in

the second-best. Under business-stealing competition, the firms have the incentive to enter

the market by stealing existing firms’ clients until their profits become zero; even though

total output increases, industry profits are reduced to zero, which hurts social welfare. The

regulator internalizes this fact and allows a lower number of firms into the market.

With network effects and complete compatibility, entry always increases total output

(see Theorem 1-i below), and thus the size of the network. Therefore, even if entry reduces

individual output, it also creates a social gain by expanding the network, which might lead

to a larger number of firms under the second-best problem (under-entry).

For a better understanding of this outcome, consider the problem of the regulator (2):

max
n

[
Wn − nK =

∫ zn

0

P (t, zn)dt− nK
]

;

ignoring the integer constraint and assuming that Wn is differentiable, the optimal number

of firms n∗ satisfies the first order condition

dWn∗

dn
−K = πn∗ −K + n∗P (zn∗ , zn∗)

dxn∗

dn
+
dzn∗

dn

∫ zn∗

0

P2(t, zn∗)dt = 0. (3)

8



Under business-stealing competition, we have dxn

dn
≤ 0 for all n, and by Amir and Lazzati

[2011] (see Theorem 1-i below), total output increases with entry, dzn
dn
≥ 0 for all n. Provided

the positive network externality, P2 > 0, the sign of

n∗P (zn∗ , zn∗)
dxn∗

dn
+
dzn∗

dn

∫ zn∗

0

P2(t, zn∗)dt (4)

is ambiguous, and therefore, πn∗ −K might be positive or negative.

If expression (4) is negative, then πn∗−K must be positive in order to satisfy the first order

condition (3). Therefore, free entry leads to at least n∗ firms, which is what we call excessive-

entry. On the other hand, if expression (4) is positive, there is under-entry. Consequently,

the comparison between free and second-best entry cannot be predicted in general, and it

depends on the primitives of the industry.

Observe that in the absence of network effects, the second term in expression (4) becomes

zero and hence, the remaining term is negative, leading to excessive entry. As mentioned

before, in a standard Cournot oligopoly, profits always decrease with n and excessive/under-

entry crucially relies on whether individual output decreases or increases with entry.

To present our results in an organized manner, we first state sufficient conditions for the

comparative statics of individual profits and output with respect to entry. These comparative

static results refer to the RECE, that is, to the equilibrium in the second stage of the games

under comparison (the oligopoly model with network effects). Recall that such equilibrium

is sub-indexed by n whenever there are n firms in the market. Since uniqueness of the

equilibrium is not guaranteed, all of our results refer to the extremal equilibria, that is, to

the minimal and maximal equilibria.

Consider the following functions:

∆1(z) ≡ P1(z, z) + P2(z, z),

∆2(z) ≡ P (z, z)[P11(z, z) + P12(z, z)]− P1(z, z)∆1(z), and

∆3(z) ≡ −P1(z, z)∆1(z) + ∆2(z).

Amir and Lazzati [2011] introduce ∆1(z) and ∆2(z) and use them to conduct comparative

statics of equilibrium per-firm output (xn) and profits (πn). In particular, they show that
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xn ≥ xn+1 (xn ≤ xn+1) whenever ∆2(z) ≤ 0 (∆2(z) ≥ 0) on [zn, zn+1]. If both ∆1(z) ≤ 0

and ∆2(z) ≤ 0 (∆1(z) ≥ 0 and ∆2(z) ≥ 0), per-firm profits decrease (increase) in n. Total

output always increases in n. We summarize these results in Lemma 1 and Theorem 1, since

they are key in discussing the results of this paper. The proofs are available at the original

reference.

Lemma 1 (Amir and Lazzati [2011], Lemma 9) At any interior equilibrium
i) xn ≥ xn+1 if ∆2(z) ≤ 0 on [zn, zn+1];
ii) xn ≤ xn+1 if ∆2(z) ≥ 0 on [zn, zn+1].

Theorem 1 (Amir and Lazzati [2011], Theorems 8-i and 10) At any interior equilibrium
i) zn ≤ zn+1 for all n, and
ii) πn ≥ πn+1 (πn ≤ πn+1) if ∆1(z) ≤ 0 and ∆2(z) ≤ 0 (∆1(z) ≥ 0 and ∆2(z) ≥ 0) on

[zn, zn+1].

Notice that ∆1(z) is the derivative of P (z, z) with respect to z, in other words, ∆1(z)

accounts for the total change in price when aggregate output changes along the fulfilled

expectation path. Then, the effects of entry on the equilibrium price are given by ∆1(z).

Specifically, since total output increases with entry (Theorem 1-i), pn ≥ pn+1 (pn ≤ pn+1) if

∆1(z) ≤ 0 (∆1(z) ≥ 0) on [zn, zn+1], where pn denotes the corresponding equilibrium price

with n firms.

The interpretation of ∆2(z) is less straightforward. As we explain next, ∆2(z) refers

to the fact that the scope for business-enhancing competition is broader in the oligopoly

with network effects. Observe that ∆2(z) can be rewritten as ∆2 = [P (z, z)P12(z, z) −

P1(z, z)P2(z, z)] + [P (z, z)P11(z, z)− P 2
1 (z, z)], the first term is strictly positive by (A3) and

the second one is positive whenever P (z, s) is log-convex in z. In the absence of network

effects, log-convexity of the inverse demand function is a sufficient condition to have business-

enhancing competition (Amir and Lambson [2000], Theorem 2.4), which is stronger than

having ∆2(z) ≥ 0, sufficient to have business-enhancing competition with network effects

(Lemma 1-ii).

The novel function in this paper is ∆3(z), which predicts whether per-firm profits increase

or decrease with n. Recall that in standard Cournot, per-firm profits always decrease with n

and thus, no analogous condition is needed. Lemma 2 establishes the relationship between
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∆3(z) and πn in our setting with a single-network. This and the rest of the proofs can be

found in Section 4.

Lemma 2 At any interior equilibrium of the second stage
i) πn ≥ πn+1 if ∆3(z) ≤ 0 on [zn, zn+1];
ii) πn ≤ πn+1 if ∆3(z) ≥ 0 on [zn, zn+1].

Since ∆3(z) = −P1(z, z)∆1(z) + ∆2(z), Lemma 2 provides a weaker condition than that

in Theorem 1-ii. To see this, note that ∆1(z) ≤ 0 and ∆2(z) ≤ 0 imply that ∆3(z) ≤ 0,

but the condition ∆3(z) ≤ 0 allows for the possibility that ∆1(z) and ∆2(z) have different

signs. For instance, it could be that ∆1(z) ≥ 0, ∆2(z) ≤ 0 and ∆3(z) ≤ 0, that is, per-firm

output decreases with entry (∆2(z) ≤ 0) and the network effect is stronger than the market

effect (∆1(z) ≥ 0), but not strong enough to increase the individual profits (∆3(z) ≤ 0).

Conditions ∆1(z) ≤ 0 and ∆2(z) ≤ 0 are aligned in the sense that both the equilibrium price

and per-firm output decrease with entry, thus leading to decreasing per-firm profits. The

comparison of the condition ∆1(z) ≥ 0 and ∆2(z) ≥ 0 with ∆3(z) ≥ 0 is analogous.

To clarify the relevance of Lemma 2, we provide the following example, which is based on

Example 1 of Amir and Lazzati [2011].8

Example 1. Consider an industry with positive network effects, complete compatibility,

and inverse demand function P (z, s) = exp
(
− z

exp(1−1/s)

)
. Given s, a firm solves

max
x

[
x exp

(
− x+ y

exp(1− 1/s)

)
−K

]
in the second-stage of the game, which leads to the best-response x(y, s) = exp(1− 1/s). The

symmetric RECE is then given by the fixed point of f(s) = n exp(1− 1/s), that is, the RECE

is implicitly given by zn = n exp(1− 1/zn) and thus, πn = xn exp(−n), with xn = zn/n.

First observe that when n = 1, the unique non-zero RECE is z1 = x1 = 1. Since zn

increases with n (Theorem 1-i), we have that zn ≥ 1 for all n ≥ 1, a result that will become

useful further below.9

8In their example, the inverse demand function is P (z, s) = exp
(
− 2z

exp(1−1/s)

)
.

9Recall that the comparative statics results in this paper hold for the minimal and maximal equilibria. In
this example, we focus on the largest one since the lowest is the trivial equilibrium, zn = 0, for all n ≥ 1.
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After some calculations we get

∆1(z) = −P1(z, z)(1− z)/z

and

∆2(z) = −P1(z, z)P (z, z)/z2.

Since P1 < 0, we have that ∆2(z) ≥ 0 for all z > 0. Provided that zn ≥ 1 for all n, Lemma

1 predicts that xn globally increases with respect to n. Nonetheless, Theorem 1-ii is silent

on predicting the direction of change of πn. This is because ∆1(z) ≤ 0 and ∆2(z) ≥ 0 for all

z ≥ 1, and Theorem 1-ii requires equal signs to achieve a conclusion.

To see that πn decreases with entry, we will use Lemma 2. To this end, note that

∆3(z) =
−P1(z, z)P (z, z)

z2

[
1− z(z − 1)

exp(1− 1/z)

]
≤ 0

for all z ≥ 1.8548.10 But z2 = 4.311, then, ∆3(z) ≤ 0 for all z ≥ z2 = 4.311, and by Lemma

2, πn decreases for all n ≥ 2 (recall that zn increases in n). To see that πn globally decreases

in n, the reader can easily verify that π1 = 0.3679 > π2 = 0.2917.

Finally, observe that ∆3(z1) = ∆3(1) = −P1(1, 1)P (1, 1) = exp{−2} ≥ 0, which shows

that ∆3(z) ≤ 0 for all z ≥ z1 = 1 is only a sufficient, but not necessary, condition to have πn

globally decreasing in n.

Next, we present our results on endogenous entry in network industries. They are classified

based on characteristics of the endogenous variables πn and xn. The conditions on such

variables can be replaced by the conditions on P (z, s) given by Lemmas 1 and 2, but since

the latter provides only sufficient (but not necessary) conditions, we write the conditions in

general to broaden the applicability of our results.

3.1 Endogenous entry

According to Lemma 2, individual equilibrium profits might increase or decrease with

entry. We focus on the case where they globally decrease, πn ≥ πn+1 for all n, because

10This can be obtained from the roots of 1− z(z−1)
exp(1−1/z) = 0, and given P1 < 0.
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such is the case in the standard Cournot model.11 In this context we establish an important

difference between the industries with and without network effects: with business-stealing

competition, under-entry (by more than one firm) may occur in the presence of network

effects, which does not happen otherwise.

3.1.1 Business-stealing competition

The industry studied in this section is attained in a global sense (per-firm output and

per-firm profits globally decreasing in n) whenever ∆2(z) ≤ 0 and ∆3(z) ≤ 0 for all z ≥ z1

(Lemmas 1 and 2). Although this kind of industry is typical, it is the hardest to predict in a

general way. As we explained before (with the help of equation (4)) there might be excessive

or under-entry when xn and πn decrease with n. It would be ideal to provide conditions on

P (z, s) so that we can predict the sign of equation (4), but this is not an easy task since it

is hard to measure the magnitude of the opposite effects.

Yet, as we show next, it is easy to characterize an industry with a linear inverse demand

function, in both s and z, and show that a sufficiently strong network effect leads to under-

entry in the presence of business-stealing competition.

Example 2. Consider an industry with a compatible network and inverse demand func-

tion given by P (z, s) = a + bs − z, with a > 0, 0 < b < 1, and 0 < K < a2/(2 − b)2. The

constraint on K guarantees that at least one firm survives in the market (Assumption (A4)).

Given s, the reader can easily verify that the best reply of any firm is

x(y, s) =
a+ bs− y

2
,

and the symmetric RECE (zn) is the fixed point of f(s) = na+bs
n+1

. Hence, total output becomes

zn =
na

1 + n(1− b)
,

11Moreover, when individual profits increase, the results are trivial. Free entry leads to an infinite number
of firms, since the firms are better off when there are more of them in the market. Similarly, it is easy to show
that if individual output also increases with entry, then social welfare increases with n and the second-best
solution also consists of allowing an infinite number of firms.
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and per-firm output and profits are given by xn = a
1+n(1−b) and πn = a2

[1+n(1−b)]2 , respectively.

As predicted by Lemmas 1 and 2, xn and πn decrease with n,12 and whether there is excessive

or under-entry depends only on the magnitude of the network effect measured by b. In

particular, we have (the calculations are shown in the Appendix)

i) If b < 0.5, there is excessive entry, ne ≥ n∗,

ii) If b ≥ 0.5, there is under-entry, ne ≤ n∗.

The parameter b measures the sensitivity of the consumers’ willingness-to-pay to the

expected size of the network and it is the only determinant of whether there is excessive or

under-entry. When the sensitivity is low (b < 0.5), the business-stealing effect is stronger

than the network effect (see equation (4)), and more firms than the socially optimal level

decide to enter. On the other hand, if b is relatively large (b ≥ 0.5), the network effect

prevails and there is under-entry.

The previous finding establishes a clear difference between industries with and without

network effects. In the absence of network effects, under-entry may happen but only by one

firm (without network effects, ne ≥ n∗ − 1; see Amir et al. [2014], Proposition 1). With

network effects, under-entry by more than one firm is possible, for example, if we set a = 8,

K = 4, and b = 0.7 in Example 2, free entry yields a total of six fewer firms than in

the second-best solution, ne = 10 < 16 = n∗. This departure from the standard Cournot

oligopoly is due to the network effect depicted by b.

An important consequence of Example 2 is that consumers may be better off with a

regulator than under free entry. In the absence of network effects, consumer surplus increases

with the number of firms, consequently, consumers prefer the free entry scheme which leads

to more firms.13 In the industry considered in Example 2, consumer surplus also increases

with the number of firms (Amir and Lazzati [2011], Theorem 11-i), hence, when b ≥ 0.5,

consumers prefer to be in a regulated industry.14

12Note that ∆1(z) = ∆2(z) = b−1 < 0 and ∆3(z) = 2(b−1) < 0 when 0 < b < 1. If b > 1, we get opposite
signs and xn and πn increase with respect to n. If b = 1, xn = a and πn = a2 are invariant to entry, in line
with Lemmas 1 and 2.

13Except for the case ne = n∗ − 1.
14Specifically, Theorem 11-i in Amir and Lazzati [2011] establishes that consumer surplus increases in n,
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3.1.2 Business-enhancing competition

When individual profits decrease with competition but individual output increases, the

result in the industry with network effects is analogous to that of the non-network indus-

try: there is under-entry. With network effects and business-enhancing competition, both

individual and total output have the same direction of change and therefore, there is always

under-entry. Specifically, equation (4) is positive whenever xn increases in n (we include the

proof considering that n is an integer).

Recall that if ∆2(z) ≥ 0 on [zn∗ , zn∗+1] and ∆3(z) ≤ 0 for all z ≥ z1 (Lemmas 1 and 2),

we have the hypothesis in the next result.

Proposition 1 At any interior equilibrium, if πn ≥ πn+1 for all n, and xn∗ ≤ xn∗+1, then,
ne ≤ n∗.

Proposition 1 states that whenever per-firm profits globally decrease in n and per-firm

output increases at n∗, free-entry leads to a lower number of firms, compared to the second-

best solution. The industries with and without network effects share the characteristic of

under-entry with business-enhancing competition, but as we discussed earlier (when intro-

ducing ∆2(z)), this type of competition is more plausible in industries with network effects

(Amir and Lazzati [2011]).

For instance, in a non-network industry, business-enhancing competition can be attained

for all n only in the absence of variable costs. Similarly, when P (z, s) is log-concave in z,

business-enhancing competition is impossible in the standard Cournot oligopoly (see Amir

[1996] and Amir and Lambson [2000] for more details), but it is feasible with network effects,

as shown by Example 1.

In such example, P (z, s) = exp
(
− z

exp(1−1/s)

)
is log-linear in z, and thus, log-concave in z,

yet, per-firm output globally increases in n (business-enhancing effect). Moreover, per-firm

profits globally decrease in n and as predicted by Proposition 1, there is under-entry. For

instance, if K = 0.05, we have that ne = 3 < n∗ = 7.

CSn ≤ CSn+1, if ∆1(z) ≤ 0 on [zn, zn+1] or P12(z, s) ≤ 0 for all z, s. Both conditions are satisfied by
Example 2, since ∆1(z) = b− 1 < 0, by b < 1, and P12(z, s) = 0.
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4 Final Remarks

We have shown that introducing network effects to the standard Cournot oligopoly model,

as in Amir and Lazzati [2011], changes the conventional wisdom that excessive entry (under-

entry) is a direct consequence of the business-stealing (business-enhancing) effect. With

a single-network, under-entry occurs under business-enhancing competition, but may also

happen with the business-stealing effect. Moreover, business-enhancing competition is more

plausible with network effects, then, under-entry in oligopolies may be more common than

one would think.

Although per-firm equilibrium profits might increase with entry in the presence of network

effects, we have focused on the case where per-firm profits decrease because such is the

outcome in a regular (non-network) industry. Besides, when per-firm equilibrium profits

increase, the results on entry are trivial: since the firms increase their profits with a new

competitor, free entry leads to an infinite number of firms. If in addition, individual output

also increases, it is easy to show that social welfare increases with entry and hence, the

regulator will also allow an infinite number of firms. This environment with xn and πn

increasing in n is easily obtained, for instance, when b > 1 in Example 2 (see Footnote 12).

Without network effects, business-stealing competition is the norm, and thus, excessive

entry is as well. Consequently, the firms obtain lower profits under free entry than in a

regulated industry, and the consumers benefit from it by being offered lower prices. With

the existence of network externalities, there might be under-entry even in the presence of

the business-stealing effect, then, the firms are better off with free entry, but the consumers

are worse off. Therefore, one has to be very careful when allowing free entry of firms if the

objective is to maximize consumer surplus; although it is natural to assume that free entry

benefits consumers, it might be the opposite in the presence of network effects.

Appendix

Proof of Lemma 2.

First note that any interior equilibrium satisfies the first order condition at the second
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stage of the game

P (zn, zn) + xnP1(zn, zn) = 0,

which implies that xn = P (zn,zn)
−P1(zn,zn)

. Taking the derivative with respect to n, we have

dxn
dn

=
P1(zn, zn) + P2(zn, zn) + xn[P11(zn, zn) + P12(zn, zn)]

−P1(zn, zn)

dzn
dn

=
∆2(zn)

P 2
1 (zn, zn)

dzn
dn

.

Per-firm equilibrium profits are πn = xnP (zn, zn). Taking the derivative with respect to

n, substituting xn and dxn

dn
, and rearranging terms, we have

dπn
dn

= xn[P1(zn, zn) + P2(zn, zn)]
dzn
dn

+ P (zn, zn)
dxn
dn

= xn

(
∆1(zn) +

∆2(zn)

−P1(zn, zn)

)
dzn
dn

= xn
∆3(zn)

−P1(zn, zn)

dzn
dn

.

By P1 < 0 and dzn
dn
≥ 0, the results follow. �

Results i) and ii) from Example 2.

The assumption 0 < K < a2/(2− b)2 implies that at least one firm is active, π1 > K.

In general, the problem of the regulator is

max
n

[Wn − nK =

∫ zn

0

P (t, zn)dt− nK],

with first order condition:

πn −K + nP (zn, zn)
dxn
dn

+
dzn
dn

∫ zn

0

P2(t, zn)dt = 0. (5)

When P (z, s) = a+ bs− z, the left-hand side of equation (5) becomes

a2(1 + bn)

(1 + n(1− b))3
−K =

πn(1 + bn)

1 + n(1− b)
−K, (6)

and the second order condition (SOC) is

a2(4b− 3− 2bn(1− b))
(1 + n(1− b))4

< 0,
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which holds for b ≤ 0.82 or for n sufficiently large, n > (4b− 3)/[2b(1− b)].

(i) Assume that 0 < b < 0.5. At ne + 1, equation (6) becomes

πne+1(1 + b(ne + 1))

1 + (ne + 1)(1− b)
−K <

K(1 + b(ne + 1))

1 + (ne + 1)(1− b)
−K =

K(ne + 1)(2b− 1)

1 + (ne + 1)(1− b)
< 0.

The first inequality follows by the free entry condition, πne+1 < K, and the second one, by

0 < b < 0.5. Then, provided that Wn − nK is strictly concave in n (given b ≤ 0.82), the

regulator must decrease the number of firms in order to optimize social welfare, n∗ < ne + 1,

which implies n∗ ≤ ne.

(ii) Now suppose that 0.5 ≤ b < 1. Analogous to part (i), but using the fact that πne ≥ K,

we have
πne(1 + bne)

1 + ne(1− b)
−K ≥ K(1 + bne)

1 + ne(1− b)
−K =

Kne(2b− 1)

1 + ne(1− b)
≥ 0.

If 0.5 ≤ b ≤ 0.82, the result follows immediately by the strict concavity of Wn − nK.

Otherwise, if 0.82 < b < 1, the second order condition holds when n > (4b − 3)/[2b(1 − b)].

Similarly, note that when n = 1, the regulator can (weakly) improve social welfare with an

additional firm, which can be seen from equation (6):

π1(1 + b)

2− b
−K >

K(1 + b)

2− b
−K =

K(2b− 1)

2− b
≥ 0

(the first inequality follows from (A4), π1 > K, and the second one, from 0.5 ≤ b < 1).

Hence, social welfare is first increasing and convex, then changes curvature and finally de-

creases. Altogether, we have ne ≤ n∗. �

Proof of Proposition 1.

First notice that since P1 < 0 and xn∗+1 > 0 (if xn∗+1 = 0 the result is immediate,

n∗ = ne = 0),

xn∗+1P (zn∗+1, zn∗+1) <

∫ zn∗+1

0

P (t, zn∗+1)dt−
∫ n∗xn∗+1

0

P (t, zn∗+1)dt. (7)

Also, by optimality of n∗,

Wn∗ − n∗K ≥ Wn∗+1 − (n∗ + 1)K,
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that is, ∫ zn∗

0

P (t, zn∗)dt− n∗K ≥
∫ zn∗+1

0

P (t, zn∗+1)dt− (n∗ + 1)K. (8)

Then, we have the following expressions

πn∗+1 −K

≤ xn∗+1P (zn∗+1, zn∗+1) +

∫ zn∗

0

P (t, zn∗)dt−
∫ zn∗+1

0

P (t, zn∗+1)dt

≤ xn∗+1P (zn∗+1, zn∗+1) +

∫ zn∗

0

P (t, zn∗+1)dt−
∫ zn∗+1

0

P (t, zn∗+1)dt

<

∫ zn∗

0

P (t, zn∗+1)dt−
∫ n∗xn∗+1

0

P (t, zn∗+1)dt

≤ 0.

The first inequality follows from πn∗+1 = xn∗+1P (zn∗+1, zn∗+1) and (8); the second one

from zn∗+1 ≥ zn∗ and P2 > 0, and the third one from inequality (7). The last inequality is

given by n∗xn∗+1 ≥ n∗xn∗ = zn∗ , provided xn∗+1 ≥ xn∗ .

Hence, πn∗+1 < K, and by πn ≥ πn+1, we have the result. �
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