
Large-scale Battery Storage, Short-term Market
Outcomes, and Arbitrage∗

Stefan Lamp† Mario Samano‡

December 7, 2021

Abstract
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the optimal solution of an arbitrage maximizer, indicating that battery owners respond
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1 Introduction

The share of variable renewable electricity (VRE) in the portfolio mix of generation has

more than doubled from 2012 to 2018 in the US.1 This rapid increase of the VRE share has

caused dramatic changes in the electricity market. Several implications have been discussed

in the literature, for example, impacts on emissions (Cullen [2013], Callaway et al. [2018],

Novan [2015]), impacts on wholesale prices (Bushnell and Novan [2021]), and on the long-

term costs due to the volatility of the electricity supply (Lamont [2008], Gowrisankaran et al.

[2016]), just to name a few. Since VRE is not perfectly forecastable and non-dispatchable,

one consequence of those changes has been the acceleration of the introduction of large-scale,

non-hydro, storage technologies such as lithium-ion batteries. According to the EIA, there

were 1,236 megawatt-hours (MWh) of energy capacity installed of this type of facilities across

the US at the end of 2018, with altogether a power (the maximum amount electricity that

can be discharged in any instant) of 869 megawatt (MW). This represents an increase of

nearly 15 times in power capacity relative to 2010 (EIA [2020]).2

A natural question is to characterize the discharging and charging behavior of these

large-scale battery storage facilities, particularly relative to the well documented load and

wholesale price patterns. In this paper, we focus on the following three questions, (i) do

storage facilities discharge more or less when load is high?, (ii) do storage facilities charge

more when wholesale prices are low and sell when they are high in line with a model of optimal

arbitrage?, and (iii) does the entry of new storage capacity affect wholesale electricity prices?

Some of those questions have been assessed through models that extrapolate the opti-

mal responses of a storage facility to the entire market (Diaf et al. [2008], Giulietti et al.

[2018], Sioshansi et al. [2009]), models that study the interaction of storage and nodal pric-

ing (Antweiler [2018], Kirkpatrick [2018], Leslie et al. [2021]), and more recently by using

dynamic models to assess the equilibrium effects of technology adoption (Dorsey et al. [2021],

1Sun et al. [2018]
2This is comparable to about half of the production capacity of the San Onofre Nuclear Generating

Station (SONGS), which provided about 8% of the electricity generated in California in 2012 and that was
shut down the same year (Davis and Hausman [2016]).
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Karaduman [2020]).3

We take a different approach and use the most recent data on charging and discharging

output of large-scale batteries in California published by the California Independent System

Operator (CAISO).4 We do not assume that batteries are necessarily optimizing a known

objective function, but rather, we describe the aggregate patterns and document whether

they correlate to key market outcomes: load and wholesale electricity prices. Furthermore,

we provide evidence on whether these facilities’ actions are consistent with the behavior of

an arbitrageur, which is the typical behavior that is assumed in most models of large-scale

batteries (see for instance Sioshansi et al. [2009]). Finally, while individual batteries are

price-takers, we provide evidence on the impact of aggregate large-scale battery capacity on

daily price spreads under the assumption that the exact time of entry is exogenous. To the

best of our knowledge, this is the first paper to use actual data from battery output to study

the behavior of battery facilities.

Our results show that battery discharging is associated with high levels of load and

prices, indicating that large-scale batteries are mostly employed during peak load and that

they may be engaging in arbitraging behavior. Charging and discharging patterns during

the day follow the wholesale electricity price movements, mainly during the morning hours

and during peak load in the evening. To compare these patterns to the optimal responses

of a profit-maximizing battery owner, we solve for the optimal solution of a battery with

energy and power capacity comparable to the median battery operating in California as of

2019 that takes for input the time series of wholesale prices in the CAISO. Qualitatively, we

find a similar response to prices in both the optimal model dispatch and the empirical data,

indicating that battery owners take advantage of some arbitrage opportunities in this market.

Yet, the quantitative response in the empirical data is significantly smaller, especially during

3In addition, other studies have concentrated on the development of patents related to electricity storage
that promote innovation in both renewable and conventional energy technologies (Lazkano et al. [2017]), on
the theoretical implications that the market structure has on the equilibrium outcomes when there is storage
in the system (Andrés-Cerezo and Fabra [2020]), on the interactions of support policies for renewables and
storage (Abrell et al. [2019], Tabari and Shaffer [2020]), as well as on alternative storage technologies, such
as liquid air (Lin et al. [2019]).

4The share of VRE is approximately 23% of total generation in this market ([Sun et al., 2018]).
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evening peak hours. We also estimate the marginal impact of wholesale prices on battery

charging and discharging across the different hours of the day both for the output obtained

from the optimization model and for the observed data after applying a normalization that

allows to compare those two types of data. We find that in the observed data there is much

less responsiveness to prices compared to the output from the optimal model. We discuss

the differences between the optimal model solution and our empirical findings in light of

the assumptions made in the optimal dispatch model. In addition, using a simple difference

framework, we show that addition of battery capacity over the years 2013 to 2017 has led

to significant decreases in the maximum daily price spread in the real-time market. This

finding indicates that in the aggregate, batteries can reduce peak prices, affecting market

outcomes and future profitability of battery investment. Finally, we calculate the average

yearly revenue per megawatt-hour (MWh) of current storage capacity and find evidence

against profitability in the data.

The rest of the paper is structured as follows. Section 2 introduces the data and describes

the current storage facilities in California. Section 3 presents patterns between batteries

output and short-term market outcomes. Section 4 provides a simple model of optimal

storage management, which we solve with data from the CAISO and present the comparison

against the observed data. Finally, section 5 estimates the effect of entry on price spreads

and a back-of-the-envelope analysis of profitability. Section 6 concludes.

2 Data

2.1 Batteries output, load, and wholesale prices

We use publicly available data obtained from the CAISO and OASIS on aggregate battery

output (net charge or net discharge), total load, load forecasts, output of renewables (includ-

ing large hydroelectric plants), and prices.5 While data on load, batteries, and renewable

output are available at 5-minute intervals, we retrieve hourly real-time market (RTM) and

5These main data sources can be accessed through the following links: CAISO and OASIS.
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day-ahead market (DAM) price data.6 Since the largest share of energy (about 90 to 95%)

is traded in the DAM (Bushnell and Novan [2021]), we focus primarily on DAM prices for

our main results. The DAM might allow battery owners to lock in production decisions with

certainty. On the other hand, as batteries can be employed to respond to short-term imbal-

ances in load as well as price fluctuations, we will also report our main results employing

RTM prices.

We combine these data with information on installed storage capacity in the CAISO

from the Energy Information Administration [EIA, 2021], as well as from the Department of

Energy [DOE, 2020].7 Appendix Figure A.1 shows the location of the main storage facilities

in California in 2018.

The CAISO started reporting data on battery output in mid-April 2018 and we have

access to DAM prices starting in June of the same year. Therefore, we limit our main sample

to the period 6 June 2018 to 1 March 2020 to ensure consistent data reporting and to avoid

potential confounding effects resulting from the COVID-19 pandemic and the mandatory

stay-at-home orders implemented in March 2020.8 In addition, to study equilibrium impacts

of new battery capacity investment in section 5, we use hourly data from the CAISO on

DAM and RTM wholesale market prices from Bushnell and Novan [2020] over the period 1

January 2013 to 31 May 2017.

We start our analysis by plotting in Figure 1 the average battery charging profile, load

profile, and DAM prices together with one-standard deviation bands to highlight the un-

certainty of these variables. There are several things worth noting. First, battery activity,

6RTM prices are available from four Default Load Aggregation Points (DLAP). Similar to Bushnell and
Novan [2021], we average the price data from DLAP locations to obtain a unique time series for the CAISO.
The four DLAP locations are Pacific Gas and Electric Company (PG&E), Southern California Edison (SCE),
San Diego Gas & Electric (SDG&E), and Valley Electric Associations (VEA). The price within each DLAP
is the sum of the marginal energy price and the congestion and loss prices. The energy component, which
is by far the largest component of the DLAP prices, is constant across DLAPs, leading to a high correlation
across DLAPs. Similarly, we obtain DAM prices from the three CAISO trading zones (NP15, SP15, and
ZP26) and average these time series to obtain a unique time series for DAM prices.

7EIA-860 Form reports generator-level specific information about existing generators and storage facilities
with 1 megawatt of power capacity or greater. The DOE Global Energy Storage Database is an open-access
resource for detailed energy-storage project in the US and worldwide.

8The state of California declared in Executive Order N-33-20 state of emergency on March 4, 2020,
followed by a mandatory statewide stay-at-home order issued on March 19.
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displayed as battery discharge in MWh in Panel (a), illustrates the losses due to the cur-

rent battery technology. When we divide the sum of the discharge amounts of the batteries

by the absolute value of the charge amount of the batteries we obtain a ratio of 0.66 (=

84,221.5 MWh / 127,581.8 MWh). Therefore, the roundtrip efficiency (how much of the

energy charged can be used in the discharging process) of the fleet as a whole is slightly

lower than what other studies have used in their simulations. The ratio found here is the

same than the one we use later in subsection 4.1.9 On average, batteries charge during the

night and discharge mainly during the evening hours, between 6pm to 8pm, coinciding with

peak load (shown in Panel (b)). DAM prices (Panel (c)) show two spikes, coinciding with

ramping needs during the early morning hours as well as during peak load in the evening.

The standard deviation measure highlights a large degree of price uncertainly during those

same hours.10

Figure 1: Batteries output, load, and prices from the CAISO
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Notes: Average battery usage, load profile and Day-Ahead Market (DAM) prices from the CAISO
+/- standard deviation. Data aggregation: 5-minutes, but DAM prices (hourly). Sample: 6 June
2018 to 1 March 2020.

9Our ratio is below the US average reported by the EIA (https://www.eia.gov/todayinenergy/
detail.php?id=46756) of 0.82. This EIA statistic is based only on those facilities that filled Form EIA-923
in 2019 and not from the entire fleet of batteries, which may explain the gap between our ratio and the EIA’s.

10While DAM and RTM prices are highly correlated (ρ = 0.57), RTM prices are more volatile, especially
during peak hours.
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2.2 Storage facilities

Lithium-ion batteries are typically described in terms of their energy capacity (measured in

MWh) and their power (measured in MW). The former refers to how much electricity can

be stored in the battery whereas the latter refers to how much electricity can be charged

or discharged in any instant. Batteries are also characterized by their roundtrip efficiency,

which measures how much electricity is not lost in the charging and discharging processes.

The parameters in our optimization model are inspired by the large-scale facilities already

in operation in California and documented in the EIA-860 Form. As of 2019, there were 172

operational facilities in the US, of which 47 were in California. The vast majority are lithium-

ion batteries. The mean of the energy capacity for those 47 plants in California is 13.8 MWh

and the median is 7.2, but there is a facility with a capacity of 120 MWh. The mean of

power for those same batteries is 5.3 MW, with a median of 1.5 MW.11 The facility with

120 MWh of energy capacity has a power of 30 MW and it is owned by San Diego Gas &

Electric. Several of these facilities are recorded as “Arbitrage” of which a subset of those

are also recorded as “Frequency Regulation”.12 In particular, 7 out of the 8 largest batteries

(by energy capacity) are labeled as “Arbitrage”, which altogether have 363 MWh of energy

capacity (51% of the storage energy capacity in California). The other plant out of these 8

largest batteries is labeled as “Ramping / Spinning Reserve”.

By taking the ratio of the sum of the capacity in each of those three categories relative to

the total storage capacity installed, we obtain that 66% of the energy capacity is labeled as

“Arbitrage”, 38% is labeled as “Frequency Regulation”, and 37% as “Ramping / Spinning

Reserves” with a strong overlap between the last two categories, which we can label in general

as ancillary services. Pooling the last two categories together, the ratio is 44%. Note that

those ratios are weighted by nameplate capacity. Altogether this suggests that most of these

facilities self-report that they concentrate on arbitrage and less than half of them concentrate

on ancillary services.

11In our stylized optimization model we assume equal input and output power capacity.
12Frequency regulation is the ability to stop a frequency deviation in the electricity supply (60 Hz in the

CAISO). This occurs for example when there is an unexpected outage.
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We also compute how much energy each battery can provide measured in hours (this

is another common way to express the capacity of a battery). Specifically, we divide the

nameplate energy capacity (MWh) by the nameplate capacity (MW). On average a battery

has a capacity of 3.7 hours (maximum of 7 and minimum of 0.5 hours). Assuming the

maximum depth of discharge (the battery is completely depleted of energy before recharging

and it is charged to its maximum capacity) and a symmetric duration for charging and

discharging, we would have full cycles of 2× 3.7 = 7.4 hours on average, and of 14 hours as

a maximum. This implies that the cycles are completed in less than a day. However, there

is degradation from full discharges and the CAISO is aware of such costs but we do not have

any specific information on how each individual battery manages such costs since we only

observe the aggregate data.13

3 Descriptive evidence on load, prices, and battery

output

The availability of high-frequency data makes it possible to study how battery owner’s charg-

ing and discharging decisions correlate with load and prices. To get a first sense of the range

and mode of those variables, we provide histograms and scatterplots in Appendix Figure A.2.

Positive values indicate that, in the aggregate, the batteries supply electricity to the grid,

i.e. they discharge. Negative values indicate that, in the aggregate, batteries store electricity

(charge). Load has a skewed distribution with most of its values roughly between 20 and 40

gigawatthours (GWh). Prices have a stronger skewness, some prices are negative, and some

are an order of magnitude larger than the mode. Neither the scatter plot between batteries

output and load nor the ones of batteries output and prices show any obvious correlation be-

tween those variables. Our regression analysis in this section extracts meaningful correlations

after splitting the data and controlling for a rich set of fixed effects.

To allow for a flexible relationship between load, prices, and battery output, we estimate

a regression model inspired by the work in Jha and Leslie [2021] and Davis and Hausman

13CAISO Energy Storage and Distributed Energy Resources Phase 4 Stakeholder Workshop 2019, acces-
sible through the following link.
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[2016] as follows:

Yt =
∑

q=1,...,20

βq × 1(Xt is in quantile q) + γτ + εt, (1)

where γτ is a vector of time-related fixed-effects: hour-of-the-day, day-of-week, and month.

The term 1(·) is equal to 1 if the expression inside the parentheses is true and 0 otherwise.

The data in Xt are sorted and split into 20 equally spaced bins or quantiles (ventiles). We

do not include a constant so that we can estimate one coefficient for each quantile. As it will

become clear in the next section, we will compare observed battery dispatch data and optimal

battery dispatch outcomes, therefore, in order to make those two types of data comparable,

we define Yt as the normalized observed battery output. Specifically, Yt is equal to the battery

output divided by the mean of the absolute battery output over our sample period. This

normalization allows us to interpret coefficients with respect to the average battery dispatch.

When there are no controls or fixed effects added to Equation 1, the coefficients βq are

equal to the conditional means of Xt given quantile q. The addition of fixed effects captures

the well-known cyclicality in the electricity markets and βq become the mean at quantile q

corrected by those cyclical effects. The month fixed-effect moreover captures any aggregate

changes in CAISO, such as capacity additions. Xt is one of the following: load, hour-ahead

forecast of load, load forecast error (defined as the difference between realized load and the

hour-ahead forecast of load), prices, and renewables output. In the main section of this

paper we focus on the relationship between batteries and load, price, and renewables output

quantiles and report the remaining regression results in the Appendix. We report standard

errors clustered at the date level to allow for correlation of errors within the same day.

We start with the case when Xt is equal to load under two different specifications, this

is shown in Figure 2. Our first observation confirms an intuitive hypothesis, which is that

batteries, on the aggregate, discharge when demand is high and charge when demand is low.

This can be seen from the coefficient values from the model without fixed effects: they are

relatively constant and negative for the first 14 quantiles of the demand distribution and then

almost monotonically increase and become positive when load is in the highest quantiles. This
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Figure 2: Batteries and load
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same pattern emerges in the two specifications we estimate. The inclusion of fixed effects

centers the lower quantiles of the load distribution around zero. Once the cyclical patterns

of the demand are taken into account, the coefficients on high demand levels indicate that

batteries discharge increases by about 0.4 times the average absolute output of 13.6 MWh,

representing an absolute increase of about 5.4 MWh or roughly as much as the mean of the

batteries power capacity (5.3 MW, see section 2).

The regression above uses contemporaneous demand as the main explanatory variable

but it is entirely possible that storage facilities do not have perfect information about what

the demand will be. Therefore, we estimate the same model by setting Xt equal to the hour-

ahead load forecast provided by the CAISO. This simply represents an inaccurate measure

of demand that is available to all market participants. The results from this regression are

shown in Figure A.3a in the Appendix. We find that there are almost no differences with

the results previously shown in Figure 2 above. Similarly, we set Xt equal to the difference

between the realized load and the hour-ahead forecast. This indicates by how much batteries

respond to errors in the hourly load forecast. We find that batteries reactions tend to be

to charge when realized load is smaller than the hourly forecast and to discharge otherwise,

which can be seen in Figure A.3b in the Appendix. Altogether, these findings reinforce our

hypothesis that batteries supply the grid with more energy when demand is higher, or higher

than forecasted.

We repeat the same analysis for prices. In this case, we estimate Equation 1 with Xt

equal to DAM and RTM prices separately. Figure 3 shows the coefficients for the same

two types of specifications (no fixed-effects and with fixed-effects). The implicit assumption

in this regression is that prices can be considered exogenous to the batteries decisions. As

individual battery capacities are relatively small, this is a common assumption in electricity

market models.14

The correlations obtained from this regression lead us to our second observation: batteries

tend to discharge only when prices are at the highest levels and charge the rest of the hours

14The largest storage facility in California has a power capacity of approximately 30 MW. Yet, most of
the mass of the load distribution is between 20,000 and 40,000 MWh.
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in the day. This pattern is robust to our two different specifications and holds for both DAM

and RTM prices. If we assume exogeneity for the price, these results suggest that batteries

engage in arbitrage.

We could also add controls such as load or renewables output to Equation 1. The result

when doing so is a collection of mostly negative coefficients because batteries in the end

are net consumers: they do not actually produce any new energy and due to the roundtrip

efficiency of less than 100% there are losses. So netting out all other effects, the batteries are

net buyers (negative coefficients).

Figure 3: Batteries and wholesale prices

(a) Using DAM prices
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RTM prices. Bars around markers indicate 95% confidence intervals. Standard errors clustered at
the date level. Data from the CAISO (6 June 2018 to 1 March 2020).

The results in Figure 2 and Figure 3 only give the aggregate effect by quantile of the

distribution but they do not convey any information of how much volume the batteries traded

in each of those quantiles. Even though the measured effects are only positive at the highest

quantiles, there is more energy traded by the batteries precisely at those quantiles than in

other regions of the price distribution. Figure A.6a in the Appendix shows the share of the

absolute amount of energy traded by quantile of the RTM price distribution. At quantiles

19 and 20, the share of volume traded is the highest at a share of around 6%.
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We also examine the correlation between batteries output and changes in the wholesale

price. To do so, we study both the battery response to changes in wholesale prices from one

hour to the next (Appendix Figure A.4) as well as differences between the hourly price and

the average price level that day (Appendix Figure A.5). These results confirm that, in the

aggregate, discharging is positively correlated with price increases from one hour to the next

and the larger the price increase, the larger the amount discharged by the battery in line

with arbitrage behavior. Similarly, we show that most of the discharging occurs at prices

that are well above the average price level on a given day.

To end this descriptive section, we examine in Figure 4 the batteries activity with respect

to the renewables output. The coefficients in this case are very different from the previous

graphs. Generally, the higher the quantile of the renewables output, the higher the batteries’

purchases of energy. This suggests that some storage facilities may be co-optimizing with

renewables output and perhaps alleviating some congestion issues in the grid.15

4 Optimal Storage

4.1 Model

In this section, we use a similar setting as in Giulietti et al. [2018] and Sioshansi et al. [2009]

and compute the solution to a simple model of a price-taking storage facility that maximizes

arbitrage value subject to technological constraints. Our goal is to benchmark the empirical

observations to the optimal outcomes of a representative battery in the same market. We do

not attempt to calibrate the output of this battery to the data, but rather to understand the

patterns that we document based on the data. The problem and the constraints are given

15For completeness, Appendix Figure A.7 shows the correlation between net load, defined as load net of
renewables output, and normalized battery activity. The coefficients are comparable to the main results for
load in Figure 2. The relation between storage capacity and the correlation of net load with renewables
output is an active topic of research, see for example Andrés-Cerezo and Fabra [2021].
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Figure 4: Batteries and renewables
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by:

max
Eout

t ,Ein
t

∑
t

pt × (Eout
t − Ein

t ) s.t.

Z0 = 0 and Zt = Zt−1 + ηEin
t − Eout

t

Eout
t , Ein

t ≤ Rmax

Eout
t ≤ Zt ≤ Smax

Eout
t , Ein

t , Zt ≥ 0

Rmax = 1.5 MW, Smax = 7.2 MWh,

where Zt is the amount of electricity stored at time t, pt is the wholesale electricity price,

Eout and Ein are the amounts of discharge and charge, respectively. The law of motion for

Zt simply states that the net change in the amount of energy in the battery is given by the

difference between the amount charged and the amount discharged during the time period

t. The parameter η < 1 is the fraction of energy that is not lost during the charging and

discharging processes, this is known as the roundtrip efficiency. We assume η = 0.66 based

on our data.16 Larger values of this parameter do not have a large effect on our main results

as discussed below.

Rmax is the power capacity (MW), which is how much the battery can charge or discharge

in period t. Both Ein and Eout are bounded by this constant. Smax is the energy capacity

(MWh), which is how much electricity can be stored in the device. This constant bounds

from above the state variable Zt. We fix the values of Rmax and Smax at the median values

using the data from the EIA as explained in subsection 2.2 above (1.5 MW and 7.2 MWh,

respectively).

Note that because we model a price-taker storage facility, we assume that the battery has

no effect on the system’s residual demand and therefore, no effect on pt.
17

The solution to this problem is found using the GLPK solver implemented with Pyomo

16Sioshansi et al. [2009] uses η = 0.8 for their initial simulations and then they perform robustness checks
with η = 0.5, . . . , 0.9.

17A battery whose actions affect the equilibrium price would maximize
∑

t pt(Lt−Eout
t +Ein

t )×(Eout
t −Ein

t )
subject to the same constraints as in the price-taking problem, and where Lt is the load and pt(·) is the inverse
demand function.
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in Python and feeding the DAM and RTM prices, separately, into the model.18 Note that we

assume perfect foresight since we use the contemporaneous price data when making decisions,

either when using DAM or RTM prices. Therefore, our results in this subsection should be

interpreted as the best case scenario and this interpretation is useful since we want to compare

the observed battery output against the expected optimal behavior.

The solution to the constrained maximization problem is shown in Figure 5 by plotting

the net amount of discharge Eout −Ein over time, specifically for four consecutive days only

and for the case of DAM prices, to ease visualization. The oscillating behavior is typical to

the solutions to this type of problems. The oscillations are largely correlated with changes

in the wholesale prices (either DAM or RTM), which we also plot in the same graph. It is

evident that our optimal battery discharges when prices are high and charges when prices are

low. The correlation between these two time series over the entire sample period for DAM

prices is 0.43, which is more than three times the correlation (0.13) between those same prices

and the observed aggregate net amount of discharge.

When we vary the value of the roundtrip efficiency η, we obtain qualitatively the same

results as with η = 1. However, by decreasing the roundtrip efficiency, the variance of the

battery output −at any given quantile of the price distribution and at any given hour of

the day− decreases as well but the means remain practically unchanged. The correlation

between the observed prices and the simulated battery output decreases monotonically from

0.46 when η = 0.6 to 0.35 when η = 1.

Figure 6 shows the distribution of the net amount of discharge for each of the twenty

quantiles of the wholesale price distribution. Consistent with Figure 5, our optimal bat-

tery injects energy to the system more often when prices belong to the upper quantiles of

the distribution and purchases energy when the prices belong to quantiles 12 and below as

measured by the mean of Eout − Ein. Qualitatively, this is a similar pattern than the one

found in Figure 3 using the actual data on batteries output. The main difference is that in

the data, discharging only occurs for the last two to three quantiles. This fact can be due

to several reasons. First, our optimization solution assumes perfect foresight on wholesale

18https://www.gnu.org/software/glpk/
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Figure 5: Optimization: battery charge (4 days)
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taken directly from the DAM and RTM data. We only present the results for 4 days to ease the
visualization, but we solve the problem using all our sample period.
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prices, which is not true in reality. Second, our optimization model captures the behavior of

a price-taker storage facility, it is possible albeit unlikely that some of the battery facilities

exercise market power or strategically respond to opponents’ storage behavior.19 Third, our

optimization model uses parameter values for a representative battery, but we know from the

discussion in subsection 2.2 that there are large differences in the power and capacity sizes of

the batteries in the CAISO. Finally, the optimal storage problem is more complex in reality

than in our stylized model since we do not take into account dynamic charge and discharge

decisions.

Figure 6: Optimization: battery charge and price quantiles

(a) Using DAM prices

-4
-2

0
2

4
N

or
m

al
. o

pt
im

al
 o

ut
pu

t

0 5 10 15 20
Quantile of price distribution

Mean +/- 1 SD

(b) Using RTM prices

-4
-2

0
2

4
N

or
m

al
. o

pt
im

al
 o

ut
pu

t

0 5 10 15 20
Quantile of price distribution

Mean +/- 1 SD

Notes: Panel(a): The battery discharge amounts are the solution to the optimization problem
for the representative battery using DAM prices in Panel (a) and RTM prices in Panel (b). The
horizontal axis refers to the price distribution.

4.2 Comparing the empirical data to optimal storage

To understand in how far battery owners follow the same pattern as predicted by the opti-

mization model, we estimate a regression that is motivated by the state equation in subsec-

19Market power is also related to the nature of the owner of the facility. Bahn et al. [2021] and the
references therein have quantified the implications that the portfolio composition of an owner of a VRE
plant has on market power. Andrés-Cerezo and Fabra [2020] study theoretically the equilibrium properties
of markets with and without vertical integration between storage facilities and production as well as when
including market power exercised by storage facilities.
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tion 4.1. Since battery activity is a direct function of the amount of electricity stored and

this is related to past battery output, we include the lagged battery output in our empirical

model as explanatory variable.20

To make the coefficients comparable for both the battery output from the representative

battery and from the empirical data of the CAISO battery fleet, we define Yt as the battery

output (observed or optimal) divided by the mean of the absolute dispatch over our sample

period. This is the same definition as in the previous section. The respective means of the

normalized battery output from the optimization model are −0.207 (when feeding in DAM

prices) and −0.208 (when using RTM prices), while the mean of the normalized observed

battery output is −0.212.21 The regression model is

Yt = αYt−1 +
∑

j=0,...,23

βj × 1(h(t) = j)× pricet + γτ + εt, (2)

where pricet represents the wholesale price at time t, h(t) is the hour of the day at time

t, and 1(·) is the indicator function. This regression additionally conditions on the same

vector of time fixed-effects as the price regression Equation 1 and on the lagged value of the

normalized battery output Yt−1.
22

As highlighted in the previous section, individual batteries are small and thus price-taking

behavior is a common assumption. In line with the modeling framework in subsection 4.1,

we therefore assume that battery owners take wholesale prices as given. Since the inclusion

of a lagged dependent variable can affect the autocorrelation of the error term in equation

(2), for robustness, we estimate the model with HAC standard errors that are robust to

both arbitrary heteroskedasticity and arbitrary autocorrelation. Similarly, as lagged battery

20The first order conditions of the optimization problem in subsection 4.1 contain lagged terms of Eout
t

and Ein
t , which implies that the simplest regression model for battery output must include at least one lag

of the output as explanatory variable. If it was not included, there would be an omitted variable problem
in the regression. However, the estimation of this model by OLS results in biased but consistent estimates.
Given the large amount of data at our disposal, we opt for avoiding the bias from an omitted variable.

21To interpret the results in terms of MWh the coefficients need to be multiplied by the mean of the
absolute dispatch: 13.38 MWh in the empirical data and 0.64 MWh and 0.62 MWh in the optimization
model with DAM and RTM prices, respectively.

22We omit additional control variables from the regression as these are not taking into account by the
optimization model. The results when including additional control variables in the model with the empirical
data are available from the authors upon request.
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output is likely correlated with the error term, we estimate an alternative model in which

we instrument lagged battery output at t− 1 with lagged battery output one day before (at

t− 25). As batteries typically optimize within a given day, we expect this equation to be less

affected by potential endogeneity concerns.23

Using the same empirical model for the two time series of battery output separately

(observed output and optimal output), allows us to directly compare the predicted output and

coefficients for the battery activity obtained from the optimization model and the empirical

data. We plot the predicted hourly battery activity in Figure 7. Panel (a) shows the total

predicted battery output when pricet is equal to DAM, while Panel (b) employs RTM prices.

These effects are evaluated at mean values of the data.

Figure 7: Optimal versus observed battery output
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Notes: Linear predictions of normalized battery output for each hour of the day. DAM, Panel(a) and
RTM, Panel(b). “Optimization model” refers to the estimates using the battery time series obtained
from the optimal dispatch model subsection 4.1. “Data” refers to the estimates using observed data
in CAISO (6 June 2018 to 1 March 2020). Bars around markers indicate 95% confidence intervals.
Standard errors clustered at the date level.

There are several things worth noting. First, the optimal output follows closely the

wholesale market prices. We see two main discharging cycles in line with the price spikes,

one at hours 4 to 5 in the morning and the second one at hours 16 to 19 during the evening

23We report these results in Appendix Figure A.8. Our estimates are robust to these alternative modeling
choices.
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peak. The rest of the day the batteries are typically in charging mode. This pattern is

consistent with that seen in the DAM prices from Panel (c) in Figure 1 in which prices are

higher at around 5am to 6am and 6pm. This cyclical pattern exists for both DAM and RTM

prices, although the increase in discharge is larger for DAM prices.

The predicted battery output from the empirical data is generally less pronounced, al-

though we see evidence for the same charging cycles. However, in this case only the evening

hours are related to a positive and significant discharge. Overall, the quantitative responses

are smaller for the empirical estimates than for the optimization model.

Those differences between optimal arbitrage and the empirical data can be explained by

a variety of factors. First, the model assumes battery owners have perfect foresight about

market prices, which clearly is not given in practice. Second, our predictions compare optimal

arbitrage from a single representative battery to the current fleet of batteries in California. If

individual batteries are employed for purposes other than arbitrage (e.g. frequency control,

ramping / spinning reserves) as explained in subsection 2.2, these batteries will not necessarily

respond to short term price signals. As we only observe aggregate battery output for the

CAISO rather than the output of individual batteries over time, we are unable to make

this distinction. Finally, there might be additional constraints in battery usage that are not

captured by the simple model of optimal arbitrage.

To better understand how the two types of batteries respond to changes in the wholesale

price, we plot in Figure 8 the marginal effect of DAM and RTM price changes on battery

discharge for each hour of the day. This marginal effect is captured by the βj coefficients from

Equation 2, which are allowed to vary by hour of the day. As the regression model additionally

controls for month, day-of-week, and hour-of-the-day fixed effects, these coefficients are net

of all cyclical components and aggregate shocks to battery deployment.

If batteries engaged in arbitrage, we would expect that an increase in wholesale prices

triggers an increase in battery discharge for most hours of the day. We do find such evidence

for optimal battery output in Figure 8, where the estimated price coefficient is either positive

or zero for all hours. The marginal price effects are zero in hours in which the battery is

operating at full capacity at peak charge or discharge, at about 3-4am and 5-7pm, in the
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DAM market. To put it differently, an increase of wholesale prices in these hours does not

longer lead to an expansion of battery discharge. We see a similar pattern for RTM prices.

However, in this case all coefficients are positive, indicating that the battery will respond to

price increases at all hours with additional discharge. This is in line with batteries being the

most flexible asset type that can respond almost instantaneously to price fluctuations. Note

that the total marginal effect is rather small. We estimate a maximum response of about

3% and 4% relative to the mean absolute battery output at 9am for a 1 $/MWh increase

in DAM and RTM prices, respectively. The positive price coefficients indicate that batteries

will either discharge more with higher prices or charge more with lower prices.

Figure 8: Marginal price response
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(b) Using RTM prices
-2

0
2

4
M

ar
gi

na
l p

ric
e 

im
pa

ct
 o

n 
ba

tte
ry

 o
ut

pu
t [

%
]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

Optimization model Data

Notes: Each value represents the marginal impact of changes in wholesale prices (DAM, Panel(a)
and RTM, Panel(b)) on normalized battery discharge at each hour of the day. “Optimization model”
refers to the estimates using the battery time series obtained from the optimal dispatch model in
subsection 4.1. “Data” refers to the estimates using observed data in CAISO (6 June 2018 to 1
March 2020). Bars around markers indicate 95% confidence intervals. Standard errors clustered at
the date level.

By comparing this “optimal” response to the observed data, we find that the CAISO

battery fleet only responds positively to marginal price increases during the early morning

hours around 5am and 6am and a small, yet significant increase at hour 5pm for DAM prices,

and at hours 12pm, 3pm and 4pm for RTM prices. These findings indicate that batteries

are less flexibly employed than would be foreseen by an optimal arbitrageur. In line with
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the description in subsection 2.2, batteries seem to be active also during the day for other

purposes, such as frequency control in hours in which renewable output is high. While the

battery fleet overall is less responsive to price changes than our optimal solution, the batteries

in the data make decisions whose total outputs are somehow consistent with those from a

price-taking battery that maximizes arbitrage opportunities.

5 Batteries Output and Wholesale Prices

5.1 Price spreads and new storage capacity

The fact that individual storage units are small compared to the overall market size makes

the price-taking assumption in the storage model in section 4 reasonable. Yet, there is the

possibility that all battery owners optimize their charging and discharging decisions in line

with prices, in which case those operations may have an impact on the market equilibrium,

especially during peak hours. A linear regression of wholesale prices on battery output would

thus suffer from endogeneity. The aggregate nature of our data makes it hard to find a suitable

instrument for battery deployment. Instead, we use a more direct approach, estimating a

“difference” framework of battery capacity additions on equilibrium price spreads and peak

prices. The key assumption is that the exact timing of battery entry is exogenous to current

wholesale prices.

Since for the time period in the dataset used up to this point in the paper we do not

have the exact dates of entry of new capacity, we opt for using a longer time period (January

2013 to mid-2017, (as in Bushnell and Novan [2021]) for which we observe the exact dates of

battery entry (the DOE-Global Energy Storage Database (DOE-GESD), DOE [2020]). We

use the facilities for which we observe the exact “commissioning” date. Appendix Figure A.9

plots the cumulative capacity of installed power as reported in both the DOE-GESD and the

EIA Form-860.

As daily data on price spreads can be noisy and there is some uncertainty about the exact

timing of full battery capacity availability, for the main analysis, we aggregate our data at
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the weekly level and estimate:

log yt = β0 +
∑

j=−4,...,12

βj × capacityt−j +α′Xt + γτ + εt,

where yt is the maximum or mean daily RTM price spread, or the maximum daily RTM price.

The variable capacityt−j is the new battery capacity. When j < 0, no new capacity has been

added yet. Positive values of j represent weeks after the entry event. We condition on

month and week-of-year fixed effects (γτ ) and include renewable output, large-hydro output,

and load as controls. Standard errors are clustered at the monthly level. The coefficients

of interest are βj, which give the semi-elasticity of the price spread with respect to added

capacity. For a 1 MWh of new capacity, the spread changes by 100× βj percentage points.

Figure 9 shows that for our three different price statistics there is a negative and statisti-

cally significant effect (at the 90% level) in the weeks following the addition of new storage

capacity in the system. The significance of this effect fades away after five weeks, yet the

mean point estimates remain negative. In the four weeks leading to the entry event the co-

efficients in all but one specification are not statistically different from zero, consisting with

our hypothesis that the timing of the battery entry is exogenous and not foreseeable. We

perform robustness checks regarding the data aggregation at the daily and monthly frequency

and present those results in Appendix Figure A.10. The monthly-level specifications reflect

some of the same behavior as in the case of weekly frequency data, while the daily data

aggregation is more noisy, and no clear data pattern can be identified.

5.2 The private value of battery storage

To put our results further into context, we use the predicted battery output from the empir-

ical analysis (Figure 7) as well as the actual battery output and optimal arbitrage solution

from the representative battery owner (Figure 5) to provide estimates on the private value of

storage in the CAISO. Recall that the model maximizes profits from arbitrage for a represen-

tative installation, and makes several assumptions concerning information on prices as well

as price-taking behavior. While these assumptions do likely not hold fully in practice, the

model provides an appropriate benchmark of “optimal” arbitrage, to which we can compare
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Figure 9: Impact of battery use on RTM prices spreads
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our empirical results.

To calculate the annual storage value for each MWh of installed energy capacity, we

multiply the average battery output for each hour of the day in either the optimization model

or the empirical results times the corresponding hourly value of the RTM prices weighted

by the share of volume traded in that hour (see Appendix Figure A.6).24 We assume 66%

roundtrip efficiency for our calculation. The results are summarized in Table 1, which shows

the values of a simple back-of-the-envelope calculation concerning the private benefits over

the lifetime of a battery installation.

Table 1: Private value of battery storage

Predicted hourly output Actual hourly output
optimization data optimization data

Annual revenue 11,245.76 -9,032.29 34,797.52 -6,191.94
($ per MWh of energy capacity)

Representative plant (7.2 MWh):
9 yr lifetime, non-discounted (m$) 0.729 -0.585 2.255 -0.401
9 yr lifetime, 5% discounted (m$) 0.656 -0.527 2.031 -0.361

Investment cost [m$ - 2018] 1.685 1.685 1.685 1.685

Lifetime profits, non discounted (m$) -0.956 -2.270 0.570 -2.086
Lifetime profits, discounted (m$) -1.028 -2.212 0.347 -2.046

Notes: Private value of battery storage arbitrage for the predicted and actual hourly output. Calculations
based on hourly responses to RTM prices as well as observed batteries-traded volumes by the hour. Data from
6 June 2018 to 1 March 2020. Private values assume 66% battery roundtrip efficiency and no degradation
over lifetime. Lifetime calculations based on 9 years utilization and 5% annual discount rate. Investment
cost of $234 per kWh of storage in 2018 assumed, based on Bloomberg New Energy Finance.

The average annual revenue is between -9.0 and 34.8 $ per kWh. These stark differences

are explained by the model assumptions and the fact that the optimization model predicts

large arbitrage opportunities in the evening hours when prices are at their highest level but the

observed output has much lower responses as discussed in the previous section. The batteries

are only profitable in the third column (actual output from optimization model). The last

column (actual observed battery output) shows substantial negative profits. This simple

24We obtain very similar results if instead we multiply each observed price times the corresponding battery
output for each hour in our sample and then take the sum.
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calculation is model-independent and it shows that regardless of what the true objective

function the fleet may have, even the annual revenue is negative at current prices.25 Note

that our findings focus exclusively on the private returns and abstract from any additional

impacts on producer and consumer surplus in electricity markets.

Our calculations highlight that under current conditions it is not profitable for battery

owners to operate in this market. While the model predicts positive (and sizeable) lifetime

profits, these are not met in the empirical data, indicating that without additional policies

or other sources of revenues, e.g. from ancillary services, profit maximizing firms would not

enter this market.

Finally, our results from subsection 5.1 show that battery deployment can have an impact

on min-max price spreads and maximum prices in the RTM market. While the focus on

arbitrage possibilities can improve the profitability of batteries in the short-run, the entry of

new battery capacity could reduce future profit opportunities in the medium and long-run,

making investment less attractive.

6 Conclusion

This paper documents general patterns of the output from large-scale lithium-ion batteries

relative to load and wholesale (RTM and DAM) electricity prices in the CAISO. When we

benchmark those aggregate patterns to the output from a representative battery installation

that takes wholesale prices as given, we find that those patterns only partially correspond

to the optimal behavior of the CAISO’s median-size storage facility. By doing so, this paper

presents first empirical evidence for the widely made assumption in the literature regarding

the arbitrage behavior of this type of facilities.

While our results are robust to model specifications and robustness checks, they should

be interpreted with caution. First, we only observe aggregate battery responses and do not

25We repeated this back-on-the-envelope analysis using DAM prices instead of RTM prices. The only
column with sizeable differences is the third column (actual output from optimization model). With DAM
prices, the discounted lifetime profits are more than eight times larger (2.506 m$) than when using RTM
prices. However, the discounted lifetime profits when using the actual observed battery output and DAM
prices (fourth column) are −2.077 m$, which represent a difference of only 1.5% with respect to the RTM
case.
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have access to a panel dataset on the individual storage plants output. Second, our simple

model abstracts from more complex, dynamic storage considerations a battery owner faces in

reality. Yet, comparing the average battery response to a simple model for a representative

battery owner provides a useful benchmark on how far the owners optimize their behavior

with respect to arbitrage. Our findings furthermore highlight that the assumption of arbitrage

for storage facilities typically made in the energy economics literature should be made with

wariness.

The analysis also highlights that batteries at current wholesale price levels and investment

costs may be facing negative lifetime profits and that this would likely limit investment in

large-scale battery capacity. In the future, the effect of the storage output on wholesale

equilibrium prices will also be related to how much storage gets committed to the capacity

market needs, provided it exists. Batteries have recently successfully participated in capacity

market auctions in PJM and the UK, and are expected to be a potential game changer in

Spain, where a new capacity market has been announced.26 These are interactions left for

future research.

26See for instance recent developments following these links for PJM, the UK, and Spain.
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Appendix: Additional tables and figures

Figure A.1: Operational energy projects (May 2018)

Notes: Source: California Energy Commission using DOE Energy Storage Database.
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Figure A.2: Batteries output, load, and prices from the CAISO

(a) Batteries output and load
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(b) Batteries output and DAM wholesale prices
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(c) Batteries output and RTM wholesale prices
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Notes: Empirical distributions of batteries output, load, DAM, and RTM prices as well as their
correlation. Data from the CAISO (6 June 2018 to 1 March 2020).
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Figure A.3: Batteries, hour-ahead forecast load, and error forecast

(a) Batteries and hour-ahead forecast load
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(b) Batteries and error forecast
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Notes: Each value represents the effect on battery discharge at each quantile of the distribution of
the hour-ahead load forecast provided by the CAISO to all market participants (Panel (a)) and the
difference between the realized load and the hour-ahead forecast (Panel (b)). Bars around markers
indicate 95% confidence intervals. Standard errors clustered at the date level. Data from the CAISO
(6 June 2018 to 1 March 2020).

Figure A.4: Batteries and ∆ wholesale prices

(a) Using DAM prices
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(b) Using RTM prices

-1
-.5

0
.5

N
or

m
al

. b
at

te
ry

 o
ut

pu
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Quantile of Δ(RTM price) distribution

No FEs Hour, month, day-of-week FEs

Notes: Each value represents the effect on battery discharge at each quantile of the distribution of
changes in consecutive hours in the wholesale prices. Panel(a): DAM prices. Panel(b): RTM prices.
Bars around markers indicate 95% confidence intervals. Standard errors clustered at the date level.
Data from the CAISO (6 June 2018 to 1 March 2020).
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Figure A.5: Batteries and ∆mean wholesale prices

(a) Using DAM prices
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(b) Using RTM prices
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Notes: Each value represents the effect on battery discharge at each quantile of the distribution of
differences of the hourly price with the daily average price. Panel(a): DAM prices. Panel(b): RTM
prices. Bars around markers indicate 95% confidence intervals. Standard errors clustered at the
date level. Data from the CAISO (6 June 2018 to 1 March 2020).

Figure A.6: Share of volume traded by quantile of price distribution and by hour

(a) Share of volume traded and DAM price quantiles
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(b) Share of volume traded by hour
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Notes: Share of battery volume traded, measured as battery output (charge or discharge) in a given
DAM price quantile (Panel (a)) or in a given hour (Panel (b)) divided by total (absolute) battery
output in sample period. Data from the CAISO (6 June 2018 to 1 March 2020).
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Figure A.7: Batteries and net load
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Notes: Each value represents the effect on normalized battery discharge at each quantile of the
distribution of demand net of renewables. 5-minute data resolution. Bars around markers indicate
95% confidence intervals. Standard errors clustered at the date level. Data from the CAISO (6
June 2018 to 1 March 2020).

Figure A.8: Robustness checks: observed battery output, standard errors and IV

(a) Using DAM prices
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(b) Using RTM prices
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Notes: Linear predictions of normalized battery output for each hour of the day. DAM, Panel(a)
and RTM, Panel(b). Observed data in the CAISO (6 June 2018 to 1 March 2020). Bars around
markers indicate 95% confidence intervals. HAC standard errors to allow for both arbitrary het-
eroskedasticity and autocorrelation. “IV l.battery” instruments lagged battery output with lagged
output 25 hours ago.
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Figure A.9: Installed battery capacity CAISO
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Notes: Cumulative installed battery capacity in CAISO. Sources: DOE Energy Storage Database
(green line) and EIA form 860 (red line).

Figure A.10: Impact of battery use on RTM prices spreads

(a) Daily data aggregation
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(b) Monthly data aggregation
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Notes: Each value represents the effect of newly added battery capacity on daily RTM price spreads,
maximum RTM price spread, as well as maximum RTM prices. Unit of data aggregation: daily in
Panel (a) and monthly in Panel (b). Panel (a) includes month and day-of-month FEs, while Panel
(b) uses year and month-of-year FEs in addition to the main control variables as in the main text.
Markers represent 90% confidence intervals. Standard errors clustered at the date level. Data from
CAISO (1 January 2013 to 31 May 2017).
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