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Abstract

The introduction of renewable energy sources (RES) in an electricity market changes
the shape of the system’s supply curve. In a perfectly competitive market, this causes a
downward pressure on equilibrium prices called the merit order effect (MoE). However,
when introducing or transferring RES assets to firms with market power, effects on
inframarginal rents are ambiguous and depend on the share of RES capacity in the
firms’ portfolios. We quantify this effect empirically in the Ontario electricity market
by finding equilibria under different counterfactual scenarios of RES ownership transfers
and expansions. First, we identify the effect of market power in isolation by keeping the
system’s capacity fixed, but we transfer RES capacity from the fringe (competitive) to
firms with market power. These transfers yield increases in prices of up to 24% relative
to average wholesale prices. Then, in order to measure the interaction of market power
with the MoE, we introduce new RES capacity to the system by giving it to different
players with varying levels of market power. We find that, following a net expansion of
RES capacity of 5% relative to total capacity, wholesale prices decrease by up to 30%
in the case of perfect competition. However, if capacity is assigned to the largest firm
the decrease in prices is only 7%. These findings suggest that the MoE can be largely
mitigated by market power, hence the key importance of the nature of the owner of
new capacity when designing uniform incentives for RES adoption.
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1 Introduction

Over the past few years, electricity markets around the world have seen important changes in

their energy portfolios as new sources have been introduced (e.g. wind and solar) and others

have been retired or penalized through taxes (e.g. non-refurbished nuclear plants and coal

plants). These changes continue nowadays as a number of incentives to curb the greenhouse

gas emissions associated with the production of electricity have either been put in place (e.g.

production subsidies such as feed-in-tariffs (FiT) and mandates such as renewable portfolio

standards (RPS)) or in other cases been dismantled.1 Although some of the consequences of

these policies have been studied, little is known about the effects of these mechanisms in the

presence of market power and under different market structures.2

In this paper we quantify the net result on wholesale electricity prices of two opposite

effects: market power and the merit order effect (henceforth MoE). The latter occurs when

there is an expansion of the amount of renewable energy sources (RES): in that case, the

system’s supply curve shifts to the right and its intersection with the demand curve occurs

at a (weakly) lower price than before the expansion. However, partial ownership of RES

from firms with market power may counteract the MoE. In fact, as we show theoretically, the

best response for firms with market power is to reduce production from conventional sources,

which has a positive effect on market prices. We find upper bounds of these effects throughout

a series of simulations using an equilibrium model for the Ontario electricity market. First,

we quantify the market power effect on its own by measuring the effect on market prices

when holding the system’s capacity constant and changing the ownership structure. Second,

we compare this effect to the MoE by expanding net capacity and allowing different firms

to hold the additional capacity. By simulating uniform incentives for the adoption of RES

across different ownership structures, we show that allowing market participants with high

1In Ontario, more than 700 renewable energy contracts that were signed under the Green Energy Act
have been terminated since 2018. In the U.S., there is an ongoing discussion on potential amendments to the
Clean Power Plan. In Australia, the carbon tax regulation from 2011 was repealed in 2014.

2Different tax and subsidy policies in electricity markets have been empirically studied by Borenstein
[2012], Fowlie et al. [2016], Gowrisankaran et al. [2016], Knittel et al. [2015], Leslie [2018], Preonas [2017],
and Reguant [2018]. Transfers of public services have also been the objective of research to understand the
role of market power in the presence of subsidies (see Polyakova and Ryan [2019]).
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market power to hold an increasing fraction of RES capacity mitigates the MoE in a way

such that wholesale prices do not decrease significantly (about 7% drop in prices, relative

to our baseline Cournot simulation). On the other hand, introducing RES through firms

that cannot exercise market power would decrease wholesale prices by large amounts (in the

order of 30% in the perfectly competitive case). These simulation results demonstrate that

the wholesale price savings that final consumers would receive depend crucially on who owns

this additional RES capacity, hence the importance of the ownership structure and market

power in the design of uniform incentives for RES adoption.

The effect of market power on prices is one of the main takeaways in the theoretical

work of Acemoglu et al. [2017] for the case of symmetric firms and symmetric portfolio

compositions. In the presence of market power and a more diversified portfolio (provided an

initial low share of RES), strategic firms partially internalize the shift of the supply curve

caused by the MoE by decreasing output from their conventional generation sources, thus

effectively shifting their individual bid curve to the left and causing an upward pressure on

prices. Brown and Eckert [2018] expand on this by allowing for asymmetric amounts of RES

in the firms’ portfolios3 and Genc and Reynolds [2019] allow for asymmetric strategic firms.4

Our paper continues this line of work by providing a simulation-based analysis of the effect

from RES ownership transfers and expansions on wholesale electricity prices. RES transfers

and expansions arise in current markets due to the different incentives to adopt RES such as

RPS and FiTs. Moreover, the long-term existence of such incentives is threatened in several

places around the world, implying a risk of even more ownership transfers. One possibility is

that payments cease to exist for FiTs and the idle capacity from non-strategic players gets

transferred to the strategic players.5 The effect of these policies on wholesale prices is an open

empirical question. To the best of our knowledge, our work is the first to empirically simulate

the effects of portfolio changes from RES additions and transfers on the wholesale electricity

3However, both firms start with no RES at the moment of the procurement auction.
4Their empirical results confirm that prices decrease by approximately 1% when investment for wind

capacity quadruples. We discuss further below how we differentiate from their empirical work.
5The current debate in Ontario, where our data come from, is the elimination of incen-

tives for the adoption of RES. See https://business.financialpost.com/commodities/energy/

boralex-invenergy-ontario-clean-power-projects-hit-by-ford-1 .
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market. One of the advantages of our work is that, by using actual market data, we simulate

the effects of transferring or introducing RES in the presence of asymmetric firms, and at

different levels of correlation between RES output and load. From an economics perspective,

our paper also contributes to the literature by confirming some theoretical results on the

interaction of diversification and market power in electricity markets. From a regulatory

perspective, our results contribute to environmental policy analysis by quantifying hidden

or ambiguous price effects from the introduction of large-scale renewable sources into the

electricity production mix.

As Fowlie et al. [2016] point out, since the seminal work of Buchanan [1969] regarding

the effect of taxes to correct for externalities on market outcomes in the presence of market

power, only a small number of empirical studies have quantified these interactions in the

context of pollution taxes.6 We contribute to this strand of the literature by focusing on

the impacts on wholesale electricity prices had the market structure changed. Specifically

if the ownership distribution were different. Recent examples of changes in the market

structure in the electricity sector have taken place in Western Australia (Leslie [2018]), in

the U.S., with a series of restructuring cases from utilities into investor-owned companies

(Knittel et al. [2015]) and because of the retirement of coal-powered plants (Kim [2019]) or

in Denmark, where the company Ørsted changed its portfolio composition from 17% to 80%

RES in 2017.7 Ownership transfers are also observed in electricity markets: for example,

the German company RWE acquired E.ON’s and innogy’s RES assets in 2019 to become the

third-largest firm in Europe by RES capacity.8

Although the exact impact of expanding RES is most likely market specific, we believe

we can extract general qualitative impacts from the study of a particular market. We choose

the case of Ontario and its Independent Electricity System Operator (IESO) to answer these

questions. This market has a similar structure to other North American markets such as

CAISO, PJM, MISO, and NYISO that have been also the object of other market power

studies (see for instance Joskow [2019] where it is recognized that the Alberta and Ontario

6See for instance Knittel et al. [2015], Leslie [2018], and Preonas [2017].
7https://orsted.com/en/Explore/Business-Transformation
8https://news.rwe.com/en/brussels-paves-the-way-for-one-of-the-biggest-transactions-in-germanys-industry-the-new-rwe-can-get-started/
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electricity markets are similar to those bid-based markets in the U.S.). Some European

electricity markets also share large similarities with the Ontario market (wholesale market,

nuclear-dominant, with increasing amounts of renewables). Among them, Germany is the

closest, Belgium, and the UK are similar as well.

We model the market following the methods developed by Borenstein and Bushnell [1999]

and Bushnell et al. [2008], and more recently by Brown and Eckert [2016]. In particular, the

first paper introduces an industry marginal cost curve expressed as a step function that can

be fully characterized using engineering parameters and fuel prices. Then, they separate

producers into two categories: strategic and non-strategic (price-takers) firms. The former

have the capacity to influence the hourly equilibrium price because of their importance in

the market or because of their atypical cost structure (e.g. low start-up costs); the latter

are firms that own very small nameplate capacities or that have long-term contracts with

the system operator or with downstream firms (therefore they have negotiated prices much

before the spot price is formed). This second category of firms is important to the specific

case of Ontario as a large proportion of producers belong to this category. The other two

papers refine those estimation techniques by exploring the consequences of forward contracts

and the use of different instrumental variables.

The presence of imports and exports in the Ontario system implies that firms face a

different demand than just the domestic one. Following Bushnell et al. [2008], we account

for this by estimating a net exports supply function and add it to the domestic demand

to get the residual demand that firms face. We estimate this model using data from mul-

tiple and publicly available sources. We use weather data from the National Oceanic and

Atmospheric Administration (NOAA), hourly production, demand and capacity data from

the Independent Electricity System Operator (IESO), firm-level aggregate capacities from

financial statements and fuel spot prices from public databases. We use actual production

data from wind and solar sources and these are the only RES sources we consider.9

Expanding on the stylized theoretical Cournot competition models in Acemoglu et al.

9There is also a tiny fraction of biomass used in the system, but we shall neglect it. Therefore, throughout
the paper, we shall use the terms RES and non-dispatchable sources interchangeably.
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[2017], Brown and Eckert [2018], and Genc and Reynolds [2019], we add a competitive fringe

to the model, and show that their results also hold in this extended setting. However, we

warn that this result holds under strong market assumptions such as symmetry among the

firms.10 This provides a natural motivation for our analysis as only an empirical analysis

can shed light on more realistic configurations, otherwise intractable to solve analytically. In

particular, we provide a framework to study RES capacity changes regardless of the degree

of asymmetry among the competitors.

We estimate a detailed model of the Ontario electricity market to run simulations that

consist of finding the new hourly equilibrium prices under different allocations of RES among

market participants using the reaction functions estimated from the data. Our results show

that, by keeping the total amount of RES constant in the system, transfers of that capacity

from the fringe into the strategic firms give place to positive increases in prices of up to 24%

relative to average prices and they increase with the amount of RES capacity transferred.

These effects are net of the MoE because there are no additions to the system’s RES capacity.

As the strategic firms’ portfolios include higher shares of RES, equilibrium prices increase by

greater amounts. In other words, the expansion of the strategic firms’ portfolios from adding

RES capacity yields to more expensive electricity, contrary to the effects from a simple MoE.

Finally, when we add RES capacity to the entire system following current policy guidelines in

Canada, the MoE and market power combined yield lower prices relative to the equilibrium

outcome with no added RES. We show that there can be a decrease of up to 30% under perfect

competition but only around 7% when the largest firm is the owner of the new capacity.

The rest of the paper is structured as follows. In section 2 we describe the institutional

framework of the Ontario electricity generation market and the data used to estimate elec-

tricity demand and supply functions. In section 3, we present the model and estimate the

demand function. In section 4 we present the goodness-of-fit of our model as well as the main

results. Using these results, we simulate and discuss different counterfactuals in section 5.

We conclude in section 6.

10This is also the case in the literature mentioned earlier.
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2 Policy Environment and Data

We use data from Ontario to run our simulations because there are three main changes in the

Ontario energy policy stage that are common to other electricity markets around the world.

First, in December 2016 the government of Ontario ran the last period of applications for FiT

incentives, which, even though they do not directly affect large producers, are aligned with

the public perception regarding the Global Adjustment fees.11 12 Second, the government of

Ontario recently introduced legislation to scrap the Green Energy Act arguing that it caused

retail electricity prices to increase. And third, a number of market participants and think-

tanks support even stronger measures and argue for the cancellation of already-approved FiT

contracts and other subsidies.13 This creates a strong possibility of a reshuffling of assets in

which either new entrants or large firms will acquire the assets that undergo financial distress.

While these debates happen in Ontario, federal policies and guidelines are still in effect and

call for RES capacity expansions in the coming years.

Changes in the firms’ portfolios composition are already underway in other markets. As

we mention in the introduction, in Denmark and Germany there have been fairly recent and

ongoing cases of ownership changes of RES assets. Importantly, in the case of Denmark,

the overall market capacity remained unchanged, similarly to our first set of counterfactu-

als.14From a technical point of view, the Danish and German cases are embedded in relatively

more complex market structures. In fact, Denmark’s market has two zonal prices as a part

of the Nord Pool whereas Ontario has only one spot market. Germany also has only one

spot price but it has more interconnections with surrounding markets than Ontario. Still,

we argue that the similarities in terms of current and future policies, as well as the system’s

portfolio composition make Ontario a good place to carry on with our analysis.15

11http://www.ieso.ca/sector-participants/feed-in-tariff-program/overview ,
12The Global Adjustment consists of additional fees to end consumers to recover the costs of the FiT

subsidies.
13https://www.fraserinstitute.org/studies/electricity-reform-in-ontario-getting-power-prices-down
14https://aleasoft.com/european-electricity-markets-panorama-nordic-countries/
15For further details on the Nord Pool market see Lundin and Tanger̊as [2019] and the references therein.

6

http://www.ieso.ca/sector-participants/feed-in-tariff-program/overview
https://www.fraserinstitute.org/studies/electricity-reform-in-ontario-getting-power-prices-down
https://aleasoft.com/european-electricity-markets-panorama-nordic-countries/


2.1 Regulatory framework

Many electricity markets are vertically separated into generation, transmission and distribu-

tion segments. In these markets (e.g. MISO, NYISO, PJM, ERCOT, IESO, CAISO)16, the

production effort is undertaken by sets of independent producers of electricity that typically

own different plants with different technologies. These producers meet in bidding markets

usually overseen by an auctioneer entity, the independent system operator. This operator

takes all the firm-specific supply curves and constructs a market supply curve by sorting the

bids from lowest to highest cost to the system according to the asking prices, this is known

in the industry as the merit order. The operator then finds the intersection between the

market supply curve and its forecast for demand, which defines the electricity spot price (for

each hour). Further details of the functioning on this type of market, and specifically on the

Ontario market, are explained later in the paper. Structural changes in these markets can be

stylized as competition models where firms have perfect information on the others’ marginal

cost curves. This is a reasonable assumption since in most markets electricity producers have

to comply with administrative forms that reveal to the public their nameplate capacities for

different sources and the firms interact every single hour for long periods of time. Since we

are mainly interested in wholesale prices, considerations about prices paid by consumers are

beyond the scope of this paper.

2.2 Electricity production

Ontario’s production system is quite large as its capacity is almost equal to twice the

province’s average hourly demand. In fact, throughout our main sample (from 2010 to 2012),

the average hourly load is equal to 17,751 MWh, while the average available capacity is equal

to 28,432 MW.17 This capacity is composed of five main sources: nuclear energy (around

56% of total production), hydroelectricity (23% and considered in our model as non-RES,

16Midcontinent Independent System Operator (ISO), New York ISO, Pennsylvania New Jersey Maryland
Interconnection, Electric Reliability Council of Texas, Independent Electricity System Operator (Ontario),
and California ISO, respectively.

17In the Appendix we show results for a larger sample and discuss the reasons for our choice to concentrate
on the 2010-2012 period.
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dispatchable source since it is mostly from dams), natural gas (15%), wind power (2-3%) and

finally coal (went from 8% of production in 2010 to 3% in 2012, and was later phased out).

Within this total capacity, it is possible to separate production assets in two groups

that differ in how they interact with the markets. The first group, named “regulated” as-

sets, produces electricity under a contract that sets a fixed price for generation. There are

different types of contracts that imply a guaranteed price. The main one is the specific

contract between the Ontario Electricity Board and two companies: Ontario Power Gen-

eration (henceforth OPG) and Bruce Power (henceforth Bruce). This contract is the most

important as it impacts nearly 15,000 MW of production capacity on average (more than

half of Ontario’s total capacity). All of Ontario’s nuclear capacity falls into this contract,

as well as between 40 and 75% of OPG’s hydroelectric capacity. The other two types of

contracts are Feed-in-Tariffs (FiT and micro-FiT) for production from renewable sources and

financial contracts with the Ontario Electricity Financial Corporation (OEFC). The latter

type is quite common in electricity markets and can be described as futures contracts on

production. Our methodology assumes that all these contracts have the same properties as

vertical contracts as described in Bushnell et al. [2008]. In total, these contracts fix the price

for approximately 90% of Ontario’s total production. Although the fraction of load that is

actually traded through the spot market may seem small, this has important consequences

for the rest of the market and it is a common feature in other electricity markets.18 This

has for consequence the well-known effect first studied by Allaz and Vila [1993] regarding the

consequences of forward contracts on the spot market: the larger the forward commitments,

the more aggressive the pricing positions in the spot market.

The IESO licenses more than a hundred electricity producers in Ontario. These companies

can be separated in the same way as in Bushnell et al. [2008], by identifying the main firms (or

dominant players) and small firms which act as price-takers in the market. Following Genc

[2014] we identify three main players in the Ontario market: OPG, Bruce, and Brookfield.

These three players hold 80% of the province’s total capacity and satisfy, on average, 92%

of the hourly demand. All other firms are considered as price-takers. One particularity to

18See for instance Potomac Economics [2008].
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notice within the group of dominant firms is that all of them hold regulated assets in their

portfolio. Bruce even has its whole production guaranteed under contracts with the OEB.

Finally, the supply side is also characterized by Ontario’s connections with other Canadian

provinces and U.S. states. In fact, Ontario’s electricity grid is connected to five other regions:

Quebec, Manitoba, New York, Michigan, and Minnesota.

2.3 Data

The data used in this paper come from three main sources: market equilibrium data provided

by the IESO, meteorological data from the NOAA and production data from the IESO,

individual firms’ financial statements and cost reports. Our dataset is in the form of hourly

variables spanning from May 1st, 2010 to December 31st, 2012.

2.3.1 Market equilibrium data

The market variables extracted from the IESO datasets are the total load, total quantity

demanded in Ontario, net exports from each connected region, market prices and available

capacity for each generating unit.19 A summary of the data is provided in Table 1.

Table 1: Descriptive summary statistics of market equilibrium data in Ontario

Year Avg. hourly demand∗ Avg. market price† Avg. hourly net exports, by region∗

MB MI MN NY QC Total
2010 17,960 37.83 −70 241 10 282 809 1,272
2011 17,616 30.13 −63 441 15 520 233 1,146
2012 17,749 22.82 −26 766 16 658 −203 1,211

Notes: ∗: in MWh; †: in CAD/MWh. In the last six columns, positive amounts represent exports
from Ontario, negative amounts represent imports. Sample period from May 1st, 2010 to December
31st, 2012. MB = Manitoba, MI = Michigan, MN = Minnesota, NY = New York, QC = Quebec
connection lines. Note that the fraction of trading amounts within Canada relative to the sum of
the absolute value of volumes traded is non-negligible: 62%, 30%, and 16% in each year respectively
and using the average hourly flows. Therefore, Ontario prices are not just the outcome of forces
from U.S. markets.

19Data was obtained openly through the IESO website. The Generator Output and Capability datasets
give generator-level capacities, the Inertie Flows datasets provide information on trade flows and finally, the
Ontario and Market Demand datasets provide demand data. For more information: http://www.ieso.ca/

Power-Data/Data-Directory
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2.3.2 Meteorological data

Meteorological data are needed to estimate the net exports supply function for Ontario. From

the methodology described in Bushnell et al. [2008], net exports are linked to two types of

variables: prices in Ontario and weather conditions (both local and outside the province).

NOAA provides hourly temperatures for many major cities in North America.20 In order to

compute the average temperature of each region, we take the population-weighted average

over at least 5 major cities in the specified region. Then, we compute the variables Cooling

Degree Days (CDD) and Heating Degree Days (HDD).21

2.3.3 Electricity generation data

Following the literature mentioned above, in order to find market equilibria, we need to

compute cost functions for the market as well as for main players in the industry. Again, the

IESO provides a complete, hourly description of electric generation capacity for each different

source. However, this capacity is not linked to the asset’s specific owner (and even if it was,

contracting between firms and regulators would also be needed to assess exact ownership).

Therefore, data on asset capacity for the main firms are extracted from financial statements

available online (Brookfield Renewable Partners [2012], Bruce Power [2012], Ontario Power

Generation [2012]). The capacity for the set of non-dominant players is simply the difference

between market capacity and that of the dominant players. We also retrieve from the financial

statements the proportion of regulated assets in each firm’s portfolio, these data are displayed

in Table 7 in the Appendix.

The second piece of information to characterize the cost functions is the marginal cost

(MC) of production, which we construct as follows. For any source j among all potential

energy sources in Ontario:

MCj = Variable O&M costj + Fuel costj × Heating ratej.

20Data was obtained openly through the National Centers for Environmental Information (NCEI) website.
The Climatic Data OnLine (CDO) provides a complete dataset of hourly observations for temperature in
most North American cities. For more information: https://www.ncdc.noaa.gov/cdohtml/info.html

21HDD are defined as 0 if the day’s mean temperature is greater than 65°F and it is equal to (65°F - day’s
mean temperature) if the mean is less than 65°F. CDD (cooling degree days) are defined similarly but for
temperatures above the day’s mean, otherwise it is equal to 0.
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Where O&M are the operating and maintenance costs. Additional data sources and details

on the computation of these marginal costs are provided in the Appendix.

3 Competition Models and their Estimation

In this section we present the theoretical models used to solve for the market equilibria:

a perfect competition model and a Cournot duopoly with a non-strategic fringe. Then we

explain the relationship between ownership transfers of renewables from non-strategic firms

to strategic firms using a stylized model. Finally, we describe the estimation technique for

the market demand.

3.1 Competition models

The literature on the particular modeling of electricity markets shows that, under uncertainty,

actual market outcomes will lie between Cournot outcomes and perfect competition outcomes

(Klemperer and Meyer [1989]). In particular, we should have that pPC < p < pC where p

stands for the actual market equilibrium price observed in the data and the other two prices

represent the perfect competition and the Cournot outcomes, respectively. Empirical work

such as in Bushnell et al. [2008] has shown that this insight holds in actual markets. In this

paper, we show that this finding can be verified in Ontario as well and use our model to

estimate bounds on counterfactual policies.

3.1.1 Perfect competition

In the perfect competition case, all firms act as price-takers and choose the quantity level

from their non-RES capacity to be such that the market price is equal to the marginal cost

of electricity generation. In this model, without loss of generality, we merge all firms into one

such that there is only one supply curve for the market. Note that this supply function is

actually a step function with each step being the total capacity of a single generation source,

ordered from the lowest to the highest marginal cost. The main difference with the classical

optimization problem is that the quantity of renewables is not a decision variable: RES are

non-dispatchable.
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To solve the model, we write the problem as a mixed complementarity problem (MiCP or

MCP) following Ruiz et al. [2014]. Before setting up the model, we introduce some further

notations. J is the set of conventional sources of electricity (non-RES). Renewables will

be denoted by the subscript R. Each source has a capacity constraint denoted by K̄j for

conventional sources, with j ∈ J , and K̄R for renewables. Both constraints represent the

available capacity at each point in time. P (·) is the aggregate inverse demand function and

C(·) is the aggregate cost function. Finally, we denote quantities by qj for conventional

sources and qR for renewables, with qR = K̄R because of the non-dispatchable properties

of RES. The perfectly competitive equilibrium is given by the intersection of the demand

function and the industry’s marginal cost curve, which, together with the following capacity

constraints:

qj ≤ K̄j : µj (for each j ∈ J )

0 ≤ qj : λj (for each j ∈ J ),

where µj and λj represent the dual variables associated with the constraints, gives the fol-

lowing system of equations:

C ′(Q)− P (Q) + µj − λj = 0

0 ≤ K̄j − qj ⊥ µj ≥ 0

0 ≤ qj ⊥ λj ≥ 0.

The first equation is the first-order condition derived from the Lagrangian function and Q

represents, here and in the following equations, the total output in the market. The second

and third equations are the complementarity conditions derived from the constraints. Note

that ⊥ represents the typical slackness conditions (e.g. qj · λj = 0). Finally, recall that

in the perfect competition case, P ′(Q) is set to 0 because of the price-taking assumption.

This system is then fed into the PATH solver to get the solution, for each individual period

separately. The solver is used through the GAMS API for Python 3.6 following Ferris and

Munson [2000].
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3.1.2 Cournot competition

Here we model the market as a Cournot duopoly with a competitive (price-taking) fringe.

Two firms (i ∈ I, where I is the set of firms) compete à la Cournot while another agent, the

fringe (f), takes the price as given. We therefore have three agents, each optimizing their

profit function over the quantities of conventional electricity.22

Again, we use the MCP framework to solve the model. The fringe player is modeled

exactly as the whole market in the perfect competition setting, which is why we omit these

equations. A complete characterization of the strategic players’ problem is as follows. Denote

by Ji the subset of J that represents the conventional sources which firm i has access to.

For each firm i ∈ I we solve the following problem:

max
{qij}j∈Ji

P

(∑
j∈Ji

qij +
∑
l∈I

K̄lR +Q−i +Qf

)
·

(∑
j∈Ji

qij + K̄iR

)
− Ci

(∑
j∈Ji

qij + K̄iR

)

s.t. qij ≤ K̄ij : µij (for each j ∈ Ji, i ∈ I)

0 ≤ qij : λij (for each j ∈ Ji, i ∈ I),

where Q−i is the sum of the outputs of the strategic firms that are not i and Qf is the total

production of the fringe (RES and conventional). This problem yields the following set of

conditions, for each firm and each hour:

C ′i

(∑
j∈Ji

qij + K̄iR

)
− P ′(Q) ·

(∑
j∈Ji

qij + K̄iR

)
− P (Q) + µij − λij = 0

0 ≤ K̄ij − qij ⊥ µij ≥ 0

0 ≤ qij ⊥ λij ≥ 0.

Altogether with the fringe conditions, we obtain a “square” system of equal number of equa-

tions and unknowns.

22Recall that the RES we consider here are non-dispatchable and that as mentioned earlier, we are inter-
changeably using these two terms because the proportion of biomass in the system is negligible.
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3.2 Ownership transfers

We begin with a stylized Cournot model inspired by that in Acemoglu et al. [2017] and Brown

and Eckert [2018] to show the effect of change of ownership of RES on equilibrium prices.

There are two groups of players in the market: the fringe and the strategic firms. The

former does not have any influence on the equilibrium price but the latter does. There is

a total capacity of RES in the market of K̄R and this amount is fixed.23 The fringe’s total

capacity consists of a fraction 1 − γ of the total RES capacity plus some thermal capacity

K̄f,NR. The strategic firms own the remaining fraction of RES. To simplify the notation we

assume that there are n symmetric strategic players in the market, each owning an RES

capacity K̄i,R = γ/n · K̄R.

Proposition
With the setting described in the previous paragraph and (i) a demand function P (·) such
that P ′ < 0 and P ′′ ≤ 0 (ii) a total cost function that is additively separable in non-renewable
(C(·)) and renewable inputs (CR(·)) and (iii) C ′ > 0, C ′R > 0, C ′′ > 0, and C ′′R > 0, then:

• ∂qi,NR

∂γ
< 0,

• ∂qf,NR

∂γ
> 0, and

• ∂P
∂γ
> 0.

The proof is in the Appendix. The assumption P ′′ < 0 is only required to guarantee that

some differences in the proof can be given a definitive sign but all that is really needed is that

the demand is not too convex.24 The first result in the Proposition shows that, as strategic

firms hold more of the total RES capacity, these firms will decrease their production from

conventional sources. At the same time, the fringe will expand its conventional output as

it loses RES capacity from its portfolio. Overall, these two effects combined put an upward

pressure on equilibrium prices.25

23This is a reasonable assumption for the Ontario market since there is a surplus of total installed capacity.
Later in the paper we run counterfactuals where there is a net expansion of the RES capacity in the system.

24P can be convex as long as (P ′ + P ′′ · (qi,NR + γK̄R

n )) < 0 for each i. See details in the Appendix.
25In Acemoglu et al. [2017] there is an amount (1− γ)K̄R of RES capacity owned by the fringe as well. In

their Theorem 1 part 2, their comparative statics show that by increasing γ, prices increase. The authors call
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The same characterization for the asymmetric case would require specific assumptions

on the way RES and conventional capacities are split among the firms. This observation

naturally motivates the use of an empirical analysis to answer the question of whether prices

would increase when there are RES transfers from the fringe to the strategic firms.

3.3 Demand estimation

As is typical in the literature, we first assume that domestic demand for electricity in Ontario

is perfectly price-inelastic, then we add net exports which we estimate as a function of prices

in Ontario (as well as meteorological and calendar variables) to get a price-elastic total (or

“residual”) demand function. Estimating the net exports supply function is therefore crucial

to getting a demand function for our model.

In order to estimate the net exports supply function, we need to choose a functional form.

Since we observe both positive and negative quantities and positive and negative prices, we

cannot use a log-linear form as used in Bushnell et al. [2008] or Brown and Eckert [2016];

instead, we use a simple linear function. We estimate an individual linear net exports supply

function for each region k ∈ K connected to the Ontario grid.26 By separating these regions,

we can capture different price elasticities corresponding to different trading behaviors with

these regional markets.

Following Bushnell et al. [2008], we estimate the net exports supply function as:

Qnx,k,t = β0,k+β1,k · pON,t + β2,k · CDDk,t + β3,k · HDDk,t + β4,k ·Weekdayt (1)

+
2012∑
y=2011

ψy,k · Yeary +
∑
s∈S

γs,k · Seasons +
∑
h∈H

ωh,k · ToDh + εk,t

where the sets S and H are the sets of seasons and periods of the day, respectively. The

most important variables are the net exports to region k at time t, denoted by Qnx,k,t and

pON,t is the spot price in Ontario at time t. CDD and HDD are measures correlated with

this a diversification effect, however the change in prices is not only due to a reshuffling of the capacities of the
different technologies in the firm’s portfolio, but it requires a physical addition of RES and the market power
exercised changes as well. This combination of forces makes it impossible to disentangle a pure diversification
effect from the market power effect.

26See subsection 2.2 and Table 3 for the list of regions.
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the difference between the temperature and a threshold (65°F), as explained in section 2.5.

The variables Weekday, Year, Season, and ToD (the period of the day) are all categorical

variables. Finally, {β.,., ψ.,., γ.,., ω.,.} are the parameters to be estimated. The dummy variable

for ToD is defined following the IESO classification of hours, as presented in Table 2 below.

Table 2: IESO classification of different periods of the day

Name of the period Associated hours
Night off-peak 8.00 p.m. - 6.00 a.m.
Day peak 6.00 a.m. - 8.00 a.m.
Day off-peak 8.00 a.m. - 5.00 p.m.
Night peak 5.00 p.m. - 8.00 p.m.

Notes: We use the same classification as the IESO, which is public information.

The estimation process described above is not complete without the choice of the instru-

ments. In fact, since we are estimating a market equilibrium, it is affected by both supply and

demand shocks. In this setting, we are interested in estimating a supply function, meaning

we need to find a “demand-shifter”-type of instrument. The literature gives us two possible

choices: domestic weather data (Brown and Eckert [2016]) or domestic demand (Bushnell

et al. [2008]). These two instruments are valid as they only affect willingness to pay for

imports, without having an effect on the connected regions’ capacity to produce energy.

Notice that unlike Genc and Reynolds [2019] (henceforth GR), we allow for endogenous

imports and exports in the main specifications and use many more hours of data (23,039

hours) than they do since they only concentrate over a few months (less than a full year of

data). GR estimate hourly demand parameters by making their linear demand function to

pass through the actual (p, q) equilibrium point for a given level of elasticity. In contrast, we

estimate a demand function that can take on weather variables and other market conditions

and gives the entire schedule of (p, q) points that are consistent with the historical data. This

is the function that enters the first-order conditions. Our elasticity is estimated directly from

our data as opposed to taking this value from other market studies. The market conditions

not only change the location of the (p, q) equilibrium point, but also the slope of the demand

curve. Regarding the supply curve, GR use polynomial functions to model the firms’ cost

curves. We use directly the step functions using the observed available capacity in each
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hour.27

Table 3 presents the main results. For our equilibrium analysis, we choose to use the

regressions from the weather-based instruments since they provide higher R2 by equation

than those obtained from the domestic demand-type instrument. However, we also present

those results in Table 9 in the Appendix. The implied inverse demand slopes are −0.0238 and

−0.0307, respectively, thus by choosing the former we err on using residual demand functions

that are relatively more inelastic but only by a very small amount. Each regression projects

net exports through a specific connection line on the market price, weather variables and

calendar dummies, as shown in Equation 1.

Table 3: Net exports supply function estimation, using weather-type instruments

Implied inverse demand slope: β = −0.0238

First stage Second stage
N F -stat. Adj. R2 Wald-χ2 R2 pON SE

MB 23,015 210*** 0.216 5,700*** 0.162 0.382*** 0.088
MI 23,015 221*** 0.222 12,906*** 0.340 6.683*** 0.889
MN 23,015 211*** 0.219 3,069*** 0.123 0.116* 0.060
NY 23,015 215*** 0.216 4,895*** - -18.537*** 0.832
QC1 23,015 269*** 0.219 12,956*** 0.100 -25.001*** 0.730
QC2 23,015 - - 11,613*** 0.298 -3.864*** 0.214
QC3 23,015 - - 3,355*** 0.024 -0.429*** 0.027
QC4 23,015 - - 3,856*** 0.119 -0.455*** 0.039
QC5 23,015 - - 8,628*** 0.234 -0.553*** 0.042
QC6 23,015 205*** 0.221 2707*** - -0.219*** 0.014
QC7 23,015 - - 2,619*** 0.104 -0.015*** 0.009
QC8 23,015 - - 11,342*** 0.320 -0.108*** 0.013

* , ** and *** represent significance at the 10%, 5% and 1% confidence levels respectively.

Notes: MB = Manitoba, MI = Michigan, MN = Minnesota, NY = New York, QCx = Quebec
connection lines. QC1-QC5 share the same first stage because we use the same regressors across
these connection lines. The estimates p̂ used in the second stage are therefore the same for QC1-
QC5, only the net exports are changing, hence the different second stage results for each line. The
same applies to QC6-QC8, but the first-stage includes additional month fixed effects than QC1-QC5
to allow for a more flexible function.

The last step is to recover the aggregate inverse demand function. First, we write total

27GR concentrate on expansions of RES capacity whereas in our case we focus on both effects of reshuffling
assets while maintaining overall assets constant and expansions. However, unlike GR we trace out the loci
of price effects from multiple levels of expansions and to different players (strategic and non-strategic).
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demand as a function of the price-inelastic Ontario demand, plus net exports:

Q = Q̄ON +
∑
k∈K

Qnx,k,

Note that we removed the time index t for clarity. Then, we substitute Qnx,k for its esti-

mated counterpart, by aggregating all variables except price into a state-observation specific

constant α̂k and using β̂1,k (the estimated coefficients on price from (1)) as the slope to get:

Q = Q̄ON +
∑
k∈K

[
α̂k + β̂1,kpON

]
⇔ Q = Q̄ON +

∑
k∈K

α̂k +

(∑
k∈K

β̂1,k

)
pON

⇔ pON =
−Q̄ON −

∑
k∈K α̂k∑

k∈K β̂1,k

+
Q∑

k∈K β̂1,k

This aggregate inverse demand function is the one that will be used to solve our model

throughout our simulations.

4 Baseline Results

In this section, our goal is to assess the performance of our model by comparing simulated

prices against the data. Figure 1 shows the time series of simulated and actual prices for the

first 240 hours in our dataset. As expected, our model bounds market prices most of the

time.28 This figure also shows that our model captures some cyclicality across days, although

it does not fare as well in terms of intra-day cyclicality. A more complete display of how well

our model is able to bound market prices is available on Figure 11 in the Appendix. That

figure shows the estimated densities of simulated and market prices in a way that supports

our claim that observed prices lie between our two competition models. Having a higher

goodness-of-fit is challenging. It has been documented that forecasting prices in the IESO is

a difficult task, even when using machine learning methods, see for instance Rodriguez and

Anders [2004] and Zareipour et al. [2006]. Since our interest is in examining changes in the

28Table 8 in the Appendix shows the frequencies of times when the simulated prices bound the observed
prices.
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market configuration, we need a structural model that provides a causal interpretation of the

parameters that allows us to run counterfactuals.29

There are at least three potential explanations for the lack of further accuracy in our

simulated prices. First, it is possible that our marginal costs contain measurement error

because we are imputing fuel prices from databases that may not reflect accurately the prices

faced by the firms. In particular, we use an “average technology” for natural gas and coal,

meaning that their marginal cost is the same, regardless of the type of the generator. We use

this simplification because the IESO dataset does not provide information on the generator

type. Second, it is possible that firms are not fully using their market power. Hortaçsu et al.

[2017] document how not all electricity generator companies in ERCOT bid at the optimal

levels. Rather, there is a bell-shaped distribution of the levels of sophistication of firms on

the way they bid. Not all bid at the profit-maximizing levels. And third, the market solves a

problem in which each firm submits step functions with several optimization constraints that

do not only include capacity bounds but also transmission and congestion constraints. Since

it is unrealistic to attempt to solve such a problem here, we solve for a simplified version and

this is why we cannot replicate the exact values of the observed prices but rather we aim to

bound these observed prices between two structural models. Nonetheless, we are satisfied

by the fact that our model captures two of the most important features of the market: the

cyclicality and the responses to demand shocks.

In Figure 2, we plot local constant regressions of simulated and actual prices against a

measure of (global) demand intensity, which is defined as the fraction of load relative to the

maximum observed load in the sample. The figure shows that actual prices are bounded

by the simulated prices more frequently when demand intensity is roughly between 0.55 and

0.85. Outside that interval, actual prices tend to be higher than our Cournot predictions. The

cloud of observed prices indicates, however, that most of the observations lie in the interval

29We use available capacity given by the IESO, which is an ex-post measure, as the output of the RES.
This means that firms do not have that exact information at the time of making the decision, although it is
very quick (about one hour after production) and firms must be able to form good forecasts after a while in
the market. Therefore, we are implicitly assuming that firms are able to predict their available capacity and
the uncertainty about this number is absent from the maximization problem. This way we can concentrate
only on the market power effects and not on the ability of the firms to form forecasts.
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Figure 1: Simulated vs actual prices
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indicated with the symbol ∗) and the time series of actual prices for the first part of the sample
period.

where our predicted prices bound the market prices. In the Appendix, Figure 12 shows a

similar kernel regression but using the demand density conditional on each combination of

year-season-peak type. There, actual prices are farther from the Cournot outcomes even

at high levels of demand intensity. This observation shows that firms’ behavior is more

closely represented by a Cournot model when there is high demand, not when demand is

only relatively high.

In summary, we have a model that allows us to bound actual prices with a degree of

accuracy: the Cournot simulated prices are the upper bound and the perfect competition

simulated prices the lower bound.30 In addition, our model allows us to examine changes in

the market structure. As usual, there is a trade-off between goodness-of-fit and the capacity

to be able to change our model to reflect changes in the firms’ environment. In our series

of counterfactuals we simulate both types of prices to conclude that the true outcomes will

30Throughout the paper we assume that there is no collusion and therefore our upper bounds are those
from the Cournot model. Although there may be tacit collusion sometimes, we are unaware of a collusion
case in this market during the time period we used for our estimates and simulations.
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Figure 2: Kernel regression on demand intensity
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most likely lie in between those bounds. In some counterfactuals we concentrate on the upper

bound only since the perfect competition environment is equivalent to assigning the RES to

the fringe.

5 The Effects of RES Ownership Transfers and Expan-

sions

For each time observation, we take a uniform random draw in [0, 1] that represents the fraction

of capacity to transfer from the fringe into the two strategic firms. Then, this capacity is

split evenly among the two firms.31 Each time observation is a different combination of state

variables and outcomes, by using a uniform random distribution over these observations we

attempt to cover as many cases as possible of combinations of factors that affect the outcomes

31This limits the exercise of market power over the RES capacity since the two strategic firms are not of
equal size. However, we do not want to impose further assumptions on how this capacity is allocated. Later
in the paper we present counterfactuals where only one of the firms receives the extra RES capacity.
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of our policy experiments.32

Even though our equilibrium model takes into account the different states of nature when

predicting demand, we present our results segmented by clusters: the load of each day is

assigned to one of four groups that classify demand into four different daily profiles. This

step does not change the estimation method, it is simply a way to present the results. We use

the k-means clustering algorithm, which is an unsupervised machine learning method (see

Hastie et al. [2009]). We define an observation as the vector of the 24 demand observations

in one day plus an entry equal to the maximum of those 24 numbers.33 We use different

seeds to check for the robustness of the clustering to initial conditions and we settle at four

clusters since this is enough to facilitate the visualization of our results. Figure 10 in the

Appendix shows that our choice of four clusters does a good job for most hours of the day

at separating our sample into non-overlapping distributions of hourly load when comparing

the mass of the distribution within one standard deviation from the mean.

5.1 Isolating the effect of market power

Figure 3 presents the results from transferring RES assets from the fringe to the strategic

players as described above. We show the mean effect on prices (counterfactual minus baseline)

by quantile of the distribution of ownership transfers. The price differences are obtained using

the prices from the new equilibrium after the ownership transfer and the equilibrium using

our model before any ownership transfers. The figure shows the results by cluster. The

impact on prices is positive or zero for all percentages of ownership transferred which means

that counterfactual prices are higher than the ones in the initial equilibrium. Relative to the

average price over the sample period, the maximum price change (6$/MWh) is equivalent to

a 20% increase. These price changes are more pronounced as the amount of RES transferred

is larger. This can seem at first in contradiction with the merit order effect of suppressing

prices. However no additional RES have been added to the system since there has only been

32Location may also play a role but we assume that the expansion of RES occurs uniformly over the same
locations that existed in 2012. Policies to incentivize the adoption of RES may cause a misallocation of RES
if those incentives are not a function of the geographical location (see for example Lamp and Samano [2019].)

33Callaway et al. [2018] use this technique to split their data.

22



a transfer of RES from one type of owner to another. Therefore, the supply curve has not

been shifted to the right but upwards due to the exercise of market power over the RES

that before was owned by the fringe. Figure 3 also shows that prices almost monotonically

increase with the quantile of ownership change for all demand clusters.

Interestingly, for the highest demand level (cluster 1), price changes are the smallest. The

opposite occurs with the cluster of the lowest demand level (cluster 3). This phenomenon

shows that when the individual marginal cost function gets shifted to the right, its intersection

with a high demand curve still occurs at a point not too far from the profitable price level.

However, when the new marginal cost curve intersects a low demand curve, it is possible

that the new intersection occurs at a very low marginal cost and the firm internalizes this by

exercising a significant amount of market power.

Figure 3: Price differences by quantiles of ownership changes
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Notes: Mean effect on prices (counterfactual minus baseline) by quantile of the distribution of
ownership transfers. The price differences are obtained using the prices from the new equilibrium
after the ownership transfer and the equilibrium using our model before any ownership transfers.
The figure shows the results by clusters.
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5.1.1 The effects from changes in the portfolio composition

Next, we look into the price effects as a function of the concentration degree of the firm’s port-

folio. We choose to measure the degree of the portfolio composition by using the Herfindahl

index (HHI), which is defined as the sum of the squares of the shares of each of the different

technologies in the portfolio. The higher the HHI, the more concentrated the portfolio. By

construction, the HHI is bounded between 0 and 1. During our sample period, the portfolio

concentrations are as in the first line of Table 4. Observe that Brookfield does not have a

very diversified portfolio.

Figure 4 and Figure 5 show the price differences (counterfactual minus baseline) relative

to the change in the firm’s portfolio HHI, which we define as HHIcounterfactual −HHIbaseline.

Note that this difference in portfolio concentration is negative because by adding RES into

the firms’ portfolios at very low initial levels of RES shares, HHIcounterfactual decreases relative

to the initial amount of concentration. For those random draws close to zero, the amount

of RES transfer is negligible, and therefore, the HHI does not change, which in turn implies

that counterfactual prices should be almost identical to the actual prices. This can be seen

at the right of the two figures. Then, as the amount of RES increases, the difference in

HHI becomes more negative (a lower quantile in the distribution of HHI changes) and this

is associated with higher equilibrium prices for all the clusters and for both firms. This is a

direct confirmation that even though the firms are receiving a low marginal cost production

technology, they internalize the shift to the right of the supply curve by decreasing output

from thermal sources to counteract the MoE. Notice also that similarly to the results on the

amount of ownership transfers, the cluster that contains the highest (lowest) demand levels is

Table 4: Average portfolio concentrations in Ontario

Market Fringe OPG Brookfield
HHI before adding RES 0.2661 0.3655 0.3529 0.9033
HHI after adding RES 0.2471 0.3294 0.2817 0.5431
Total Capacity (MW) 28,432 19,414 9,462 758

Notes: The Herfindahl index (HHI) is defined as the sum of the squares of the shares of each of the
different technologies in the portfolio. Values close to zero represent highly diversified portfolios.
Values close to 1 represent highly concentrated portfolios.
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the least (most) affected. Relative to the average prices in the sample period, the maximum

observed price increase for OPG is about 24% and for Brookfield 23%.

Figure 4: Quantiles of price differences and HHI: OPG
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Notes: Horizontal axis represents the change in the degree of portfolio concentration for OPG.
Quantiles to the left correspond to negative changes in the HHI. This difference is negative because
by adding RES into the firms’ portfolios, the new HHI decreases (portfolio is more diversified given
the initial low levels of RES) relative to the initial amount of concentration.

5.2 The effects from a net expansion in RES

Despite the fact that the Ontario system has an excess of capacity installed relative to average

load, the IESO projects an addition of 5,000 MW of wind capacity into the system by the end

of 2022.34 Inspired by this projection, we run a series of counterfactuals in which we add that

same amount of wind capacity to the system taking into account that demand grows at an

annual rate of 1%.35 Therefore demand is blown up by the factor 1.01(2022−2012). Following

studies of the Ontario market, we use a capacity factor for wind of 30%, which gives an

34IESO [2017].
35Government of Canada https://www.nrcan.gc.ca/energy/electricity-infrastructure/

about-electricity/7359
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Figure 5: Quantiles of price differences and HHI: Brookfield
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Notes: Horizontal axis represents the change in the degree of portfolio concentration for Brookfield.
Quantiles to the left correspond to negative changes in the HHI. This difference is negative because
by adding RES into the firms’ portfolios, the new HHI decreases (portfolio is more diversified given
the initial low levels of RES) relative to the initial amount of concentration.
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effective capacity of 1,500 MW.36 We leave the rest of the capacity fixed at the 2012 levels.

This is plausible since during that period of time, the system went through a coal phase-out

program that ended in 2014 and a few additions of other thermal capacity.37

The expansion of RES requires an increase of the thermal capacity to comply with the

IESO reliability requirements.38 These requirements are largely based on those established

by the North American Electric Reliability Council (NERC) and the Northeast Power Coor-

dinating Council (NPCC). According to the IESO, this requirement translates into operating

reserves equivalent to the system’s first and half of its second largest generation units’ capaci-

ties. Notice that this requirement does not take into account the intermittency from RES and

therefore, the operating reserves do not change with this increase in wind capacity.39 In our

data, the average proportion of unused capacity in the system is 37% which is significantly

larger than the 28% that corresponds to the capacity of the largest and half of the capacity

of the second largest plant when added together. Moreover, note that this figure corresponds

to whole plants and not generators, as indicated in the guidelines. Therefore, not allowing

for an expansion in the system’s thermal capacity is a reasonable assumption.

We implement three different scenarios: all new RES capacity is owned by the fringe, by

OPG or by Brookfield. The HHI change as shown in the second line of Table 4. For each

of the scenarios we solve for the Cournot equilibrium prices at each hour. Figure 13 in the

Appendix shows the equilibrium prices predicted by our model in each of those scenarios

altogether with the simulated prices when there is no expansion in RES for comparison for

the first few hours of our sample. When the additional capacity is owned by the fringe, no

market power is exercised over that capacity but the overall system supply curve shifts to

the right which tends to lower prices. This is exactly what we see in that graph relative to

36See https://canwea.ca/wind-integration-study/key-findings/ and https://www.ospe.on.ca/

public/documents/presentations/wind-and-electrical-grid.pdf
37Notice that Genc and Reynolds [2019] also add new RES capacity into the system.
38See http://www.ieso.ca/en/Sector-Participants/Market-Operations/

Markets-and-Related-Programs/Operating-Reserve-Markets
39Gowrisankaran et al. [2016] find that when solving for the optimal amount of operating reserves in a

social planner problem, that amount is 30.5% on average over the different hours of the time period studied
in the no RES penetration scenario and up to 35.2% when there is a 20% increase in solar capacity, whereas
the implied NERC requirement was of 23% of total capacity only.
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the prices when either OPG or Brookfield own the additional capacity.

The net effect of prices depends on the trade-off between the market power effect from

adding RES to the firm’s portfolio (upward pressure on prices) and the merit order effect

(downward pressure). Figure 6 shows the kernel regressions of simulated prices from each

scenario as a function of demand intensity. The highest prices are still those for the Cournot

scenario with no RES added, this is the upper bound. When all the additional RES capacity

is owned by OPG, prices are very close to the upper bound. Recall that OPG is the largest

firm. Then if all the additional RES capacity is owned by the second largest firm, Brookfield,

market power only has a noticeable effect for demand intensity levels between 0.5 and 0.8,

otherwise it has very similar effects as when giving all the extra RES capacity to the fringe.

Figure 6: Price levels for different market structures and demand intensity levels
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Notes: Co = Cournot, PC = perfect competition, Brook = Brookfield. The “no add. RES” are
scenarios where only demand was increased but there is no additions of RES. All other cases include
both an increase in demand and an increase in RES capacity.

Alternatively, we can measure the net impact on prices for different levels of RES capacity

extensions and for different owners of this additional capacity. To do so, we select the owner

of the new capacity first, then we assign a random draw from a uniform distribution in

[0, 1500] to each of our time observations and give that selected owner the amount given by
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the random draw. We solve for the new equilibrium for each time observation and we repeat

this for each of the main players in the market. Figure 7 shows the upper bound in wholesale

price savings (in %) for each type of ownership of the new RES capacity and for different

levels of this additional capacity. Figure 6 above is the full analysis for the case of 100% total

RES ownership introduction shown at the right of Figure 7. This shows that by providing the

totality of the new planned capacity (1,500 MW) of RES to different players, the combined

effect of market power (or lack of in the case of perfect competition) and the MoE can be

about 3 times larger when the owner is the fringe than when the owner is the largest firm. The

horizontal axis of Figure 7 can be thought as different levels of a renewable portfolio standard

(RPS) and each curve shows the associated maximum wholesale price change. Ultimately

these changes will be passed-through onto final consumers −quantifying this is beyond the

scope of this paper− and our results put in perspective the collateral damages of providing

incentives to different market participants to own additional RES capacity. Whether an RPS,

a FiT, or a subsidy policy is put in place, the recipient of the incentive will have a tangible

effect on the resulting equilibrium prices.

6 Conclusion

In this paper we shed light on the still unexplored consequences of RES additions to the

electricity producers’ generation portfolios and their interaction with the nature of the own-

ership of RES capacity. We concentrate on two opposing effects: market power and the merit

order effect. We find theoretically and empirically that the former puts upward pressure on

prices, holding everything else constant. That effect counteracts the widely studied merit

order effect. Throughout our series of counterfactuals we show that (i) prices increase when

transferring RES capacity from small producers to large producers, (ii) these price increases

are larger when the portfolio mix includes higher shares of RES, and (iii) a net expansion of

the RES capacity lowers prices by amounts that depend on the size of the firm that acquires

the new capacity and by whether the entity can exercise market power or not.

Our results contribute to the long-standing debate on the advantages and disadvantages
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Figure 7: Upper bounds on wholesale price savings by ownership structure
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of RES additions in electricity markets. From the economics perspective our paper confirms

and quantifies some theoretical results on the interaction of portfolio dilution and market

power. From the regulatory and policy analysis perspective, our results suggest a careful

analysis on the transfer of RES capacities among market participants and on the nature of

the ownership of RES.
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Appendix

Proofs

Proof of the Proposition.

Proof. Profits for the typical strategic firm i are

πi = (qi,NR + qi,R)P (Q)− C(qi,NR)− CR(qi,R)

where Q = qi,NR + qi,R + Q−i + Qf and Q−i is total output from other strategic firms. The

first order condition of the unconstrained problem is:

(qi,NR + qi,R)P ′(Q) + P (Q)− C ′(qi,NR) = 0

from which we can differentiate with respect to γ:

(qi,NR + qi,R)P ′′(Q)
∂Q

∂γ
+ P ′(Q)

∂(qi,NR + qi,R)

∂γ
+ P ′(Q)

∂Q

∂γ
− C ′′(qi,NR)

∂qi,NR

∂γ
= 0. (2)

Observe that by using symmetry of strategic firms, the non-dispatchable properties of RES

(qi,R = K̄i,R = γK̄R

n
) and Qf = (1 − γ)K̄R + qf,NR, where qf,NR is the output from non-RES

in the perfectly competitive fringe, we obtain:

∂Q

∂γ
= n

∂qi,NR

∂γ
+
∂qf,NR

∂γ
. (3)

If we substitute this expression into Equation 2 we get:[
(qi,NR + qi,R)P ′′n+ P ′ + P ′n− C ′′

]∂qi,NR

∂γ
+
[
(qi,NR + qi,R)P ′′ + P ′

]∂qf,NR

∂γ
= −P ′ K̄R

n
. (4)

At the same time, the fringe takes the market price as given and solves the equation

P (Q) = C ′(qf,NR).

By differentiating with respect to γ we obtain

∂qf,NR

∂γ
=

P ′n

C ′′ − P ′
∂qi,NR

∂γ
(5)
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and by substituting this into Equation 4 we obtain:[
(n+ 1)P ′ + (qi,NR +

γK̄R

n
)nP ′′ − C ′′ + (P ′ + P ′′)

P ′n

C ′′ − P ′
]∂qi,NR

∂γ
= −P ′ K̄R

n

⇐⇒
[
P ′ − C ′′ + (P ′ + P ′′ · (qi,NR +

γK̄R

n
))n

C ′′

C ′′ − P ′
]∂qi,NR

∂γ
= −P ′ K̄R

n
,

which implies that
∂qi,NR

∂γ
< 0 since P ′ < 0, P ′′ < 0, and C ′′ > 0. As a consequence,

∂qf,NR

∂γ
> 0.

Now, we substitute Equation 5 into Equation 3 to get

∂Q

∂γ
= n

∂qi,NR

∂γ
+
∂qf,NR

∂γ

= n
(

1 +
P ′

C ′′ − P ′
)∂qi,NR

∂γ

= n
( C ′′

C ′′ − P ′
)∂qi,NR

∂γ

= n
( 1

1− P ′/C ′′
)∂qi,NR

∂γ

< 0

since the fraction in parenthesis is between 0 and 1 and
∂qi,NR

∂γ
< 0.

Finally, observe that
∂P

∂γ
=
∂P

∂Q

∂Q

∂γ
> 0.

Data sources for marginal costs

Renewable energy sources

Marginal costs for RES, wind and solar sources, are set to 0$/MWh at all times. This

follows an assumption that both the Variable Operations and Management (VO&M) costs

and energy costs are zero. However, this assumption may not be ideal, in particular for the

case of wind power where sources (Navigant [2015]) indicate a positive VO&M cost. This is

an innocuous assumption since regardless of the marginal cost for an RES, we treat as non-

dispatchable and therefore, they are put in front of the queue of the merit order. Ex-post

profits would change if we assumed positive marginal costs. Thus, our profits can be thought

as upper bounds of the true ex-post profits.
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Natural gas

We follow the NREL Cost Report published by the private consulting firm Black and Veatch

in February 2012 [Black & Veatch Holding Company, 2011]. This report identifies three differ-

ent technologies for electricity production from natural gas: combustion turbine, combined-

cycle and combined-cycle with carbon capture. The VO&M costs for these technologies

vary between 3.67 US$/MWh and 29.9 US$/MWh (projected as stable for the 2010-2015

period). Concerning marginal cost, the same report states that between 6,705 Btu and

10,390 Btu are needed to produce 1 kWh of electricity. Using historical data on natu-

ral gas futures contracts (daily prices) from the Energy Information Administration (http:

//tonto.eia.gov/dnav/ng/hist/rngc1d.htm), we compute the median energy cost by mul-

tiplying the input price and the median conversion rate stated above.

Coal

Using the same methodology as for natural gas, we use estimates from the NREL Re-

port in order to get VO&M costs as well as conversion rates for input transformation

into electricity. We use historical data on CME futures from the website Investing.com

(https://ca.investing.com/commodities/coal-cme-futures-historical-data) to get

daily input prices that we multiply by the median conversion rate.

Hydroelectric

Following the NREL Report, we set the total marginal cost of hydropower at its VO&M rate,

which is estimated to be 6 US$/MWh. No energy cost is reported in the study, which is not

surprising given the nature of hydroelectric generation.

Nuclear

Once more, we use the NREL Report estimates. For nuclear energy, no VO&M is reported,

the conversion rate is of 9.72 MBtu/MWh. Then, we compute total marginal cost using

yearly uranium prices as reported by the EIA (https://www.eia.gov/nuclear/data.php).

38

http://tonto.eia.gov/dnav/ng/hist/rngc1d.htm
http://tonto.eia.gov/dnav/ng/hist/rngc1d.htm
https://ca.investing.com/commodities/coal-cme-futures-historical-data
https://www.eia.gov/nuclear/data.php


USD-CAD exchange rates

Finally, since all prices from our data sources on fuel prices are in U.S. dollars, we convert

them to Canadian dollars. We use historical data on weekly exchange rates from the website

Investing.com (https://ca.investing.com/currencies/usd-cad-historical-data).

Extending the model to additional years

We conducted our main analysis using data from 2010-2012 because that is the most recent

fully available data before two structural changes take place in the Ontario market. Here we

present the results for years 2013-2015 in addition to our main results for years 2010-2012.

The two changes in the Ontario market are the following.

1. After 2012 there is a change of regime in net exports.

The column of means clearly shows that Ontario increased on average its level of exports

starting in 2013 by approximately 30%. This indicates that the estimates for a supply

function of net exports are most likely different for 2013-2015 than those for 2010-2012.

2. After 2012 the frequency and the level of the negative wholesale electricity prices dra-

matically increased.

From the table above it is clear that there were more negative prices in 2013-2015 than

before 2013. In addition, the average of the negative prices in 2010-2012 is at least

between 4 and 10 times larger (in absolute value) than the average for negative prices

Table 5: Net exports in 2010 - 2015. Summary statistics

year obs. mean S.D. min max
2010 5,880 1,271 882 −2, 423 3,870
2011 8,760 1,146 726 −2, 397 4,607
2012 8,784 1,212 662 −2, 273 3,694
2013 8,760 1,607 753 −1, 496 4,095
2014 8,760 1,687 1,038 −2, 834 4,612
2015 8,760 1,961 1,078 −2, 098 4,742

Notes: Data from the IESO. All columns in MWh except for year and observations.
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Table 6: Negative prices in 2010 - 2015. Summary statistics

year hours mean S.D. min max
2010 35 −17.0 27.7 −128.0 0
2011 164 −53.7 46.4 −139.0 0
2012 169 −54.0 43.6 −128.0 0
2013 396 −4.8 9.2 −106.0 0
2014 965 −3.7 5.6 −110.0 0
2015 1,232 −2.5 2.7 −22.0 0

Notes: Data from the IESO. All columns in $/MWh except for year and hours.

in 2013-2015. To put it in perspective, 2014 and 2015 have more than the equivalent

of a whole month of negative prices each.40 In 2013, the IESO set floor prices for RES

at −10 $/MWh for the first 90% of capacity and −15 $/MWh for the remaining.41

These two points motivate our choice of estimating our model separately for 2010-2012

and 2013-2015. More specifically, we use the same Cournot model but using two different

sets of exports supply curves: each one obtained separately by using the period 2010-2012

and another using the period 2013-2015. Counterfactuals are then obtained by using the cor-

responding exports supply function depending on whether we are solving for the equilibrium

under a market structure change in 2010-2012 or in 2013-2015. Then we pool all the results

to plot the changes in prices with respect to the amount of RES transfers and with respect

to the HHI.

The following graphs are the equivalents of Figure 3 and 5 but for the full sample and

they show that our results from 2010-2012 extend to the full sample 2010-2015.

The lack of monotonicity in the last graph is most likely due to the lower goodness-of-fit

we obtain for 2013-2015. This seems plausible since we are using the exact same model over

40In North America wind blows faster at night. This creates high production periods in wind farms at
night, right when demand is the lowest. This negative correlation cannot be easily changed since there is
no storage for electricity (at reasonable prices) and wind turbines are difficult to plug and unplug at will.
Then, these producers are willing to pay to the IESO in order for it to take the electricity. One would think
that this is not a profit-maximizing strategy but the explanation is that there are production subsidies. If
for example, at 3 a.m. the equilibrium price is -5 $ / MWh and the subsidy is 6 $ / MWh, the net gain from
selling that MWh of electricity is 1$.

41https://www.ivey.uwo.ca/cmsmedia/3776559/the-economic-cost-of-electricity-generation-in-ontario-april-2017.

pdf

40
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Figure 8: Price differences by quantiles of ownership change. 2010-2015
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Notes: Mean effect on prices (counterfactual minus baseline) by quantile of the distribution of
ownership transfers. The price differences are obtained using the prices from the new equilibrium
after the ownership transfer and the equilibrium using our model before any ownership transfers.
The figure shows the results by clusters. Data period: 2010-2015.
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Figure 9: Quantiles of price differences and HHI: Brookfield
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Notes: Horizontal axis represents the change in the degree of concentration in Brookfield’s portfolio.
Quantiles to the left correspond to negative changes in the HHI. This difference is negative because
by adding RES into the firms’ portfolios, the new HHI decreases (portfolio is more diversified given
the initial low levels of RES) relative to the initial amount of concentration. Data period: 2010-2015.
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two different periods of time but in one we have a higher frequency of negative prices than

in the other. A possible solution would require a different supply functional form for the

second regime (2013-2015). This would lead to comparing or pooling outcomes from two

different models for export supply curves. We choose therefore to show in the main results

the equilibria obtained using the exports supply function that best fits the data: 2010-2012.

This also makes our conclusions consistent relative to one single set of market rules: no price

floors for RES. Nonetheless, qualitatively we still get the same reaction in price changes if

we used the two sets of parameter estimates (one for each regime).

Additional Figures and Tables

Figure 10: Clusters
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Notes: We use the k-means clustering algorithm, which is an unsupervised machine learning method
(see Hastie et al. [2009]). We define an observation as the vector of the 24 demand observations in
one day plus an entry equal to the maximum of those 24 numbers. Vertical lines represent +1 and
−1 standard deviations around the mean.
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Figure 11: Distribution of simulated and actual prices
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Notes: Histograms of predicted and actual prices confirming that observed prices lie between our
two competition models. The symbol ∗ represents simulated prices.

Figure 12: Kernel regression on conditional demand intensity
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Notes: Horizontal axis represents the fraction of load relative to its maximum on each combination
of year-season-peak type. Gray dots are actual observed prices. The symbol ∗ represents simulated
prices.
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Figure 13: Counterfactual results, first 120 observations (5 days)
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Notes: Co = Cournot, PC = perfect competition, Brook = Brookfield. The “no add. RES” are
scenarios where only demand was increased but there is no additions of RES. All other cases include
both an increase in demand and an increase in RES capacity. Gaps in the time series represent
points where the solver did not find a solution.
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Table 7: Description of the three main firms’ energy mix, in MW

Firm Energy source 2010 2011 2012

OPG
Nuclear 6,606 6,606 6,606
regulated 6,606 6,606 6,606
Hydropower 6,996 6,996 6,996
regulated 3,312 3,312 3,312
Thermal∗ 5,447 5,447 5,447
regulated 0 0 0
Total 19,049 19,049 19,049
regulated 9,918 9,918 9,918

Brookfield
Hydropower 1,369 1,369 1,356
regulated 648 648 642
Wind 324 324 326
regulated 324 324 326
Natural Gas 36 36 47
regulated 0 0 0
Total 1,729 1,729 1,729
regulated 972 972 968

Bruce
Nuclear 6,300 6,300 6,300
regulated 6,300 6,300 6,300
Total 6,300 6,300 6,300
regulated 6,300 6,300 6,300

Notes: * Thermal capacity is not separated between coal and natural gas in OPG’s financial
statements. However, it is stated in the 2012 report that most of it is coal.

Table 8: Frequencies of observed prices that are bounded by simulated prices

year #obs. within bounds #obs. in year %
2010 4,117 5,880 70%
2011 5,612 8,471 66%
2012 5,658 8,688 65%

Notes: The number of observations in the year is the number of hours in that year for which we
have data in the domestic and the trading markets. The number of observations within bounds is
the number of hours in that year for which the actual price is below the Cournot simulated price
and above the perfectly competitive simulated equilibrium price.
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Table 9: Net Exports supply function estimation, using market demand instruments.

Implied inverse demand slope: β = −0.0307

First stage Second stage
N F -stat. Adj. R2 Wald-χ2 R2 pON SE

MB 23,015 323*** 0.289 5,449*** 0.087 1.035*** 0.063
MI 23,015 348*** 0.288 8,099*** - 24.260*** 0.717
MN 23,015 329*** 0.290 2,821*** - 0.964*** 0.044
NY 23,015 341*** 0.287 5,625*** - -18.867*** 0.522
QC1 23,015 587*** 0.289 12,705*** - -29.006*** 0.545
QC2 23,015 - - 8,962*** - -8.934*** 0.189
QC3 23,015 - - 3,521*** 0.134 -0.086*** 0.018
QC4 23,015 - - 4101*** - -0.882*** 0.029
QC5 23,015 - - 8,517*** 0.176 -0.757*** 0.029
QC6 23,015 402*** 0.295 2,904*** 0.104 -0.056*** 0.009
QC7 23,015 - - 2,781*** 0.027 -0.121*** 0.006
QC8 23,015 - - 11,377*** 0.313 -0.122*** 0.008

* , ** and *** represent significance at the 10%, 5% and 1% confidence levels respectively.

Notes: MB = Manitoba, MI = Michigan, MN = Minnesota, NY = New York, QCx = Quebec
connection lines. QC1-QC5 share the same first stage because we use the same regressors across
these connection lines. The estimates p̂ used in the second stage are therefore the same for QC1-
QC5, only the net exports are changing, hence the different second stage results for each line. The
same applies to QC6-QC8, but the first-stage includes additional month fixed effects than QC1-QC5
to allow for a more flexible function.

Table 10: Simulation statistics, by year

Mean price Median price
Year PC* Mkt Cou* PC* Mkt Cou*
2010 17.44 37.83 45.70 19.88 35.00 50.96
2011 12.76 30.14 38.06 8.71 32.00 45.09
2012 11.07 22.82 31.47 2.89 22.00 36.64

Notes: * denotes results from simulation. PC = perfect competition. Mkt = actual prices. Cou =
Cournot competition.

Table 11: Predicted and actual prices distributions

Mean Median SD Min Max Decile 1 Decile 10
Before period
PC* 13.28 10.95 12.47 0.00 60.98 2.56 25.30
Mkt 29.34 29.00 20.87 -139.00 558.00 15.00 42.00
Cou* 37.51 40.12 15.75 0.00 106.75 12.63 54.32

Notes: * denotes results from simulation. PC = perfect competition. Mkt = actual prices. Cou =
Cournot competition.

47


	Introduction
	Policy Environment and Data
	Regulatory framework
	Electricity production
	Data
	Market equilibrium data
	Meteorological data
	Electricity generation data


	Competition Models and their Estimation
	Competition models
	Perfect competition
	Cournot competition

	Ownership transfers
	Demand estimation

	Baseline Results
	The Effects of RES Ownership Transfers and Expansions
	Isolating the effect of market power
	The effects from changes in the portfolio composition

	The effects from a net expansion in RES

	Conclusion

