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1 Introduction

Renewable energy (RE) investment is seen as a key component in achieving stringent emission

reduction targets set by policy makers worldwide.1 To accelerate technology deployment and

reduce subsidy costs, fixed subsidy schemes, common in the early 2000s, have been replaced

largely by market-based support mechanisms such as RE auctions. In 2019, more than 100

countries have held such auctions (IRENA, 2019). Despite their widespread adoption—and

in some jurisdictions, such as the European Union (EU), their mandatory use—the role

of auction design as well as the determinants of the market participants’ bidding behavior

have not been empirically studied to the same extent. Understanding how auction design

influence bidding behavior is essential for regulators seeking to design procurement schemes

that minimize rents, encourage entry, and ensure efficient capacity allocation—ultimately

easing the fiscal burden of achieving climate targets.

In this paper, we study the role of auction design—particularly pricing rules—for RE

capacity when the outcome of the auction determines the level of the guaranteed electricity

in-feed price (i.e., production subsidy) over the projects’ lifetime. The role of auction de-

sign has been a central question in studies of government procurement for construction (e.g.,

Bajari and Ye, 2003; Krasnokutskaya and Seim, 2011) and spectrum allocation for telecom-

munications (e.g., Cramton, 2013; Fox and Bajari, 2013), among other industries. In the

context of multi-unit auctions, revenue equivalence generally does not hold (Ausubel et al.,

2014), making the impact of the pricing rule on auction outcomes an empirical question (e.g.,

Kang and Puller, 2008; Hortaçsu and McAdams, 2010). This seems particularly relevant in

the context of RE procurement, given the long investment horizon of 20+ years, and little

to no empirical guidance exists for policy makers.

The objective of RE auctions is to identify the most cost-effective suppliers of renewable

generation capacity and to determine the level of the per-unit output subsidy once the plant is

built. The auctioneer, in this case, the government, announces the desired volume of capacity

1The Inflation Reduction Act in the US provides numerous examples (https://bit.ly/3RLZ2sF) and
the Renewable Energy Directive in the EU sets specific targets for RE (https://bit.ly/3Q13vqf).
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in advance, creating a perfectly inelastic demand curve. The auction rules allow participants

to submit multiple quantity-price pairs (bids) in the same auction round, and several bids

can be awarded—a multi-unit auction. The auctioneer collects all the submissions and sorts

the bids by price in ascending order to obtain the aggregate supply curve. The market

clearing price and the specific quantities per bidder are determined by the intersection of

this curve with the government demand curve. Importantly, this intersection also determines

the level of the bidder-specific subsidy, which can be either based on a non-discriminatory

pricing rule (uniform auction) or implemented as a discriminatory auction (pay-as-bid). This

subsidy is received in the future and is contingent on the level of the market electricity price,

which is not known at the time of the auction. The subsidy scheme is known as a one-sided

contract-for-differences (CfD).

Our main research question is to understand to what extent the one-sided CfD subsidy

scheme −under the uniform or pay-as-bid pricing rule− has implications for total procure-

ment costs, costs efficiency, and the levels of market power exercised by the participants.

Depending on the underlying cost of each quantity segment (RE project), the price-cost gap

will be different in each auction format because the market clearing price may not be the

same. Moreover, we analyze the relationship between a large set of observable and non-

observable bid characteristics and the price submitted under both auction formats. This

analysis quantifies some of the regulatory concerns about the size of the government demand

and the location of sites.

Our contributions are twofold. First, we develop a framework to analyze auction for-

mats in multi-unit auctions where the equilibrium price determines future subsidy payments

through a one-sided CfD. Second, this paper contributes to the long-standing discussion

regarding the relative performance of pay-as-bid and uniform-price multi-unit auctions by

taking advantage of a policy change and the fact that we can observe both auction formats

in the same market to estimate the empirical model and to make comparisons.

To achieve these goals, we make use of unique bid-level data from German RE auctions

held between 2015 and 2019, with a focus on solar photovoltaic (solar) technology. Germany
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is a particularly interesting case to study as the country experimented with both uniform

pricing (UP) and pay-as-bid (PAB) pricing rules in an initial pilot phase and then opted for

a PAB format thereafter. In addition, all solar auctions were oversubscribed, making them

well suited to analyze bidding behavior.2 Our dataset includes bid quantities and prices of

all bidders of winning and losing bids in each auction round. We also have information on

the geographical location of each bid, enabling us to match bids with covariates such as solar

irradiation and distance to the electricity network.

We build on the literature of multi-unit auctions (Hortaçsu and McAdams, 2010; Kastl,

2011) to obtain measures of bidders’ costs taking into account the auction format and the

specific context of RE subsidies, which rely on expectations about future market payoffs, a

situation not previously considered in the literature. With a resampling technique used by

the aforementioned authors, we simulate a large set of residual demand curves to determine

market-clearing prices. By substituting those prices into a closed-form expression for the

costs in this specific environment, we obtain estimates for the underlying cost of each bid.

This allows us to compute measures of market power, conduct an analysis of factors that

influence bidding behavior, and construct counterfactuals to study auction formats. We find

that the density of the bidders’ Lerner indices—a measure of market power—shifted to the

right during the PAB rounds relative to the UP auction rounds.

We use linear regressions to identify the key factors associated with bidding behavior un-

der the two auction formats, controlling for a rich set of fixed-effects and bid-specific control

variables. We further allow the empirical estimates to depend on bidder types, proxied by

size. We confirm that PAB auctions have higher markups, but that this effect is heteroge-

neous by bidder size. Large bidders show a smaller increase in markups in PAB relative to

UP and small bidders. This also affects positively their probabilities of winning in PAB.

Moreover, bid prices exhibit a robust and positive correlation with estimated costs, suggest-

ing an average cost pass-through of about 0.7 and 0.8 e-cent/ kiloWatthour (kWh) for every

one e-cent/kWh increase in costs.

2Also, many RE auction design elements that are common in Europe and other developed economies can
be found in the German auction design (Del Ŕıo and Kiefer, 2021).
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Next, we use the structural model to study a series of counterfactuals, asking what would

have happened to bidders’ revenues and subsidy payments if the policymaker had conducted

all auctions under a uniform pricing rule rather than PAB pricing. Since the theoretical

literature does not provide a clear ranking on efficiency or revenue in multi-unit auctions

with or without future cashflows, this is an empirical question (Ausubel et al., 2014). We

take advantage of the fact that two auction rounds were implemented with uniform pricing

rules in an initial pilot phase to estimate costs and average markups from this setting. For the

counterfactual, we then assume that bidders under uniform pricing would have had similar

markups throughout—markups obtained from UP estimates that depend on the bidder’s

size—or that they would bid their costs instead of the observed bids—truthful bidding—,

which provides a competitive benchmark in which markups are zero by construction. In both

cases, the auctioneer aggregates these bids to obtain the new supply curve, which determines

a new market clearing price for each auction round. Our results indicate that under the two

UP settings studied, quantity-weighted average markups would have been lower than under

the PAB format in almost every auction round. None of these results is mechanical, since

the marginal bid depends on the convexity of both the cost and bid curves at the intersection

with the perfectly inelastic demand curve.

We proceed by calculating the subsidy payments under each auction format. Under UP,

subsidies are determined by the market clearing price common to all bidders, while under

PAB, they are determined by the bids themselves. We show that, depending on the shape

of the aggregate bid and cost curves, either format may lead to a lower total amount of

subsidy payments, necessitating further empirical investigation. Our analysis shows that

total subsidies under both of our UP formats are lower than under PAB in almost all auction

rounds. The only exceptions to this trend occur in rounds where the margins under uniform

pricing are significantly larger or close to those under the PAB format. Detailed summary

statistics of the differences in subsidies relative to the PAB setting show that the UP format

would have lowered government’s total procurement costs by an average difference of up to

1.26 e per kW of capacity over the lifetime of a solar installation. Over the 15 PAB auctions
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rounds analyzed, this would have led to a difference of about e2 million in subsidy payments.

These results average over a variety of scenarios of the development of electricity prices into

the future, which is needed to calculate the subsidy amounts.

To assess the efficiency of the PAB format in selecting low-cost bidders, we calculate the

aggregate costs of the winning bids under PAB and the corresponding costs under truthful

bidding—the perfectly competitive outcome—. This requires sorting the submissions by bid

price in the first case and by marginal cost in the second. By construction, the costs under

truthful bidding are the lowest possible costs. Comparison of aggregated costs reveals that

there is an overall trend of PAB costs toward perfectly competitive costs, a feature that may

help compensate for the relatively elevated procurement costs under this auction format.

Related Literature. We contribute to three main strands of the literature. First, we

systematically quantify market power for the procurement of RE capacity in the context of

multi-unit auctions and document the factors associated with bid prices and bidder costs.

The analysis of multi-unit auctions has long been an active area of research, particularly

comparing the efficiency of auction formats such as uniform vs. discriminatory pricing, the

latter also referred to as pay-as-bid. While Vickrey (1961) proved that the revenue equivalence

theorem holds in single-item auctions, Ausubel et al. (2014) showed that there is no clear

ranking of sellers’ revenues in multi-unit auctions. Instead, such a ranking is an empirical

question that has been addressed mostly in the context of treasury auctions (Kang and Puller,

2008; Cassola et al., 2013; Elsinger et al., 2019) and to some extent in electricity generation

markets.3 The development of empirical methods to determine bidders’ valuations or, in the

case of procurement auctions, bidders’ costs, has mostly been done in the field of government

bond allocation (Hortaçsu and McAdams, 2010, 2018; Kastl, 2011). Some other applications

3There is also a strand of mostly theoretical literature that examines the electricity generation sector to
compare the two auction formats. Federico and Rahman (2003) found that, under certain conditions, market
power is higher in a UP auction than in a PAB auction. Holmberg (2009) uses a supply function approach
to obtain comparisons. Fabra et al. (2011) builds on a duopoly model with investment and finds that PAB
leads to lower prices than the UP auction while keeping capacity fixed. Holmberg and Wolak (2018) assume
asymmetric information about production costs and find that buyers are better off under UP. Willems and
Yueting (2023), show that PAB auctions are inefficient in the context of electricity generation because they
incentivize a portfolio mix without sufficient base load capacity. In contrast to this literature, our paper
examines procurement and therefore, capacity is not fixed.
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of these techniques in electricity-related markets include Wolak (2003, 2007), Reguant (2014),

and Kim (2022). The only application of these techniques to RE auctions that we know of

are Ryan (2021) and Hara (2023). Ryan (2021) uses data from solar auctions in India to

estimate a structural model, focusing on the role of counter-party risk in procurement. In

comparison to his work, our paper aims to analyze the importance of auction design and

the factors that influence bidding behavior in an environment with virtually no default risk.

Hara (2023), on the other hand, studies risk aversion for large scale wind investors in Brazil

that need to decide what share of production to offer to ensure at fixed prices. Compared to

his setting, solar investors in Germany have a guaranteed (minimum) return, determined by

the auction, that effectively works as a one-sided CfD and eliminates all downside risks. Our

work focuses on the auction design and we show that even in this ‘well-established’ market,

fundamentals evolve, and different types of bidders may respond heterogeneously to shifting

policy paradigms.

Second, we extend the model for multi-unit auctions mentioned above to estimate costs

from supply schedules instead of valuations from demand curves in a setting with discounted

future payoffs. The latter captures the net present value of the stream of uncertain future

payments, the sliding premia over the lifetime of the project. We consider a setting with both

independent private values and common price expectations, similar to Gupta and Lamba

(2023) in the context of treasury auctions.

Finally, we contribute to the literature on evaluating auction designs in the RE context.

The question of how to best design auctions has been studied theoretically (Kreiss et al.,

2017; Haufe and Ehrhart, 2018; Fabra and Montero, 2023) and empirically (Bayer et al.,

2018; Matthäus, 2020; Anatolitis et al., 2022), yet the studies all complain about the lack of

empirical evidence on the effectiveness of auctions in reducing support costs and efficiently

selecting producers (see Del Ŕıo, Pablo and Kiefer, Christoph P., 2023, for a review), mostly

due to the general unavailability of detailed bid-level auction data in this context, a limitation

that this paper circumvents. In the absence of robust empirical studies, the literature on RE

auctions refrains from making conclusive arguments about the performance of auctions, but
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rather argues that performance, both in terms of deployment and efficiency/cost, depends on

the level of competition and the specific choice of eligibility criteria and bid bonds. In terms

of market power and the impact of auctions on heterogenous bidders, the evidence is equally

inconclusive. Grashof (2019) argues that auctions are likely to disadvantage smaller bidders,

which would discourage policy acceptance and risk capacity expansion, yet Batz Liñeiro and

Müsgens (2021), focusing on winning projects in German solar auctions, find no apparent

difference in the level of support between large and small bidders. Our analysis highlights

that factors such as the size of bidders are indeed strongly correlated with bidding behavior.4

The rest of this paper is structured as follows. Section 2 introduces the German RE

auctions, while Section 3 describes the data. Section 4 presents the structural model for multi-

unit auctions accounting for future payments to recover bidders’ costs and the regression

analysis to decompose markups and other auction outcomes. Finally, Section 5 presents

counterfactuals regarding the auction format and Section 6 concludes.

2 Institutional Background

In 2015, the German government introduced auctions for large-scale solar projects to steer

capacity additions and to reduce subsidy payments.5 Moreover, the Renewable Energy Act

(EEG, for its letters in German) explicitly aims at maintaining a diverse actor landscape

in the German solar market, which is deemed necessary for the acceptance of the energy

transition (Bundesregierung, 2014). While 2015 and 2016 were considered the initial pilot

phase, auctions became mandatory for large-scale solar and other renewable technologies

with the 2017 reform of the EEG in line with EU regulation.

The annual renewable energy capacity targets, defined by the EEG, are converted into a

4This paper also relates to other work studying the impact of RE investment and policy choices on
electricity markets (e.g., Astier et al., 2023; Jarvis et al., 2022) and more generally relates to the literature
assessing the social cost of inefficient procurement design (e.g., Eklöf, 2005).

5Furthermore, the government was aiming to overcome information asymmetries which, in the past, led
to support levels that were considered as ‘too high’ creating unforeseen capacity additions in 2009 to 2012,
or that were considered as ‘too low’ leading to fewer than expected installations in 2013 to 2015 (see also
Online Appendix O.1).
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fixed auction volume and distributed over several rounds per year. As the pilot phase was

considered successful, the government increased the annual volume demanded by making

the auctions more frequent. Bidders with solar projects above 100 kilowatt (kW) (since

2017 restricted to ≥ 750 kW) and below 20 megawatt (MW) are invited to submit one

quantity-price bid per project, but are not restricted on the number of projects (bids) they

supply. All formally eligible bids are ranked according to their bid price and awarded until

the cumulative volume exceeds the auction volume of the round. In general, the auction

applies discriminatory pricing (pay-as-bid). Exemptions are the second and third auction

rounds (both in 2015) in which awarded projects received the bid price of the last accepted

bid (uniform pricing). The ex-post subsidy payments per unit of electricity produced depend

not only on the bid price, but also on the realized market value of solar, as described below.

Finally, German RE auctions are generally technology-specific, i.e., there is a specific auction

for solar and another one for wind. Yet, several auction rounds from 2018 onwards have

been run as joint auctions in which solar and wind were allowed to bid simultaneously.6 The

auctions are implemented by the Federal Network Agency, which however does not have

significant power to alter the auction rules despite adjusting the ceiling prices in line with

the provisions in the law (Tiedemann et al., 2019).

Figure 1 shows the average price of winning bids together with cost indicators for large,

ground-mounted solar installations, as well as the ex-post project realization rate.7 An initial

observation is that the average price of winning bids decreased in the first three years after the

introduction of the auctions in 2015. However, prices have stagnated since then. Interestingly,

in the second half of 2017, the average winning bid price converted to the average system cost.

We use this observation to distinguish between two periods during the PAB auction rounds

implemented from 2016 to 2019. In Period 1, average winning prices have been decreasing,

6During our sample period, wind bids in these auctions were not competitive and solar was the single
winning technology. We therefore exclude wind bids from our analysis.

7Avg. module cost represents the average cost of solar modules, and is based on monthly observations
from PV Exchange. Avg. system cost includes additional hardware and installation costs and is based on
quarterly survey data from the German Solar Industry Association. Both cost indicators refer to installations
in the following 12 months. Project realization rate refer to the share of winning projects that are constructed
within the legal limit of 24 months.
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Figure 1: Winning bids, average costs, and project realization rates in German solar auctions
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rounds were implemented with uniform pricing (UP) rules and a single market clearing price is
reported. Average solar module costs and system costs for ground-mounted installations (e / kW),
based on estimates from the industry, are converted to e-cent / kWh using average capacity factors
and assuming a lifetime of 25 years with an annual discount rate of 5%.

but were above the average system costs and project realization rates were practically 100%.

In Period 2, average winning prices have been flat and were close to (and in some auction

rounds even below) the average system costs. This suggests that profit margins must have

decreased in Period 2 relative to Period 1. This observation is also consistent with the ex-post

project realization rates of winning bids, which show a large drop during the first auctions in

Period 2, and a recovery in later rounds. Appendix Table A.1 lists the detailed auction dates,

volume, and the price ceilings per auction round. Online Appendix O.1 provides additional

details on specific auction rules that apply only to a subset of rounds.
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Bid eligibility and obligations. Bids are eligible as long as they are below the published

ceiling price. In addition, bidders must provide evidence of having advanced in the project

planning process and submit a bid bond.8 The bid bond depends on the volume of the bid

and the project planning status: bids in the initial planning phase must pay (or show proof

of bank security over) 50 e / kW, bids for projects that are further advanced need to pay

only 25 e / kW.9 The main purpose of the bid bond is to discourage spontaneous bidders

in the auction. Successful bids have 24 months to realize the projects, otherwise the total

security is withheld. Furthermore projects that are commissioned later than 18 months after

the auction date get a bid price deduction of 0.3 e-cent/kWh. Note that projects are location

and bidder specific. Won projects can therefore not be resold on a secondary market and if

a project changes its location a penalty of 0.3 e-cent/kWh applies.

Subsidy payments. The subsidy is a direct payment for every unit of electricity produced.

The EEG guarantees that the transmission system operator provides a monthly payment to

the investor for a period of 20 years after the project has been connected to the grid. The EEG

defines the payment as the bid price reduced by the monthly average of hourly revenue on the

wholesale electricity market by all solar plants in Germany, i.e., the monthly market value or

average capture price of solar.10 In the literature on RE support schemes this subsidy design

is called a sliding market premium (e.g., Klobasa et al., 2013) or more recently one-sided

contract-for-difference (CfD) (e.g., Beiter et al., 2021). Specifically, the subsidy is defined as

subsidyi,t =

bi − cpt if bi > cpt

0 if bi ≤ cpt

(1)

8Contrary to other international auction designs Del Ŕıo and Kiefer (2021), no restrictions in terms of
size and capabilities of the firm or level of experience apply.

9Note that in practice the bid bond is split in two: upon submitting the bid, bidders have to pay/show
proof of 5 e / kW. Only successful bids need to increase the security within three weeks after receiving notice
of their success to the full amount.

10The transmission system operator calculates the monthly capture prices and publish them online https:
//www.netztransparenz.de/EEG/Marktpraemie/Marktwerte.
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where subsidyi,t is the payment per unit of electricity in month t to bidder i, bi is the bid

price (or the award price for rounds with uniform pricing), and cpt is the average capture

price of solar in month t.

This subsidy design effectively guarantees a minimum revenue for the production and

thereby shields bidders from the long-term risk of low wholesale prices. Since the bid price

is not indexed to inflation, the significance of the insurance effect reduces over the years.

3 Data and Descriptive Statistics

Our data consist of all bids submitted to solar auctions in Germany held between the intro-

duction of the German RE auctions in 2015 and June 2019, covering 18 auction rounds with

a total of 1,791 bids.11 We focus on solar installations only and exclude the 19 bids for wind

projects in auctions where both technologies were admissible.12 We exclude non-eligible bids

which make up about 11% of the total number of observations. Our final dataset for all solar

auctions consists of 1,573 individual bids. If not otherwise mentioned, we further exclude

the first auction round (132 observations) from our analysis, as bidders did not have any

knowledge about the potential number of competitors and no prior experience with the auc-

tion mechanism. Out of the remaining 1,441 individual bids, 235 belong to the two uniform

auction rounds held in August and December 2015, and 1,206 observations belong to PAB

auctions (April 2016 through June 2019). A common feature of multi-unit auctions is that

bidders are not restricted to submit a single bid in the auction. The dataset reveals that

there is a wide variety of bidding patterns across firms and across time periods.

Table 1 summarizes our data pooling all observations first and then by subsamples: the

initial UP rounds and the two PAB periods, defined whether the average winning bid prices

are above or below the average industry-wide system costs (see Figure 1). In addition to

11The bidding data are anonymized, but given identifiers we are able to follow individual bidders over
time. We would like to thank the Federal Ministry of Economic Affairs and Energy for making these data
available for research.

12Note that in the three auction rounds that were implemented as joint solar and wind auctions solar was
the single winning technology.
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Table 1: Summary statistics - German solar auctions

All UP PAB

Period 1 Period 2
Bid-specific variables:
Bid value (e-2019 c/kWh) 7.11 8.78 7.47 5.84

(1.84) (1.23) (1.02) (1.11)
Bid volume (MW) 5.57 4.48 5.25 6.27

(5.76) (2.99) (3.25) (7.44)
Avg. system cost (e-2019 c/kWh) 5.36 6.19 5.67 4.78

(0.69) (0.27) (0.33) (0.33)
Avg. module cost (e-2019 c/kWh) 2.32 3.22 2.72 1.69

(0.69) (0.13) (0.23) (0.21)
Solar irradiation (kWh/m2) 1097.32 1095.30 1093.49 1099.26

(44.21) (42.30) (39.85) (46.42)
Distance to network (km) 20.28 20.29 21.47 19.84

(11.31) (11.95) (11.37) (10.96)
Land types (share):
- Agriculture or grassland 0.20 0.00 0.17 0.31

(0.40) (0.00) (0.38) (0.46)
- Non-conventional buildings 0.10 0.00 0.10 0.15

(0.30) (0.00) (0.29) (0.36)
- Government land 0.07 0.00 0.06 0.10

(0.25) (0.00) (0.24) (0.30)
- Adjacent to railway or road 0.31 0.44 0.28 0.27

(0.46) (0.50) (0.45) (0.44)
- Site with previous usage 0.32 0.56 0.39 0.16

(0.47) (0.50) (0.49) (0.37)
1(large bidder, project size) 0.21 0.19 0.17 0.25

(0.41) (0.39) (0.38) (0.43)

Auction-specific variables:
Share of eligible bids 0.90 0.89 0.88 0.92

(0.06) (0.01) (0.04) (0.06)
# bids per round 87.39 117.50 84.00 78.60

(30.64) (4.95) (23.63) (31.75)
# bidders per round 39.56 63.50 37.40 33.40

(15.63) (2.12) (8.68) (13.75)
# bidders awarded per round 16.17 21.50 12.60 17.10

(10.43) (6.36) (1.52) (13.61)
# projects awarded per round 34 38 29 35

(23.8) (7.1) (6.6) (31.0)
HHI 989.43 630.98 730.82 1226.67

(442.60) (13.47) (150.81) (465.89)
C1, bid volume per round (%) 23.07 18.44 19.33 26.39

(7.69) (0.09) (3.60) (8.84)
C3, bid volume per round (%) 43.27 35.31 36.56 48.94

(10.25) (1.80) (4.82) (10.36)
C5, bid volume per round (%) 54.67 44.86 47.93 61.23

(11.35) (3.56) (5.81) (10.76)
Observations 1,573 235 420 786
Number of auctions 18 2 5 10

Notes: Individual bids from German solar auctions held between April 2015 and June 2019. ‘All’
includes the first auction round (held in April 2015, PAB format), omitted from the main analysis.
Uniform price (UP) refers to auction rounds 2 and 3, Pay-as-bid (PAB) Period 1 to auction rounds 4
to 8, and Period 2 to auction rounds 9 to 18. Average system and module costs based on aggregate
solar cost indicators from the industry. We provide a detailed overview of the individual auction
rounds in Appendix Table A.1.
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the bid related variables (bid value, bid volume, land type, and location) and the average

industry-wide system costs, we match project-specific information on solar irradiation and

distance to the nearest high-voltage network node, and define an indicator variable for large

bidders, that is based on the size of the projects submitted.13 We elaborate on the data

sources and construction of these covariates in Online Appendix O.2.

Table 1 shows that there were some differences between the initial UP rounds and the PAB

rounds. Submitted bids in the former were only admissible if they were located adjacent to

railway or roads or sites with previous usage and hence the average project size (bid volume)

is slightly smaller. At the same time, more bidders have been active in the first auction

rounds with a larger number of total bids submitted, leading to lower market concentration

measures.14 On the other hand, the summary statistics show that in the PAB rounds, Period

2 (when the average winning bid prices were rather flat) exhibits some noticeable differences

relative to the rest of the PAB auctions. In particular, we find that the average project size

(bid volume) was slightly larger in line with the fact that there were more bids allowed on

agricultural land. We also find that during this period the share of large bidders was higher

and that the market was more concentrated, as indicated by the HHI and C1-C5 indices.

Note however that all periods can be considered as competitive.15 Projects were otherwise

similar in terms of average solar irradiation and distance to nearest high-voltage network

node.

To get a better sense of how competition evolved over time, Figure 2 shows the number

of bidders, the degree of over-subscription (defined as the ratio of total eligible bid volume

to auction volume), as well as the HHI and C3 indices for individual auction rounds. While

13We define large bidders on the ex-post distribution of average project sizes by bidder, using the 90th
percentile over all rounds. This classifies 22 out of 202 bidders as “large”. The average number of bid steps
(std. dev.) is 6.18 (5.29) for large bidders, and 2.29 (1.96) for small bidders, respectively. In the Online
Appendix we perform a robustness check concerning the definition of large bidders.

14We report C1 to C5 as well as the Herfindahl-Hirschman Index (HHI). C5 is the sum of the submitted
capacity shares of the five largest bidders by capacity size in a given round. Similarly for C1 (largest) and
C3 (three largest). The HHI is defined as the sum of the squares of the submitted capacity shares in a given
round.

15This finding resembles insights from the Sectoral Report of the German anti-trust authorities in 2019
(Wambach et al., 2019).
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Figure 2: Evolution of competition in German solar auctions

UP PAB: P1 PAB: P2

0
1

2
3

4
5

R
at

io
 b

id
 v

ol
um

e

0
25

50
75

N
um

be
r o

f b
id

de
rs

2015m7 2016m7 2017m7 2018m7 2019m7
Time

# Bidders Ratio: bid volume / auction volume

UP PAB: P1 PAB: P2

0
75

0
15

00
22

50
H

H
I

0
25

50
75

M
ar

ke
t s

ha
re

 (%
)

2015m7 2016m7 2017m7 2018m7 2019m7
Time

Market share 3 largest firms HHI

Notes: Number of bidders per auction round and ratio of bid volume to auction volume in the left
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panel. UP auction rounds represented in dash-dotted lines.

there is some variation in the number of bidders and the volume provided in each auction, all

auction rounds have been over-subscribed.16 Online Appendix Section O.2 discusses changes

in bidder composition over time, highlighting that this was not of potential concern.

4 Empirical Strategy

In the following section, we first document the bidding behavior in uniform and PAB auction

rounds relying on the detailed bid data and the policy change during the pilot phase 2015.

We then adapt a model of multi-unit auctions to the context of RE procurement with a

stream of future subsidy payments. We build on Hortaçsu and McAdams (2010) and Kastl

(2011) who develop an empirical method to estimate valuations in multi-unit auctions based

on Wilson (1979), taking into account the discreteness of bids as well as the fact that bidders

have both private cost shocks and need to form common beliefs about the future electricity

market. We use the model to recover costs that we employ to analyze observed bidding

behavior. In Section 5, we then quantify the effect of the auction format on bidders’ margins

16Moreover, the stipulated ceiling price (see Appendix Table A.1) has not been binding in solar auctions.
This is an important difference to other RE auctions held during the same time period, e.g., for wind
technology, which have been under-subscribed.
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and total subsidy payments using the estimated costs and markups.

4.1 Impact of Auction Payment Rules on Bid Prices

To get a first sense of the bidding behavior under the two pricing rules, we take advantage

of the initial pilot phase in 2015 and 2016 in which the policy maker implemented the first

auction round as PAB, but then announced two rounds with uniform pricing, before setting

on PAB thereafter. This initial variation was precisely made to gain insights into the different

payment rules.17, and announced to participants before the start of the first round.18

For this first analysis, we take the change in payment rules as exogenous from the bidder’s

perspective and estimate the following regression with the project-level bid data.

bikτ = β0 + β11(uniform pricing) + βXikτ + µi + ζτ + εikτ , (2)

where bikτ refers to the price per kWh of project k submitted by bidder i in auction round τ ,

1(uniform pricing) is an indicator function for rounds 2 and 3, which were implemented with

uniform payment rules.19 The regression controls for the following set of auction and bid

specific variables: auction volume (linear and quadratic terms), average industry-wide solar

PV system cost in next 12 months, distance to nearest high voltage network node, and average

solar radiation in the project zip-code. We further include fixed effects for type of land, state,

and year of the auction to account for common shocks that might affect the German solar

industry beyond average system costs. In some specifications, we further include bidder fixed

effects to identify differences in bidding behavior in the two auction formats within bidder.

We estimate Equation 2 pooling all 18 solar auction rounds (April 2015 to June 2019).20

17See evaluation report from December 2015 on the German pilot phase for solar PV (Tiedemann et al.,
2015).

18The legal basis for the introduction of auctions for ground-mounted solar PV systems (FFAV)
was published in the Federal Law Gazette I No. 5 of February 11, 2015 and entered into force
on February 12, 2015 (http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&
jumpTo=bgbl115s0108.pdf). This document describes the detailed auction rules for the pilot phase, and
was superseded by the 2017 reform of the Renewable Energy Act (EEG 2017).

19We use nominal bid values throughout, as the policy is expressed in nominal terms. The main results
are not affected by choosing deflated prices instead.

20We include the first auction round in this regression to separately identify the year fixed effects from
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Table 2: Auction format and bid prices

(1) (2) (3) (4) (5)
1(uniform pricing) -1.501∗∗∗ -1.396∗∗∗ -1.220∗∗∗ -1.313∗∗∗ -1.165∗∗∗

(0.133) (0.133) (0.191) (0.132) (0.130)
1(large bidder) -0.277∗ -0.308∗∗∗ -0.052

(0.147) (0.106) (0.095)
Auction volume (100 MW) -1.150∗∗ -1.028∗∗ -2.286∗∗∗ -0.660 -2.182

(0.448) (0.499) (0.699) (0.499) (1.733)
Auction volume2 0.164∗∗ 0.146∗ 0.385∗∗∗ 0.094 0.328

(0.069) (0.076) (0.105) (0.075) (0.537)
Distance to network (100 km) 0.475∗ 0.439∗ 0.318 0.415 0.335

(0.258) (0.262) (0.245) (0.337) (0.397)
Solar irradiation (MWh/m2) -1.915∗∗ 3.075∗ 1.271 2.893 3.674

(0.871) (1.660) (1.869) (2.273) (2.747)
Avg. system cost (e/kWh) 0.679∗∗ 0.339 0.832∗∗ 0.748∗∗

(0.315) (0.215) (0.356) (0.305)
N 1,573 1,573 598 1,573 583
Adjusted R2 0.72 0.75 0.70 0.83 0.82
Mean DV 6.89 6.89 6.14 6.89 8.51
Land-type FE No Yes Yes Yes Yes
State FE No Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Bidder FE No No No Yes Yes

Notes: DV: bid values. Sample: All 18 solar PV auction rounds held between April 2015 and June
2019. Regressions include a constant term. Column 3 limits the sample to winning bids, Columns
4 and 5 include bidder fixed effects, and Column 5 limits the sample further to auctions held in
2015-2016. Standard errors clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The findings are presented in Table 2 and indicate that the average bids in uniform auctions

have been about 1.2-1.5 e-cent/kWh lower compared to PAB rounds. These results are highly

significant and stable across specifications, including, for example, aggregate cost measures,

time, location, and bidder fixed effects and are unaffected by the choice of the estimation

sample. We perform robustness checks, limiting the sample to winning bids only (Column

3) and restricting the sample to years 2015 and 2016 (Column 5). In the 2015-2016 sample

(Column 5), the main effect for uniform pricing rule corresponds to a reduction of almost

14% in the average bid price when evaluated at the average price of 8.51 e / kWh. This is

true even when controlling for bidder fixed effects.

Since bidding incentives differ between the uniform and PAB auction rounds, the average

the indicator variable for the uniform auction rounds (both UP rounds held in 2015).
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difference may be due to the presence of low bid values in UP. However, we also observe

differences in marginal bids, i.e., the highest bid price that cleared the auction in both

formats. In R1 (PAB), the marginal price was 9.43 e-cents/kWh, resulting in a quantity-

weighted average winning bid price of 9.17 e-cents/kWh. In the first uniform round (R2),

however, the marginal price (and the clearing price of the auction) was 8.49 e-cents/kWh.

This one-cent difference cannot be explained by an abrupt change in costs because the two

auctions took place within four months, and the average system costs were almost unchanged

during this period.

We further find evidence for heterogeneous bidding behavior in terms of bidder size,

when considering all bids. Other control variables are in line with the expected sign, e.g.,

a larger distance to the nearest network node is typically related to a higher bid price, a

more productive site (higher solar irradiation) with a lower price in Column (1). However,

note that introducing state and other fixed effects can change this correlation pattern and

generally render project-specific controls insignificant. Finally, the regression indicates that

the average system cost is significant, with a coefficient of about 0.7–0.8. This means that a

one-cent increase in cost leads to an approximate increase in the average bid value of about

0.7–0.8 cents. The average cost pass-through is lower and non-significant when focusing only

on winning bids in column three.

Overall, these initial results indicate that firms bid lower prices under the uniform pricing

rule than under the pay-as-bid rule. However, to understand bidding behavior under the two

auction formats and to recover unobserved project-specific costs and markups, we need to

turn to a structural model of bidding, which we discuss next.21

21Additionally, the exogeneity assumption of the policy change can be questioned, given that bidders
were likely to have formed expectations regarding future pricing rules at the time of the UP auctions.
The general policy recommendation in early July 2015, before the first UP implementation, leaned to-
wards PAB for the future (see ‘Executive Summary of Recommendations’ on ‘Designing renewable en-
ergy tenders for Germany’, available online: https://www.bmwk.de/Redaktion/Migration/DE/Downloads/
Publikationen/ausschreibungen-eeg-en.pdf?__blob=publicationFile&v=1, last accessed 5 June, 2025.
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4.2 Bidding Model for Multi-unit Auctions with Contracts-for-
Difference Payments

Model set-up. There are R auction rounds indexed by τ , where each auction consists of Qτ

divisible units (total solar capacity demanded by the government). In each individual auction

round τ = 1, . . . , R, there areNτ bidders. As in Kastl (2011), we allow for bidder asymmetries

by introducing G different groups of bidders, denoted by g, such that Nτ =
∑G

g=1 N
g
τ . Bidders

are assumed to be symmetric conditional on belonging to group g. Otherwise, bidders are

risk-neutral with independent private values (IPV). Similar to the context of treasury-bill

auctions (e.g., Hortaçsu and Kastl, 2012; Elsinger et al., 2019), we claim that IPV is a good

assumption in the context of RE auctions, as it can be argued that firms have idiosyncratic

shocks to the project cost (e.g., land cost, financing, etc.).22 However, as there is a common

payoff uncertainty resulting from the evolution of the capture prices, we model this additional

component as in Gupta and Lamba (2023). The main differences in our setting relative to

the aforementioned literature is that firms face residual demand curves instead of residual

supply curves and bidders maximize the expected net present value (NPV) over the lifetime

of the projects.

Assume that each firm has a cost ci(qi,k, si) that is increasing in si, the private signal,

which is independent and identically distributed across bidders and auctions and qi,k, the

k-th quantity segment bid by firm i. Note that we dropped the auction index τ to improve

readability. The firm submits the non-decreasing supply schedule

yi(p; si) =

Ki∑
k

qi,k1[p ∈ (bi,k, bi,k+1]]

that consists of a step function where each step k has for length the quantity offered qi,k, for

height the price offered bi,k, and Ki is the number of steps of bidder i’s submission.23

22A similar assumption is made in Ryan (2021), who studies solar investment in India.
23We assume that bidder i submits bid bi which is associated to the cumulative quantity qi (both vectors

of size Ki), where 1 ≤ k < Ki, qi,k < qi,k+1, and bi,k < bi,k+1. Bidders’ actions therefore include choices
regarding the bid value and the quantity (project size).
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4.2.1 Payoff under pay-as-bid payment rule

The total expected NPV over the lifetime of the projects in the supply curve taking into

account the subsidy scheme in each time period under PAB is

EΠi(si) = Ecpt,si|s−i

∫ Qi(y
−1(·;s))

0

πi dqi

where

πi =

Ki∑
k=1

T=252∑
t=13

δt [1(bi,k > cpt)(bi,k − ci,k) + 1(bi,k ≤ cpt)(cpt − ci,k)]︸ ︷︷ ︸
Discounted future profits

1(qi,k ≤ qi < qi,k+1)

(3)

and Qi(y
−1(·; s)) is the total quantity awarded to bidder i as a function of the other bidders’

supply curves and their private signals. Expectations are also drawn with respect to the

capture price. Note that the total auction volume is pre-announced and therefore known

to the bidders ex-ante. The discounted future profits term includes a monthly discount

rate δ = 0.42%24 and two possible revenues determined by the policy: either the subsidy

is active because the capture price cpt is too low or the producer receives cpt, according to

Equation 1. We include uncertainty about the common price component, cpt, by considering

the combination of discretized levels of growth paths and levels of volatility and then take

the average over the equilibrium outcomes for each of those scenarios (Gupta and Lamba,

2023).25

To implement the model empirically, we need to make additional assumptions about the

timing when the solar plant is built and starts to produce electricity as well as the evolution of

the capture prices that are relevant for the ex-post auction payoffs. In line with the data, we

assume that the solar plants are being built one year after the auction date, which means that

24This is equivalent to an annual discount rate of 5%. We justify the discount rate by a 3% social
discount factor for public projects as it is commonly used in Europe and 2% capital depreciation. The
capital depreciation takes into account solar panel deterioration, but also other factors such as maintenance
and operation costs, insurance, and potential replacement investment for sub-components. We have also
experimented with a higher annual discount rate of 10%, with similar results.

25In addition to the NPV setup presented here, Online Appendix Section O.3.1 develops a version of the
multi-unit auction model without future payoffs and no common uncertainty, confirming our main findings.
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they start producing at 13 months. Profits are guaranteed for 20 years, the policy horizon.26

Moreover, we assume that the expectations concerning the evolution of the capture price

(cpt) are common to all bidders and evolve according to the following equation:

E[cpt] = cp0 × γ1ϕt × γ2σt

where cp0 refers to the price level of the capture price in the year where the investment took

place, ϕt is a time trend (with both linear and quadratic terms), and σt is the expected

volatility. The assumption about common beliefs for the future payoffs can be justified by

the fact that project developers need to forecast the capture price at a monthly frequency

for a 20-year period. This reinforces the common value aspect of these auctions. We make

use of official policy documents and other publicly available industry forecasts to compute

projected prices.27 The introduction of different forecasts by different firms would require

strong assumptions about each firm’s information sets.

We calibrate the expected capture price in line with observed price levels and volatility at

the time of investment and make some assumptions on expected price growth and increase in

volatility over time based on wholesale market price predictions from government reports and

policy documents. As further discussed in Online Appendix O.1.3, the capture price follows

closely the wholesale electricity price. Yet, to account for uncertainty and for decoupling of

the two in the future, given the increasing penetration of solar PV, we consider different price

and volatility levels relative to the baseline scenario, over which we aggregate. We do so by

pre-multiplying the expected growth trends with a factor γi, i ∈ {1, 2}. Further details can

be found in Online Appendix O.1.3.

26Time to build is not exactly the same for all projects. There are a few installations built within three
months after the auction date and several are completed only after 18 months. Yet, the 12 month span is
representative of this distribution, and in addition, we do not observe all plants completion date. Therefore,
we abstract from uncertainty on this parameter and assume it to be fixed at 12 months.

27Alternatively, one might consider futures markets, but these are only available for 2-3 years in the
German wholesale electricity market. Market forecasts, on the other hand, are available from professional
associations or for-profit businesses and are based on model predictions about future states of the electricity
market, as well as long-term policy scenarios.
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Recovering costs. We can group the terms inside the square brackets of the profits ex-

pression in Equation 3 by whether the subsidy is active or not,

K∑
k=1

 ∑
t|bi,k>cpt

δt(bi,k − ci,k) +
∑

t|bi,k≤cpt

δt(cpt − ci,k)


︸ ︷︷ ︸

≡πi,k

1(qi,k ≤ qi < qi,k+1).

If the bidder knew the capture price with certainty, she could calculate both sums in πi,k.

We take this approach and present the optimality conditions for a given realization of the

capture price. Therefore, there is a numerical expectation taken over all the recovered costs

as a final step. The two sums represent the NPV of one unit of capacity installed aggregated

over all the steps from bidder i’s submission. We further group those terms as follows:

πi,k ≡
∑

t|bi,k>cpt

δt(bi,k − ci,k) +
∑

t|bi,k≤cpt

δt(cpt − ci,k)

= bi,k
∑

t|bi,k>cpt

δt − ci,k

T=252∑
t=13

δt +
∑

t|bi,k≤cpt

δtcpt

= L1,k(cpt, bi,k)bi,k − L2ci,k + L3,k(cpt, bi,k)

where

L1,k(cpt, bi,k) =
∑

t|bi,k>cpt

δt,

L2 =
δ13 − δT+1

1− δ
,

L3,k(cpt, bi,k) =
∑

t|bi,k≤cpt

δtcpt,

and only L1,k and L3,k are functions of the time series of capture price forecasts and of the

bid step.

To recover the cost ci,k we extend the perturbation argument in Kastl (2011, 2012) for

optimal bidding to our empirical setting.28 In particular, there is a set of necessary conditions

28In Online Appendix Section O.3.1 we also present a version of this model without considering future
payoffs.
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for each step k at which the estimated cost is continuous in q given by Equation 4 below.

While the market clearing price pc(y(·; s)) is a function of all the submitted bid schedules and

the signals, we omit these dependencies in what follows to improve readability, the optimality

condition is:

Pr(bi,k < pc < bi,k+1)︸ ︷︷ ︸
≡M1

πi,k = Pr(bi,k+1 ≤ pc)︸ ︷︷ ︸
≡M2

(L1,k+1(cpt, bi,k+1)bi,k+1 − L1,k(cpt, bi,k)bi,k

+ L3,k+1(cpt, bi,k+1)− L3,k(cpt, bi,k)), (4)

where L1,k+1(cpt, bi,k+1) =
∑

t|bi,k+1>cpt
δt and similarly for L3,k+1(cpt, bi,k+1). From that ex-

pression we can solve for ci,k,

ci,k =
1

L2

[
L1,kbi,k + L3,k −

M2

M1

(L1,k+1bi,k+1 − L1,kbi,k + L3,k+1 − L3,k)

]
. (5)

Equation 4 describes the trade-off that a bidder is facing at each step k regarding potential

gains and losses from offering a lower quantity qi,k. The argument is as follows. Assume that

the market clearing price pc(y(·; s)) occurs at a vertical segment of the individual supply

curve. Then, by reducing the quantity by a small amount, bidder i losses πi,k times the small

reduction in quantity and only if the price is indeed between the k-th and the k+ 1-th steps

(given by Pr(bi,k < pc < bi,k+1)). This shift of the supply curve to the left makes the step

bi,k+1 marginal and brings gains of bi,k+1 − bi,k in every time period where the subsidy is

active, i.e., bi,k+1 > cpt, as long as the new clearing price is at least bi,k+1. This occurs with

probability Pr(bi,k+1 ≤ pc). Those gains must be properly weighted by the functions L1,k and

L3,k only, since L2 is a constant. Note that in time periods where bi,k+1 ≤ cpt, the firm gets

paid the capture price on all its inframarginal units regardless of the cost level. If losses and

gains from bid shading are not equalized, then there exists a potential deviation in the bid

schedule that leads to higher expected payoffs, so the bidding strategy cannot be optimal.

Equilibrium. The set of all supply schedules in y(p; s) is a Bayesian Nash equilibrium if

each firm i maximizes its expected value of Πi. Finally, the horizontal sum of other bidders’

supply curves (
∑

j ̸=i yj(p; sj)) and the total demand for solar installations (Q) determine the
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residual demand RDi faced by bidder i:

RDi(p; si) = Q−
∑
j ̸=i

yj(p; sj).

The intersection of RDi(p; si) with yi(p; si) for each i gives a market clearing price denoted

by pc.

4.2.2 Payoff under uniform payment rule

Under the uniform pricing rules, the payoff function is different since it directly depends

on the uniform market clearing price, i.e., the expression for πi—the expression inside the

integral—in Equation 3 is different,

πi =

Ki∑
k=1

T=252∑
t=13

δt [1(pc(y(·; s)) > cpt)(pc(y(·; s))− ci,k) + 1(pc(y(·; s)) ≤ cpt)(cpt − ci,k)]︸ ︷︷ ︸
Discounted future profits


× 1(qi,k ≤ qi < qi,k+1)

where Ki is the total number of bid steps of firm i, and the contribution from a single step

k is

πi,k ≡
∑

t|pc>cpt

δt(pc − ci,k) +
∑

t|pc≤cpt

δt(cpt − ci,k)

= pc
∑

t|pc>cpt

δt − ci,k

T=252∑
t=13

δt +
∑

t|pc≤cpt

δtcpt

= L1(cpt, pc)E(pc|bi,k < pc < bi,k+1)− L2ci,k + L3(cpt, pc)

where

L1(cpt, pc) =
∑

t|pc>cpt

δt

L2 =
δ13 − δT+1

1− δ

L3(cpt, pc) =
∑

t|pc≤cpt

δtcpt
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and we have written pc without its dependencies on the signals and the vector of bids to

make the notation lighter.

Assuming once again that the residual demand curve crosses between the steps k and k+1,

if the bidder reduces her bid by one unit she loses πi,k. Since by reducing the length of the

k-th step the intersection of the vertical segment and the residual demand occurs at a higher

point p′c and this new price will affect all inframarginal units, the bidder gains p′c−pc over each

unit won properly scaled for the NPV. We write a minus sign on the right-hand side because

price increases when quantity is reduced. Assume further that L3(cpt, p
′
c) − L3(cpt, pc) = 0

since at best the change in pc does not affect which terms in the NPV sum are activated in

L3 and if there is a change in the number of terms that go inside this sum they are very small

terms since δt < 0.01 for t ≥ 50. Then the optimality condition becomes

Pr(bi,k < pc < bi,k+1)︸ ︷︷ ︸
≡M1

πi,k = − qi,kL1(cpt, pc)
∂E(pc1(bi,k ≤ pc ≤ bi,k+1))

∂qi,k︸ ︷︷ ︸
≡M2

. (6)

After solving for ci,k and recalling that M2 contains the function L1:

ci,k =
1

L2

[
L1(cpt, pc)E(pc|bi,k < pc < bi,k+1) + L3(cpt, pc) +

M2

M1

]
. (7)

4.2.3 Estimation

To estimate market clearing prices and unobserved costs, we use a non-parametric estimator

for resampling bids based on Hortaçsu and McAdams (2010) and Kastl (2011). We relax the

symmetry assumption in the model by separating bidders into two groups G = {1, 2}, based

on average project size, and assume symmetry only within each of the groups. We define

a bidder as large if the average project size over the entire sample period is in the top ten

percentile of the distribution of all bidders. This separation is correlated and statistically

significant with bid values (see Columns 1 and 2 in Table 2). We also tried alternative

definitions of size with similar results.29

29In particular, we define bidders as large in case they submit more than two bids on average over all
auction rounds in which they participate. The results are presented in Online Appendix O.4.5.
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Figure 3: Simulated residual demand curves and observed supply schedule
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Notes: Each residual demand curve is obtained using a random sub sample of bid vectors with
replacement. Each intersection results in a market clearing price.

For a given round, let N represent the number of bidders. For each bidder in the round,

we implement the following steps.

1. Fix bidder i from group g ∈ G and its observed supply schedule {bi,k}.

2. From the ng bidders in group g, draw a random subsample of ng − 1 bid vectors with

replacement, assigning a weight of 1/ng to each bid vector from group g.30

3. Repeat the previous step for the other group h ∈ G \ {g}, drawing nh bid vectors,

assigning a weight of 1/nh to each bid vector from group h.

4. Construct bidder i’s realized residual demand RDi(p; s−i) to determine the realized

market-clearing price.

30Unlike the literature that uses this algorithm for treasury auctions, we resample only from within the
same round since rounds can be different one from another in several dimensions, e.g., number of competitors,
the volume requested by the government, and by the expectations on future electricity prices. Online Ap-
pendix O.4.4 provides robustness for our results, pooling several rounds based on a four-dimensional kernel
and confirms our main findings.
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By repeating the above steps multiple times, we obtain a sample of market clearing prices,

which can then be used to consistently estimate each bidder’s winning probability using

Equation 4 in PAB and Equation 6 in case of UP. At each step, we obtain several residual

demand curves, each intersecting one of the observed supply curves, as shown in Figure 3.

Each of those intersections gives a value for the price that can be used to evaluate the ratio in

Equations 4 and 6, which in turn allows us to obtain the cost for each of the steps in the bid

function. In a few cases, the recovered costs are negative or do not exist if the denominator

is numerically very small.31 In those cases, we impute the cost with the observed bid price,

thus artificially imposing a zero margin in those cases and potentially underestimating market

power.

4.2.4 Costs estimates

To build intuition, in Appendix Figure A.1 we show one example of an observed bid curve

together with the estimated marginal costs. The two curves are monotonically increasing by

construction and with a wide range of margins that tend to narrow down for high bid values.

We interpret this as a sign that high cost projects are generally less profitable.

To measure the goodness-of-fit of the estimated costs from the model, we compare the

median cost estimates to the median average system costs listed in Table 1. The model yields

a median cost estimate of 5.33 e-cents/kWh, and the industry data suggests a comparable

median average system cost of 5.05 e-cents/kWh.32 This is a remarkable result, as no cost

information was provided to the structural model. The estimated costs were recovered by

inverting the optimality condition using only the observed bids as inputs.

To compare estimated costs to observed bid values, we aggregate the individual bid and

cost curves by bidder and period using quantity-weighted averages. The results are shown in

Figure 4, where we plot the kernel densities for the observed bids and cost estimates in Panels

31As there is a non-negligible number of bidders with single bids (k = 1), we smooth the resulting distri-
bution of market clearing prices to ensure that the resulting probabilities exist.

32This means that the median cost estimates are within 5% of the average industry-wide cost. Naturally,
the model yields a larger dispersion of cost estimates than the aggregate data, with an inter-quartile range
(P75 - P25) of 2.69 e-cents/kWh compared to 0.83 e-cents/kWh.
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(a) to (c). Panel (d) from the same figure plots the density of the Lerner index, defined as

the ratio of margins over bids, in each of the three periods.

Figure 4: Estimated costs and observed bids densities
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(a) UP: Auction rounds 2-3
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(b) PAB, Period 1: Auction rounds 4-8
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(c) PAB, Period 2: Auction rounds 9-18
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(d) Lerner Index, all three periods

Notes: Kernel densities of the costs obtained for uniform pricing rule (Equation 7 , Panel (a)) and
PAB pricing (Equation 5, Panels (b) and (c)). Individual bids are aggregated by bidder and period
using quantity-weighted averages. Panel (d) shows the average Lerner Index, defined as bi−ci

bi
, for

each period separately.

The density of costs is shifted to the left relative to the density of the observed bids

because of the existence of profit margins and that of market power. Interestingly, Panel (a)

shows that the median bid and cost estimates are relatively close in uniform auction rounds
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2 and 3, resulting in a low median markup (bi/ci) of 1.028. Yet, the gap widens considerably

under PAB in Period 1 (auction rounds 4 to 8), where we find an median markup of 1.45 and

Period 2 (rounds 9 to 18), with a markup of 1.31. This means that profit margins under PAB

have been considerably larger than under UP, and that especially the period of decreasing

prices (P1) had large average markups compared to the rest.33 A different way to compare

the estimates is to look at the Lerner Index as a measure of market power in Panel (d). In

line with the markup results, we find that the auction format had an economically relevant

impact on how bidders bid over costs. While the median Lerner Index under UP is 0.027, we

find a value of 0.27 and 0.25 under PAB period 1 and period 2, respectively. This means that

there was very low market power being exercised under uniform pricing while very similar

levels of market power are present during the two PAB periods.

4.3 Analyzing Bidding Behavior

With the estimated costs and markups at hand, we next aim at analyzing bidding behavior

under the two types of payment rules, as well as under the two different PAB periods. In

line with the structural model, we focus on auction rounds 2-18 and omit the first auction

round from this analysis. The main regression model resembles that of Equation 2 with the

dependent variables being markups, defined as bidi,k/costi,k, the probability of winning the

auction Pr(winningi,k = 1), and the bid value bidi,k directly. In the last two set of regressions,

we include the estimated cost as an independent variable to test for auction efficiency and

cost pass-through. As we do not include the first auction round held in 2015 (PAB), all

estimates need to be interpreted with respect to the uniform auction rounds. As before, we

include a rich set of market and bid-specific controls as well as land-type, location, time, and

bidder fixed effects. In all versions of these regressions, standard errors are clustered at the

bidder level.

Among the market factors we consider is the distance to the nearest high-voltage elec-

33To ensure that this difference is not driven by other time-varying factors, in Appendix Figure O.7, we
plot the Lerner Index comparing the UP rounds 2 and 3 with adjacent PAB rounds 4 and 5 only and confirm
a large and significant difference.
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tricity network node, which is motivated by the market and regulatory concerns regarding

the interconnection costs as a barrier of entry for renewable capacity.34 We also consider

solar irradiation and auction volume. At the bid level, we control for the land type and for

whether the bidder is “large”, according to the aforementioned definition of project size.

Markups. Table 3 shows the results of four different specifications where the dependent

variable is the ratio of bids over the estimated marginal cost, the markups. While Section

4.2.4 provides a general overview of the cost and markup distribution, the regressions help to

understand if this pattern holds when controlling for market factors and bid-specific variables.

In line with the above discussion, we find that PAB periods 1 and 2 have led to higher average

markups than UP. The differences are statistically significant and show a larger markup in

P2, the period that is considered less competitive compared to UP and P1. We find no

statistically different markups for large bidders under UP, but show that markups for large

bidders under PAB are considerably smaller, especially in period 2. These results hold even

when controlling for bidder fixed effects in Column (4). These results indicate that small

project bidders, whose presence is an explicit objective of the auction design, secure a larger

markup than larger bidders.

Probability of winning. To understand how the probability of winning differs between

bidder types, Table 4 shows the results from a linear probability model with the main de-

pendent variable being whether the bid was awarded or not. This regression also conditions

on the estimated cost, as it allows us to analyze in how far the auction mechanisms selected

the lowest cost bids. In line with the markup results, we find that there is no difference

for large and small bidders in the probability of winning the auction under UP. Yet, the

coefficient on the interaction of large bidder and the PAB format is positive and statistically

significant in all specifications. This suggests that relative to UP rounds, large bidders are

associated with a higher probability of winning the auction, although with lower markups

34See for instance Davis et al. (2023). We calculate the distance as the direct line from the centroid of the
5-digit zip code where the solar plant is located and the nearest high voltage network node (see Appendix
Figure A.2).
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Table 3: Markups

(1) (2) (3) (4)
1(large bidder) -0.038 -0.031 0.015

(0.024) (0.027) (0.034)
1(PAB P1) 0.296∗∗∗ 0.298∗∗∗ 0.345∗∗∗ 0.275∗∗∗

(0.041) (0.041) (0.084) (0.086)
1(PAB P2) 0.379∗∗∗ 0.378∗∗∗ 0.469∗∗∗ 0.468∗∗∗

(0.058) (0.058) (0.089) (0.143)
1(large bidder) × 1(PAB P1) -0.242∗∗∗ -0.247∗∗∗ -0.274∗∗∗ -0.205

(0.078) (0.077) (0.075) (0.127)
1(large bidder) × 1(PAB P2) -0.271∗∗∗ -0.275∗∗∗ -0.294∗∗∗ -0.326∗∗

(0.073) (0.071) (0.066) (0.132)
N 1,424 1,424 1,424 1,424
Adjusted R2 0.12 0.12 0.14 0.38
Mean DV 1.27 1.27 1.27 1.27
Bid-specific controls No Yes Yes Yes
Land-type FE No No Yes Yes
State FE No No Yes Yes
Year FE No No Yes Yes
Bidder FE No No No Yes

Notes: DV: Markups defined as bi,k/ci,k. All regressions include a constant term and control for
auction volume. Bid-specific controls include distance to network and solar irradiation. Standard
errors clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

than small bidders as explained in the previous paragraph. Focusing on the coefficient related

to the estimated cost, we find a negative and statistically significant coefficient across all dif-

ferent specifications, confirming the trade-off between a higher estimated cost and a lower

probability of winning (Columns 2 - 4), indicating that the auction selects low-cost bids on

average. When further distinguishing between PAB P1 and P2 in Column (5), we again find

important heterogeneity across the periods, showing again the UP was better at selecting

low cost bids. These results need to be, however, interpreted in line with the competitive

environment of each auction period. As shown in Figure 2, the concentration measures have

a higher variance in PAB Period 2 than in Period 1.

Heterogeneity of pass-through. Finally, in Table 5 we report regressions of the bid prices

on the estimated costs. We expand on the previous model by including a triple interaction

between the auction periods, bidder size, and estimated cost. This allows us to capture
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Table 4: Probability of winning the auction

(1) (2) (3) (4) (5)
1(large bidder) 0.064 0.075 0.075

(0.070) (0.069) (0.068)
1(PAB P1) -0.019 -0.193∗∗∗ -0.140 -0.196 -1.501∗∗∗

(0.056) (0.067) (0.104) (0.131) (0.323)
1(PAB P2) -0.030 -0.273∗∗∗ -0.365∗∗∗ -0.443∗∗∗ -1.462∗∗∗

(0.052) (0.060) (0.065) (0.088) (0.291)
1(large bidder) × 1(PAB P1) 0.262∗∗ 0.312∗∗∗ 0.306∗∗∗ 0.331∗∗ 0.208∗

(0.106) (0.114) (0.115) (0.129) (0.118)
1(large bidder) × 1(PAB P2) 0.168∗∗ 0.199∗∗∗ 0.144∗∗ 0.242∗∗∗ 0.173∗∗

(0.074) (0.064) (0.064) (0.085) (0.079)
Estimated cost -0.069∗∗∗ -0.067∗∗∗ -0.066∗∗∗ -0.196∗∗∗

(0.013) (0.011) (0.014) (0.035)
Estimated cost × 1(PAB P1) 0.188∗∗∗

(0.042)
Estimated cost × 1(PAB P2) 0.132∗∗∗

(0.036)
N 1,441 1,424 1,424 1,424 1,424
Adjusted R2 0.13 0.17 0.21 0.29 0.30
Mean DV 0.40 0.39 0.39 0.39 0.39
Bid-specific controls No Yes Yes Yes Yes
Land-type FE No No Yes Yes Yes
State FE No No Yes Yes Yes
Year FE No No Yes Yes Yes
Bidder FE No No No Yes Yes

Notes: DV: bid awarded (binary). Linear probability model. All regressions include a constant
term and control for auction volume. Bid-specific controls include distance to network and solar
irradiation. Standard errors clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

heterogeneous cost pass-through across auction formats and bidders’ sizes. Focusing first on

bid prices, in line with Table 2, we find that PAB led to higher conditional prices but that

large bidders were bidding lower prices during this period. Second, focusing on the cost-pass

through, we estimate an average pass-through rate of about 0.7 - 0.8 in UP rounds with no

statistical differences for large bidders. In PAB, we generally find a lower pass-through of

costs, or put differently, the cost is less informative for the observed bid values. While both

interaction terms of Cost × PAB show a negative sign, the lower pass-through rate in PAB

P1 relative to PAB P2 is in line with a less competitive market during this time period.35

35Although the relationship between competition and pass-through is not necessarily monotonic, most evi-
dence suggests that more competitive markets are associated with higher pass-through rates. The underlying
intuition is that, in competitive industries, markups are typically small, leaving firms with limited ability to
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Table 5: Bid prices and cost pass-through

(1) (2) (3) (4)
1(large bidder) 1.426 1.374 0.154

(1.714) (1.728) (2.004)
1(PAB P1) 3.482∗∗∗ 3.556∗∗∗ 4.944∗∗∗ 3.719∗∗∗

(0.954) (0.969) (0.780) (1.088)
1(PAB P2) 1.675∗ 1.761∗ 3.335∗∗∗ 1.889

(0.932) (0.951) (0.807) (1.159)
1(large bidder) × 1(PAB P1) -0.571 -0.470 0.833 -2.204

(2.937) (2.879) (2.797) (2.652)
1(large bidder) × 1(PAB P2) -3.703∗∗ -3.705∗∗ -2.021 -3.204

(1.753) (1.748) (2.070) (3.179)
Estimated cost 0.715∗∗∗ 0.720∗∗∗ 0.800∗∗∗ 0.671∗∗∗

(0.110) (0.112) (0.091) (0.139)
Cost × 1(large bidder) -0.189 -0.188 -0.043 -0.208

(0.210) (0.211) (0.240) (0.373)
Cost × 1(PAB P1) -0.555∗∗∗ -0.568∗∗∗ -0.734∗∗∗ -0.609∗∗∗

(0.116) (0.118) (0.099) (0.136)
Cost × 1(PAB P2) -0.353∗∗∗ -0.366∗∗∗ -0.534∗∗∗ -0.348∗∗

(0.124) (0.126) (0.106) (0.151)
Cost × 1(large bidder) × 1(PAB P1) -0.004 -0.017 -0.160 0.277

(0.399) (0.390) (0.369) (0.316)
Cost × 1(large bidder) × 1(PAB P2) 0.536∗∗ 0.538∗∗ 0.319 0.434

(0.225) (0.224) (0.274) (0.410)
N 1,424 1,424 1,424 1,424
Adjusted R2 0.74 0.74 0.81 0.86
Mean DV 6.57 6.57 6.57 6.57
Bid-specific controls No Yes Yes Yes
Land-type FE No No Yes Yes
State FE No No Yes Yes
Year FE No No Yes Yes
Bidder FE No No No Yes

Notes: DV: Bid values. All regressions include a constant term and control for auction volume.
Bid-specific controls include distance to network and solar irradiation. Standard errors clustered at
the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Looking at the triple interaction term, we find no statistically significant differences be-

tween large and small bidders in PAB P1. Yet, without conditioning on land-type, state, and

year fixed effects, we see differences in the pass-through rates for large bidders during PAB

P2, indicating that these bidders might have been able to pass on a higher fraction of their

cost during this period. This would be consistent with the idea that large bidders exercise

market power in PAB P2. Yet, making the projects more comparable by adding additional

fixed effects, the differences for large and small project bidders vanish.

4.4 Robustness

We perform several robustness checks for the reduced form regression results to show that

the main data patterns hold independently whether we omit all zero margin bids (Online

Appendix O.4.2), if we assume all bidders symmetric and we do not assign them into groups

(Online Appendix O.4.3), if we pool several rounds based on a four-dimensional kernel for

estimation (Online Appendix O.4.4), or whether we use the alternative definition of large

bidders, based on the number of submitted projects (Online Appendix O.4.5) rather than

project size. Our main estimates remain largely similar across all those different specifications

and our main specifications.

The potential pooling of auction rounds merits additional discussion. As auction fun-

damentals may be changing over time, our main estimation algorithm treats each auction

round independently. Yet, this may induce a bias in the estimates, as the non-parametric

estimators are best performing for large samples. The literature thus typically pools multiple

auction rounds for the empirical implementation, based on observable auction characteristics.

To check the robustness of our results, we therefore follow a similar approach and define a

four-dimensional kernel based on the number of bidders, the auction identifier, auction vol-

ume, and the pricing rule. We allow for any adjacent rounds to be merged, in case these are

absorb cost shocks. In contrast, in less competitive markets, firms are more likely to balance the reduction
in markup against the potential decline in demand caused by higher final prices, resulting in incomplete
pass-through.
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not ‘too different’ and re-estimate the model based on this larger set of bid curves.36 One

additional advantage of treating each auction round independently for estimation means that

unobserved auction heterogeneity should be less of a problem for our empirical application.

Finally, to examine the assumption of independent private signals, we run a regression

of the bid prices on publicly available information regarding the auction outcomes of the

previous rounds, as well as market and bid-specific factors that are known to the bidders

(Appendix Table A.3). We then implement a test on the correlations of residuals between

pairs of bidders participating in the same auction rounds. This test follows directly Bajari

and Ye (2003).37 Once the pairwise correlations are transformed into their corresponding

z-scores to account for the number of times the two bidders met in the same auction rounds,

we obtain a mean value of the absolute z-scores of 0.82 and a corresponding average p-values

of 0.49, showing that there is no indication that the pairwise residuals are systematically

correlated. This test can be also interpreted as no evidence for coordinated behavior of the

bidders.38

5 Counterfactual Analysis

We use the structural model to study a set of counterfactuals. We focus on three main

outcomes: market power, procurement costs, and efficiency. In all those cases we ask the

question, how do the outcomes from a pay-as-bid auction compare to those from a uniform

auction? Given the lack of theoretical guidance to rank these formats in multi-unit auctions,

our estimates allow us to provide an empirical answer in the present context. This question is

also motivated by the actions of the regulator, who in early rounds experimented with a non-

discriminatory auction format. We compute subsidies under each auction format and discuss

36In practice this procedure pools both UP rounds, and merges PAB rounds with adjacent rounds (auction
identifier ± 1) if these are not too different in terms of number of bidders or total auction volume.

37We condition on pairs of bidders that have at least 4 interactions. Bid prices are quantity weighted.
This leaves us with a total of 55 bidders and 481 observations.

38While there is no general test for collusive behavior in multi-unit auctions, we interpret the fact that
bid price residuals are uncorrelated together with the descriptive statistics in Section 3 as evidence against
coordinated firm behavior.
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the effects of the policy parameter that defines the subsidy payments itself: the capture price.

5.1 Auction Format and Market Power

To test for the impact of the auction format, in a first approximation, we set the bids equal

to the estimated costs as the bidders’ strategies to simulate a uniform auction format and

call this the truthful bidding benchmark. This is equivalent to the truthful bidding case

in treasury auctions (see, e.g., Hortaçsu and McAdams, 2010; Elsinger et al., 2019). This

circumvents modeling the strategies of each player and simplifies finding the equilibrium.39

In this auction format, we build the supply curve directly from the estimated costs, intersect

it with the inelastic demand curve given by the requested volume in a given auction, and find

in this way the uniform market clearing price. While the literature has highlighted that firms

have incentives to bid above marginal costs also in the uniform auction format, e.g., due to

a restricted number of bid steps (Hortaçsu et al., 2018), truthful bidding can be considered

as a useful benchmark in which zero markups are assumed.

In addition, we make use of the bids from the uniform auction rounds to estimate a linear

regression of markups on firm characteristics. We focus our attention on the binary variable

related to firm size as defined in the previous section.40 The results are shown in Appendix

Table A.2 and highlight that small bidders have an average markup of 5.8% and large bidders

of 1.6% in the unconditional regression in Column 1. We consider the case in which those

markups are applied to the recovered costs from the discriminatory rounds, depending on

bidder size. Therefore, the assumption is that the level of market power exercised in the two

early rounds with uniform pricing is the same in this counterfactual across all subsequent

rounds. Although the truthful bidding case, which is widely used in the literature, represents

the extreme case of no market power, our heterogeneous markup counterfactual is a more

realistic scenario based on our own estimates from actual interactions in a uniform price

39Similar to the treasury auctions literature, we assume that bidding strategies do not change in the
counterfactual simulations, but remain as observed in the data.

40This choice is mostly due to data convenience, as we do not observe firm characteristics in our original
data and can only recover additional information on legal status and type of firm for a subset of bidders.
The proposed methodology can be, however, extended to incorporate additional firm characteristics.
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setting in the same market and conditional on an observable characteristic, bidder’s size.

Figure 5 shows the clearing prices for the two versions of the uniform price auctions

together with the PAB prices. For the truthful bidding case we construct the perfectly

competitive supply curves directly using the estimated costs ranked from lowest to highest.

For the heterogeneous markups case we use the truthful bidding supply curve and multiply it

by the corresponding markup factor depending on whether the bidder is large or small. The

PAB line is obtained through simulation using the estimated marginal costs, therefore, it is

close to but not identical to the line shown in Figure 1, in addition each round point is equally

spaced in the x-axis and we start at round 4. Altogether, this makes a fair comparison across

counterfactuals and not between counterfactual outcomes and data.

The main difference between the outcomes from the three auction formats is that market

clearing prices are lower under truthful bidding and the heterogeneous markups clearing

prices are most of the time in between the PAB and the truthful bidding cases. The main

exceptions are rounds 11, 14, and 16, which require further discussion. As highlighted in

Section 3, rounds 11, 14, and 17 were implemented as joint wind and solar auctions. While

in round 17, no wind bids were present, the total supply in rounds 11 and 14 was affected by

wind bids, even these bids were not awarded. The presence of wind bids might have, however,

affected the bidding strategies of solar investors. Round 16, on the other hand, had a target

volume that exceeded any other round’s by more than double the volume, see Table A.1, and

thus might have led to higher market clearing prices. These are the only rounds in which we

find counterfactual clearing prices close to and above the observed PAB prices.

We compute the markups for each of the winning bids under each format (pc/ci in the

cases of uniform pricing and bi/ci in the PAB case) using the estimated costs. Figure 6 shows

the quantity-weighted means of those markups by round. Although it is entirely possible that

setting the bids equal to the costs selects the most competitive equilibrium, obtaining lower

market power in the uniform price auction is not a mechanical feature of the model since

under PAB bidders still face a trade-off between bidding low to get selected and bidding high

to maximize their payoff. The truthful bidding setting gives a lower bound on government
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Figure 5: Pay-as-bid versus truthful bidding

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Round

3

4

5

6

7

8

9

10

eu
ro

-c
en

t /
 k

W
h

Mean PAB Prices, Uniform Prices 
 For PAB: awarded bids only and weighted by qty.

Pay-as-bid (max, mean, min)
Truthful bidding
Heterogenous markups

Notes: Truthful bidding is a counterfactual where each firm submits bids that are equal to its
estimated costs. In the heterogeneous markups case we multiply by a markup of 1.07 for small
bidders and by 1.02 for large bidders to their respective cost curves. The PAB line also shows
min/max bands. The PAB line is obtained through simulation using the estimated marginal costs,
therefore, it is not identical to the line shown in Figure 1. Note that it is possible that the clearing
price under uniform pricing is higher than the average of winning bids under PAB, but it cannot
be higher than the maximum of the winning bids under PAB because that is the marginal bid.

expenditure within the class of uniform price auctions, whereas the heterogeneous markup

case gives a more realistic outcome based on the two early uniform price auctions.41 Our

main finding is that in this market, a uniform price auction would have given place to a lower

exercise of market power as was already suggested in Figure 4 Panel (d) where the density of

the Lerner index shifted to the right for PAB rounds relative to the UP rounds. The overall

average quantity-weighted markups for PAB, truthful bidding, and heterogenous markups

are, respectively, 1.62, 1.33, and 1.39. When not considering rounds 11, 14, and 16, we find

that the average quantity-weighted markups are, in the same order as above, 1.71, 1.32, and

1.39. The particularities of those three rounds only seem to matter on the aggregate for PAB

but not for uniform pricing.

41As explained in the Introduction, there are some theoretical results on this issue. See Federico and
Rahman (2003), Holmberg (2009), Fabra et al. (2011), and Willems and Yueting (2023).
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Figure 6: Markups under different auction formats
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Notes: Truthful bidding is a counterfactual where each firm submits bids that are equal to their
estimated costs. Heterogeneous markups applies a different markup to each bidder depending on
their size (see main text for details). PAB refers to the observed bids. For each round and for each
auction format, markups of winning bids only and graph shows quantity-weighted means.

5.2 Total Procurement Costs

An important outcome of procurement auctions is how much the allocation costs the govern-

ment. Recall that the auctions are used to determine which developers get the right to build

solar sites and the amount of the subsidy they will receive over the entire project horizon

as a function of the capture price. Developers privately incur the construction costs of the

solar sites, not the government. Therefore, the procurement costs in these auctions are the

total subsidy payments over 20 years aggregated over all the awarded solar sites. The size

of the subsidy depends on the auction format since the market clearing price and the gap

between the cost curve and the bid curve do so as well. To evaluate this, we compute the

quantity-weighted sliding premia at each time period under uniform pricing,

SUt =
∑
i

qi
Q
θmax{pc − cpt, 0}
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Figure 7: Subsidy under uniform pricing is lower than under pay-as-bid
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Notes: Both panels are identical except that the blue rectangle (left panel) is the amount of the
subsidy under uniform pricing and the yellow area (right panel) is the subsidy under PAB. pc is the
market clearing price assuming uniform pricing can be approximated by the estimated costs curvemc
(truthful bidding), cp is the capture price (time subscript omitted here). The uniform price subsidy
is defined as SU =

∑
i qiθmax{pc − cp, 0} over all the quantities up to Q (government demand). θ

is the time duration of the output. This results in units of euros for the subsidy amount. Note that
in the main text we take the quantity-weighted average of the subsidies instead. The yellow area
on the right panel represents the subsidy under PAB defined as SPAB =

∑
i qiθmax{bi− cp, 0} over

all quantities awarded, where b on the figure is a smooth version of the set of bids bi ranked by size,
the aggregate bid curve. The blue rectangle is smaller than the yellow area.

and the quantity-weighted sliding premia under the PAB format in each time period,

SPABt =
∑
i

qi
Q
θmax{bi − cpt, 0},

where Q is the total awarded volume, qi is each of the winning project’s capacities, and θ

represents the time duration of the output, in other words, the length of the time interval t

and is assumed equal to 1 hour. Note that an implication of this is that we assume a capacity

factor of 100% and therefore, these subsidy calculations represent the upper bound on the

subsidy amounts. Q and the capacity sizes of the projects are also constant over time, but

the outcome of the max operator is time-dependent. Together, the units of SPABt are e per

kW of installed capacity.

The relationship between the subsidies is an empirical question. Figure 7 shows an ex-
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Figure 8: Subsidy under pay-as-bid is lower than under uniform pricing
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Notes: This is the same as Figure 7 except that the aggregate bid curve b is much closer to the
estimated costs curve mc. The subsidy under uniform pricing (blue rectangle, left panel) is greater
than under PAB (yellow area, right panel) in this case.

ample of a bidding curve and its corresponding cost curve where the subsidy under uniform

price is lower than the subsidy under PAB.42 However, it is not difficult to find configurations

where the opposite is true. Figure 8 shows one of these possibilities, which repeats the same

configuration as in Figure 7 except that the bidding curve is closer to the cost curve than

before. Therefore, the subsidy under uniform pricing does not change but the one for PAB

does, and in fact it shrinks relative to the previous configuration.

Since the two types of subsidy cannot be ranked in size in general, we study the ratio

SU/SPAB of the two subsidies for each auction round averaging over the scenarios defined

in the previous section for the monthly evolution of the capture price time series, where SU

is the discounted sum of the per-period subsidy SUt and similarly for SPAB. Note that the

parameter θ cancels out when taking the ratio of the two subsidies amounts and the implicit

assumption on the capacity factor is eliminated. We bootstrap the supply curve 200 times

within each scenario, which allows us to construct confidence intervals. Figure 9 presents

the results for truthful bidding and heterogeneous markups. In most rounds, subsidies under

42In order to simplify the exposition of this argument, we use smooth functions instead of step functions
but the same reasoning applies to both.
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Figure 9: Subsidies under pay-as-bid and truthful bidding
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Notes: Each line represents the ratio of the subsidies under truthful bidding and PAB SU/SPAB at
each auction round, where SU is the discounted sum of the quantity-weighted per-period subsidies
SUt =

∑
i
qi
Qθmax{pc − cpt, 0}, pc is the market clearing price under uniform pricing, qi are the

quantities awarded, Q is the total volume awarded, θ is the duration of the output, SPAB is the
discounted sum of the per-period subsidies SPABt =

∑
i
qi
Qθmax{bi − cpt, 0}, and cpt is the capture

price. The confidence intervals were obtained by bootstrapping the supply curve 200 times at each
round and at each scenario.

uniform pricing are clearly lower than under PAB. Rounds 11, 14, and 16 are the exception,

these are precisely the rounds where markups under uniform pricing are larger than under

PAB (see Figure 6), as discussed above. The heterogeneous markup case increases the value

of this ratio but not as a parallel shift since it is a multiplicative markup on the cost curve

that depends on the size of the bidder.

Table 6 expands on these results by showing statistics of the difference in subsidies in

net present value and e-cent / kW of capacity installed units relative to the PAB format.

From both panels, we observe that the quantity-weighted mean over all rounds indicates

that PAB was more costly in terms of subsidies than the two uniform price formats studied

here. However, there is considerable variation across the two time periods consistent with

Figure 9. In the beginning of the policy, PAB was extremely costly, but as we transition into

Period 2 this same format appears to be less expensive than before. As mentioned earlier,
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Table 6: Differences in Subsidies

∆ subsidies (truthful bidding - PAB)
(e-cent per kW of capacity installed)

All rounds Period 1 Period 2

Mean -93.27 -125.71 -56.2
S.E. 53.93 57.57 49.77
25th perc. -122.1 -144.19 -96.86
Median -85.02 -118.3 -46.98
75th perc. -54.25 -95.87 -6.69

∆ subsidies (heterogeneous markups - PAB)
(e-cent per kW of capacity installed)

All rounds Period 1 Period 2

Mean -73.89 -105.87 -37.35
S.E. 51.86 63.17 49.43
25th perc. -102.72 -124.34 -78.02
Median -65.64 -98.45 -28.13
75th perc. -34.87 -76.02 12.15

Notes: Each of the panels shows statistics for the difference in subsidies in net present value per
unit of capacity installed between truthful bidding and PAB and between the heterogeneous markup
outcomes and PAB, respectively. Columns Period 1 and Period 2 report the results conditional
on each of those rounds periods. The standard errors are calculated by bootstrapping with 200
iterations and all statistics are quantity-weighted and averaged over the different scenarios of capture
prices.

the large change in this difference in Period 2 is related to lower margins and a large increase

in demand. The lower panel reports the same differences but in the heterogeneous markup

case. The disadvantage of PAB gets attenuated in Period 2.

To put these results in context, we provide a back-of-the-envelope calculation of the total

difference in subsidy payments. Using the mean difference in subsidies of 1.26 e / kW in

Period 1 in the truthful bidding case, the average project capacity of 5.3 MW, and the average

number of winning projects of 29 in Period 1 (Table 1), the overall savings if truthful bidding

could have been implemented instead of PAB over the five auction rounds in Period 1 would

have been e0.96 million (or equivalently e0.19 million per auction round). Similarly, using

the difference in subsidies in Period 2 of 0.56 e / kW, such savings would have accounted

for e1.03 million over the lifetime of the installations. This difference is purely driven by the

choice of the pricing rule.
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5.3 Costs Efficiency

Figure 10: Aggregate marginal costs by pay-as-bid and truthful bidding
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Notes: For each round, the dots indicate the mean of the ratio of aggregate costs under PAB and
the aggregate costs under truthful bidding. The bars represent ±1 S.D. using 200 bootstrapping
samples averaged over the scenarios for forecast prices.

The policy’s objective is not only to award subsidies to developers, but to choose those

developers that have the lowest costs. To assess the success of the policy in this regard, we

compare the aggregate costs of the winning projects under PAB with the aggregate costs of

the truthful bidding allocation. More precisely, we compute the integral of the marginal cost

curve up to the clearing price under PAB and divide it by the integral of the marginal cost

curve up to the clearing price under the perfectly competitive counterfactual.43 We report

the ratio of those aggregate costs in Figure 10. By construction, any allocation other than the

perfectly competitive outcome will have higher costs, therefore, we use such outcome as the

benchmark of efficiency. Over time, the ratio exhibits a slight trend towards the benchmark,

43Alternatively, we could benchmark against the outcomes of a multi-unit Vickrey auction (e.g., gener-
alized second-price auction or Vickrey–Clarke–Groves auction). However, we prefer the simpler benchmark
presented in the main text since the multi-unit Vickrey auction is a mechanism rarely used in practice and
because it is not straightforward to define the payments since the units of the good are not equal in our case,
each project is of a different size. In this auction format, a bidder who wins n units pays the sum of the n-th
highest non-awarded bids other than her own. Since bids in our case represent projects of different sizes, this
would require to assume that all projects are fully homogeneous.
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followed by a stabilization period where most values are approximately 10% to 25% above

it. Coincidentally, the three rounds with the largest standard deviations (9, 17, and 18)

also had the highest average awarded volume per project (see Tables 1 and A.1.). The final

two rounds featured an unusually low number of awarded projects; however, these projects

were, on average, very large. Consequently, these rounds displayed a distinct type of winning

bid compared to others. Overall, PAB allocations are less costly over time relative to the

truthful bidding allocation. This observation is largely consistent with the findings of the

linear probability model in Table 4. Using Column 5 of that table, the probability of winning

is 0.8% lower if costs increase by 1 e-cent/kW in Period 1, but the same probability is 6.4%

in Period 2. Thus, an eight-fold change in the likelihood of not being selected in the last part

of the sample if costs increase.

6 Conclusion

This paper outlines key findings regarding auctions distributing payments to solar power

electricity producers in Germany in the form of subsidies that depend on the evolution of

electricity prices in the future. Recognizing the limitations of a reduced-form approach, we

employ a structural multi-unit auction model to recover bidders’ unobservable costs under

both discriminatory and non-discriminatory pricing rules. These cost estimates serve as the

basis for measuring market power and conducting counterfactual analyses to assess the effects

of alternative auction formats.

Our results suggest that non-discriminatory pricing rules can substantially reduce subsidy

expenditures, while also highlighting a broader trend toward increased cost efficiency in RE

auctions over time. These findings underscore the importance of auction design in shaping

both market outcomes and fiscal implications. Despite the widespread adoption or RE auc-

tions, the impact of auction design and the factors shaping participants’ bidding behavior

remain relatively understudied. Yet understanding how auction design influences bidding is

crucial for regulators aiming to develop procurement schemes that minimize rents, encourage

entry, and ensure efficient capacity allocation.
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This paper offers a structural approach to addressing these questions in the context of

German RE auctions. Our analysis is based on the assumption of independent auction rounds

and risk-neutral bidders—simplifying assumptions that yield a tractable model. Future work

could build on this framework by relaxing these assumptions. As the energy transition

advances, the choice of auction mechanisms to allocate capacity and structure incentives

becomes central to both economic efficiency and public finance. More broadly, the challenge

of procuring goods and allocating subsidies in multi-unit, multi-technology environments is

not unique to energy and holds relevance across a wide array of public procurement contexts.

References

Anatolitis, Vasilios, Alina Azanbayev, and Ann-Katrin Fleck, “How to design effi-

cient renewable energy auctions? Empirical insights from Europe,” Energy Policy, July

2022, 166, 112982.

Astier, Nicolas, Ram Rajagopal, and Frank A Wolak, “Can distributed intermittent

renewable generation reduce future grid investments? Evidence from France,” Journal of

the European Economic Association, 2023, 21 (1), 367–412.

Ausubel, Lawrence M, Peter Cramton, Marek Pycia, Marzena Rostek, and

Marek Weretka, “Demand reduction and inefficiency in multi-unit auctions,” The Review

of Economic Studies, 2014, 81 (4), 1366–1400.

Bajari, Patrick and Lixin Ye, “Deciding between competition and collusion,” Review of

Economics and Statistics, 2003, 85 (4), 971–989.
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mission gemäß § 62 EnWG,” Technical Report, Sektorgutachten Energie 2019.

Willems, Bert and Yu Yueting, “Bidding and Investment in Wholesale Electricity Mar-

kets: Discriminatory versus Uniform-Price Auctions,” 2023.

Wilson, Robert, “Auctions of shares,” The Quarterly Journal of Economics, 1979, 93 (4),

675–689.

Wolak, Frank A, “Measuring unilateral market power in wholesale electricity markets: The

California market, 1998–2000,” American Economic Review, 2003, 93 (2), 425–430.

, “Quantifying the supply-side benefits from forward contracting in wholesale electricity

markets,” Journal of Applied Econometrics, 2007, 22 (7), 1179–1209.

49



Appendix

A Additional Figures and Tables

Figure A.1: Bid curve and cost estimates
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Notes: Example of bid curve and cost estimates for one bidder under PAB pricing. We omit the
bidder indicator as well as the round number in order to comply with the anonymization of the
data. In this case, there are five different quantity-price pairs (bids) submitted by this bidder.
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Figure A.2: Solar bids and network nodes

Notes: Map of Germany indicating the zip codes for which a bid has been submitted in at least
one auction round and the access points (nodes) to the high voltage electricity network. Average
zip code size differ by state.
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Table A.1: German solar auctions, 2015-2019

# Round Date Technology Pricing rule Volume Ceiling price
(MW) (e-cent/kWh)

1 15/04/2015 Solar pay-as-bid 150 11.29
2 01/08/2015 Solar uniform pricing 150 11.18
3 01/12/2015 Solar uniform pricing 200 11.09
4 01/04/2016 Solar pay-as-bid 125 11.09
5 01/08/2016 Solar pay-as-bid 125 11.09
6 01/12/2016 Solar pay-as-bid 160 11.09
7 01/02/2017 Solar pay-as-bid 200 8.91
8 01/06/2017 Solar pay-as-bid 200 8.91
9 01/10/2017 Solar pay-as-bid 200 8.84
10 01/02/2018 Solar pay-as-bid 200 8.84
11 01/04/2018 Solar / Wind pay-as-bid 200 8.84
12 01/06/2018 Solar pay-as-bid 182 8.84
13 01/10/2018 Solar pay-as-bid 182 8.75
14 01/11/2018 Solar / Wind pay-as-bid 200 8.75
15 01/02/2019 Solar pay-as-bid 175 8.91
16 01/03/2019 Solar pay-as-bid 500 8.91
17 01/04/2019 Solar / Wind pay-as-bid 200 8.91
18 01/06/2019 Solar pay-as-bid 150 7.50

Notes: List of German solar auctions: April 2015 to June 2019. Solar was single winning technol-
ogy in case bids from wind were admitted in the same auction round. Annual auction volume is
determined by the government’s RE goals and broken down into auction rounds. The price ceiling
is the maximum allowed bid price in each auction round.

Table A.2: Heterogeneous markups by size

(1) (2) (3)
1(large bidder) -0.042∗ -0.039∗ -0.029

(0.021) (0.022) (0.019)
Avg. system cost (e/kWh) -0.150∗∗

(0.073)
Constant 1.058∗∗∗ 1.171∗∗∗ 2.014∗∗∗

(0.016) (0.101) (0.467)
N 233 233 233
Adjusted R2 0.02 0.06 0.11
Mean DV 1.05 1.05 1.05
Land-type FE No Yes Yes
State FE No Yes Yes

Notes: DV: Markups. Sample limited to UP rounds 2 and 3. Standard errors clustered at the
bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.3: Bid values and past auction outcomes

(1) (2) (3)
# bids, prev. auction -0.002 -0.001 -0.001

(0.001) (0.001) (0.001)
Med. winning bid, prev. auction 0.526∗∗∗ 0.476∗∗∗ 0.466∗∗∗

(0.104) (0.112) (0.111)
Max. winning bid, prev. auction 0.326∗∗∗ 0.315∗∗∗ 0.319∗∗∗

(0.090) (0.089) (0.088)
Avg. system cost, prev. auction -0.433∗∗∗ -0.404∗∗∗ -0.390∗∗∗

(0.145) (0.145) (0.143)
Distance to network (100 km) 0.383∗ 0.360∗ 0.358

(0.210) (0.195) (0.218)
Solar irradiation (MWh/m2) -1.542∗ -0.181 -0.166

(0.829) (0.838) (1.082)
Auction volume (100 MW) -1.459∗∗∗ -1.533∗∗∗ -1.525∗∗∗

(0.333) (0.360) (0.343)
Auction volume2 0.252∗∗∗ 0.261∗∗∗ 0.260∗∗∗

(0.052) (0.056) (0.053)
1(large bidder) -0.238 -0.254∗ -0.246∗∗

(0.163) (0.135) (0.117)
Capture price (last three years) 0.731∗∗ 0.670∗∗ 0.676∗∗

(0.339) (0.320) (0.322)
Land-type: Building 0.408∗∗∗ 0.423∗∗

(0.149) (0.184)
Other 0.491∗∗∗ 0.526∗∗∗

(0.100) (0.131)
Adjacent road or railway 0.564∗∗∗ 0.558∗∗∗

(0.088) (0.086)
Site, prev. usage 0.497∗∗∗ 0.509∗∗∗

(0.076) (0.106)
N 1,424 1,424 1,424
Adjusted R2 0.690 0.707 0.710
Mean DV 6.571 6.571 6.571
State FE No No Yes

Notes: DV: bid values. Regressions include a constant term. Land-type: all estimates with respect
to agricultural land (omitted category). Standard errors clustered at the bidder level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Online Appendix

O.1 Additional Institutional Details

O.1.1 The German solar market around the introduction of the

auctions

Figure O.1: Evolution of the Germany Solar Market
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The market for large scale solar in Germany was rather unstable in the years prior to

the introduction of the auction mechanism in 2015. First, module prices had declined more

rapidly than anticipated by the policy maker, leading to an unexpected surge in capacity

(and related subsidy payments) and windfall profits to investors in the years 2009-2012 (see

Appendix Figure O.1). The government responded to these developments by reducing the

governmental set subsidy (feed-in tariff, FIT) and reducing supply (excluding the possibility

to construct solar on agricultural land, and introducing a maximum size of 10 MW of capacity

per plant, EEG 2012). Furthermore, the government introduced a dynamic reduction of

FITs as a function of the total added solar capacity. However, module prices stagnated

in the following years mainly due to the import tariffs on Chinese modules imposed by

the European Union, leading to low uptake. While the annual total installed capacity for
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ground-mounted solar exceeded 3 gigawatt (GW) in 2012 (representing 40% of total new

solar capacity), it declined dramatically to around 1.2 GW in 2013 and further to about 0.6

GW in 2014 (Tiedemann et al., 2019; Klessmann et al., 2015). Given this uncertainty in the

market environment and the difficulty to set the ‘correct’ FIT rates, the government began

to consider auctions for large solar and wind installations, with the objective to lower the

total subsidy cost, while providing sufficient incentives for RE investment.

O.1.2 Special auction rules

In addition to the auction rules discussed in the main text, there are some special rules that

only apply to a subset of rounds in our sample.

First, during the pilot auction phase (2015-2016), the auctioneer restricted the number

of awards per year for bids on agricultural land to 10. Once this quota was reached, bids on

agricultural land could only be awarded in the following year. From 2017 onward, however,

several states changed that rule, which de facto lifted the quota for projects in Bavaria,

Baden-Wuerttemberg, Hesse, Rhineland Palatinate, and Saarland. In most states and years

these quotas have been non-binding.

Second, for two auction rounds (April and November 2018) bids were ranked not only

according to their bid value, but bids from counties with a high penetration of RE relative

to load received a penalty on their bid value (malus). Ranking was performed according to

these updated values.

Third, the second auction of 2019 was significantly larger than the other auction rounds.

This change in auction volume (demand) was unexpected and is related to an amendment

to the EEG Act increasing the annual volume to 1,800 MW (from about 500 MW in the

preceding years), which is more than threefold the initial annual auction volume. This

amendment also increased the auction frequency from a quarterly auction format to more

frequent auctions (up to monthly).

Finally, while RE auctions in Germany are generally technology-specific, i.e., there is a

specific auction for solar and another one for wind, three auction rounds between January

2018 and June 2019 have been implemented as joint auctions in which solar and wind were

allowed to bid at the same time (see also Figure 2). Note however that wind bids in these

auctions were not competitive and solar was the single winning technology. We therefore

exclude wind bids from our analysis and treat these auction rounds the same as other solar
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auctions in the rest of our sample.

O.1.3 Data and prediction of the capture prices

In order to calculate the expected profits over the lifetime of the project (20-year policy

horizon), we need to make assumptions about the future evolution of capture prices. We do

so in the following way.

At the moment of the auction participation, we assume that the investors have information

on past capture prices and wholesale electricity market prices for the years leading up to

the auction. This information is publicly available on the website of the German Network

Transmission Operators (https://www.netztransparenz.de/). We further suppose that

investors take past prices (average capture prices over the four years leading up to the auction)

as the initial guess. Similarly, the monthly variation in capture prices is equal to the observed

variation over the previous four years. The uncertainty regarding future capture prices is

therefore mainly related to the time trend and evolution of volatility of the same.

To account for these elements, we use information from policy reports that are publicly

available and that make long-term price forecasts about the level and volatility of wholesale

electricity prices.44 Note that the wholesale electricity prices and the capture price are highly

correlated. In the period prior to the first auction round included in our sample, January

2012 - December 2015, the two monthly time series show a correlation coefficient of ρ = 0.96

(see Figure O.2). This, however, does not mean that in future periods the same correlation

patterns remains, mainly due to the “cannibalization effect” of solar PV, and the fact that the

production from new solar capacity is highly correlated with the production of the existing

solar stock. We thus want to allow for the possibility that the capture rate, the ratio between

the capture price and the wholesale electricity price, does change over time. In particular,

we take the wholesale electricity prices as upper bound, and account with lower growth rates

and volatility measures for the fact that solar PV might be less valued in future periods, as

it mostly produces during the day, when prices are depressed due to the large and increasing

installed capacity of renewables.

The main driving forces for the long-term price evolution of wholesale electricity prices

in Germany are discussed in a White Paper published by the German government in 2017

44In particular, Schlesinger et al. (2014) and vbw / Prognos Strompreisprognose 2023 (ac-
cessible here: https://www.vbw-bayern.de/Redaktion/Frei-zugaengliche-Medien/Abteilungen-GS/

Wirtschaftspolitik/2023/Downloads/vbw_Strompreisprognose_Juli-2023-3.pdf).
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Figure O.2: Monthly capture price and wholesale electricity price in Germany, 2012-2015
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Source: Monthly capture prices for solar PV and wholesale electricity prices available from https:

//www.netztransparenz.de/

‘Electricity 2030: long-term trends - tasks for the coming years’.45 The most relevant factors

include i) increased electricity demand (stemming mostly from electrification in industry and

transportation), ii) decreased electricity supply (nuclear and coal phase out), and iii) increase

in RE capacity (according to RE targets set by the government). While i) and ii) have an

increasing impact on prices, iii) will lead to lower price levels, but likely will result in higher

price volatility as renewable output of plants is highly correlated.

To capture the long-term price trend, we use the baseline scenario for nominal price

evolution in Schlesinger et al. (2014) and interpolate linearly between reported years.46 To

account for the increase in volatility, we use the final volatility estimates in vbw / Prognos

Strompreisprognose (2023) for the year 2035 and perform linear interpolation at the monthly

level with respect to the baseline volatility measures.

We parameterize the time series of capture prices to simulate the evolution over 240

months (20 years), starting at month 13 after each auction date. Figure O.3 shows the main

scenario for the wholesale electricity price (γ1 = γ2 = 1), as well as alternative scenarios

with a lower growth rate and a lower volatility for the capture price of solar PV. These

scenarios are drawn exemplary for auction round 4, held in April 2016. For reference, the

45https://www.bmwk.de/Redaktion/EN/Publikationen/electricity-2030-concluding-paper.html
46We use nominal prices as the bid price in the policy is not indexed to inflation.
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quantity-weighted average bid price of winning bids was 7.14 e-cents/kWh in this auction

round.

Figure O.3: Simulation of capture price paths for 240 months (20 years), auction round 4:
April 2016

Notes: See text for details.

To account for uncertainty in the capture price time series and lower capture rates in

the future, we simulate a total of six scenarios, multiplying the baseline growth rate by the

following factors [1, 0.5, 0.1], and the volatility measure by [1, 0.5].

O.2 Data Background

Auction data. While the bid data are anonymized, individual bidders (and projects) can

be tracked over time given a unique identification number. We use public information from
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the list of auction winners (published by the Federal Network Agency47) to obtain additional

information on the type of bidders, whenever they have won at least one project. For these

calculations we treat each auction round - bidder as a unique observation. Out of the 648

unique auction-bidder pairs, we can identify approximately 80% in terms of legal status

(private vs. public company) and type of firm (investor focused, solar park, or utility). Most

observations in the data are private companies that qualify as “small” bidders (Figure O.4).

Figure O.4: Share of large vs. small bidders by auction round in estimation sample
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Another concern is that bidders who participated in an auction round and lost may

reapply with the same project at a later stage. Yet, using the unique project identifiers, we

find that only 19% of all bids show up more than once in the data. 81% of project bids are

first-time bids, so the assumption of independence across rounds does not seem too restrictive

(see also Figure O.5 for a breakdown by round).

Irradiation data. We control for the available sunshine at the location of the solar in-

stallation, the irradiation amount. Higher irradiation levels lead to a higher generation per

unit of capacity installed and hence should lead to lower unit costs and lower bid values. We

use irradiation data from 2010 to 2016 at the county level provided by the German Weather

Service.48

47https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Ausschreibungen/

Solaranlagen1/BeendeteAusschreibungen/start.html, last accessed: 5 June 2025.
48Climate Data Center of the German Weather Service (DWD). https://cdc.dwd.de/portal/.
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Figure O.5: Share of repeated bids by auction round
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Solar cost indicators. We also use two aggregate solar cost indicators, the module price

index in Euros per kilowatt (e/kW) provided by PVxchange and a system price index pro-

vided by the German Solar Association (BSW). Both indicators measure average cost factors

for typical installations of large ground-mounted solar in Europe and Germany. From 2014

until the end of 2020 solar module costs decreased almost linearly, from roughly 500 e/kW

in 2015 to 250 e/kW in 2020 (see Figure 1). The same is true when considering solar system

costs, which decreased from roughly 1,000 e/kW in 2015 to 750 e/kW in 2019. To calculate

the module cost and system cost measures and to account for price expectations at the time

of the auction, we take the average expected costs in the next 12 months. For the analysis,

we further convert the installation capacity (in e/kW) to e/kWh, we assume a lifetime of

25 years and an annual discount factor of 5%. We calculate the annual production based on

observed capacity factors for realized bids at the solar installation level, whenever these are

available, and use interpolated (average) capacity factors otherwise.

Interconnection costs to the electricity grid. To proxy for the interconnection costs,

we calculate the distance between the solar installation and the electricity grid as a direct

line from the centroid of the 5-digit zip code in which the solar installation is located and the

nearest high voltage network node (see Appendix Figure A.2).49 The data on the German

49See https://emp.lbl.gov/queues for a discussion on the US markets and Lamp and Samano (2023)
for a discussion on interconnection costs in Germany.
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high-voltage network are obtained from Egerer (2016).

O.3 Alternative Model Specifications

O.3.1 Multi-unit auction model without future payoffs

Pay-as bid auction. An alternative to the main estimation that takes into account expec-

tations on future payoffs due to the subsidy design is to model bidding as a one-time payment

in which bidders maximize expected profits from the auction and disregard the evolution of

the capture prices. The following builds direct on the setup in Hortaçsu and McAdams (2010)

and Kastl (2011). The firm maximizes the expected value of its profits as a function of the

private signal si

Πi(si) =

∫ Qi(y
−1(·;s))

0

Ki∑
k=1

(bi,k − ci(qi,k; si))1(qi,k ≤ qi < qi,k+1)dqi,

where Qi(y
−1(·; s)) is the quantity firm i is awarded when all firms’ supply schedules are

the vector y(p; s). The set of all supply schedules in y(p; s) is a Bayesian Nash equilibrium

if each firm i maximizes its expected value of Πi. This profit function reflects specifically the

pay-as-bid auction format.

We use a perturbation argument similar to that in Kastl (2011, 2012) to find an expression

for the costs without using the first order conditions from the expression for profits above.

For the bid to be optimal, the following equation must hold for each step k,

Pr(bi,k < pc < bi,k+1)[bi,k − ci(qi,k; si)] = Pr(bi,k+1 ≤ pc)(bi,k+1 − bi,k),

where pc is the market clearing price.50

This equation can be rearranged to obtain a closed-form expression for the cost for each

50The argument works as follows. Assume that the clearing price occurs at a vertical segment of the
individual supply curve. Then, a small reduction in quantity (bid shading) makes the bidder lose bi,k −
ci(qi,k; si) times the small reduction in quantity and only if the price is effectively in the vertical segment
between the k-th and the (k+1)-th steps (Pr(bi,k < pc < bi,k+1) > 0), where pc is the market clearing price.
At the same time, this quantity reduction shifts the bidder’s supply curve to the left therefore, the step bk+1

now becomes marginal and produces gains of bi,k+1 − bi,k as long as the new clearing price is effectively at
least bi,k+1. If losses and gains from bid shading are not equalized, then there exists a potential deviation in
the bid schedule that leads to higher expected payoffs, so the bidding strategy cannot be optimal.
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step k of the firm’s supply curve,

ci(qi,k; si) = bi,k −
Pr(bi,k+1 ≤ pc)

Pr(bi,k < pc < bi,k+1)
(bi,k+1 − bi,k).

Our goal is to estimate ci(qi,k; si) by using the supply curves bi,k observed in data and by

simulating residual demand curves to find Pr(bi,k+1 ≤ pc) and Pr(bi,k < pc < bi,k+1).

This expression is the equivalent of a pricing equation in a Bertrand-Nash game where

the marginal costs can be recovered from the prices and a markup term that depends on the

own market share and the substitution effects. Similarly, our expression for the cost is equal

to the bid value minus a term that depends on the probability of winning and on how that

probability is affected by the clearing price.

Uniform auction. In the uniform price setting without future payoffs, the bidder receives

the market clearing price if the capture price falls below the bid and it receives the capture

price otherwise. Therefore, the bidder’s objective function is

EΠi(si) =

∫ Qi(y
−1(·;s))

0

Ki∑
k=1

(pc(y(·; s))− ci(qi,k; si))1(qi,k ≤ qi < qi,k+1)dqi,

where pc(y(·; s)) is the market clearing price.

We obtain an optimality condition following the argument in Kastl (2011) but adapted

to the case of bidders that submit supply curves instead of demand curves. Assume that

the residual demand curve crosses between the k-th and the (k + 1)-th steps. If bidder i

reduces her marginal quantity by one unit, she losses pc − ci,k with some probability. Note

that we have simply written pc without its dependencies on the signals and the vector of bids

to make the notation lighter. At the same time she would gain the increase in the clearing

price multiplied by the inframarginal quantity because all inframarginal quantities are paid

the same price. Since a decrease in quantity causes an increase in price, and vice-versa, we

write a negative sign on the right-hand side to put the derivative in terms of gains.

Pr(bi,k < pc < bi,k+1)︸ ︷︷ ︸
≡M1

[E(pc|bi,k < pc < bi,k+1)− ci,k] = − qi,k
∂E(pc1(bi,k ≤ pc ≤ bi,k+1))

∂qi,k︸ ︷︷ ︸
≡M2
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Solving for the costs gives

ci,k = E(pc|bi,k < pc < bi,k+1) +
M2

M1

,

which has the usual interpretation of a uniform price setting where the cost is the price minus

a markup since M2

M1
< 0 and therefore, costs are lower than pc.

We show the estimated costs, margins, and Lerner index densities using this model with

no future payoffs in Figure O.6. The main difference with respect to the full model is that

the Lerner index densities for the PAB rounds are less flat and for the UP rounds more mass

for higher values, making it evident that the two models lead to different estimates of market

power.

The correlations between markups, the probability of winning, and bid prices with indica-

tors of bidder’s size and time period using this static model are reported in Tables O.1 - O.3.

Without taking into account future payoffs, the markups for P1 and P2 have a larger differ-

ence between them than in the main model with future payoffs. Another difference is that

in the static model there is no statistically significant correlation of passthrough when con-

ditioning on size and time period, whereas in the full model there is evidence of a significant

effect on the triple interaction.
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Figure O.6: Estimated costs and observed bids densities: no future payoffs
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(a) UP: Auction rounds 2-3
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(b) PAB, Period 1: Auction rounds 4-8
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(c) PAB, Period 2: Auction rounds 9-18
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Notes: Kernel densities of the costs obtained from a model that only considers ‘static’ auction
payoffs and from the observed bids for uniform pricing rule in Panel (a) and PAB pricing in Panels
(b) and (c). Individual bids are aggregated by bidder and period using quantity-weighted averages.
Panel (d) shows the average Lerner Index, defined as bi−ci

bi
, for each period separately.
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Table O.1: Markups, no future payoffs

(1) (2) (3) (4)
1(large bidder) -0.065∗ -0.044 0.013

(0.037) (0.041) (0.056)
1(PAB P1) 0.568∗∗∗ 0.574∗∗∗ 0.742∗∗∗ 0.636∗∗∗

(0.077) (0.079) (0.145) (0.167)
1(PAB P2) 0.413∗∗∗ 0.411∗∗∗ 0.570∗∗∗ 0.534∗∗∗

(0.074) (0.073) (0.113) (0.167)
1(large bidder) × 1(PAB P1) -0.528∗∗∗ -0.539∗∗∗ -0.586∗∗∗ -0.584∗∗∗

(0.098) (0.098) (0.098) (0.163)
1(large bidder) × 1(PAB P2) -0.270∗∗ -0.278∗∗∗ -0.293∗∗∗ -0.368∗∗

(0.108) (0.104) (0.110) (0.180)
N 1,424 1,424 1,424 1,424
Adjusted R2 0.10 0.10 0.11 0.21
Mean DV 1.37 1.37 1.37 1.37
Bid-specific controls No Yes Yes Yes
Land FE No No Yes Yes
State FE No No Yes Yes
Year FE No No Yes Yes
Bidder FE No No No Yes

Notes: DV: Markups defined as bi,k/ci,k. Costs obtained from a model that only considers ‘static’
auction payoffs. All regressions include a constant term and control for auction volume. Bid-specific
controls include distance to network and solar irradiation. Standard errors clustered at the bidder
level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table O.2: Probability of winning the auction, no future payoffs

(1) (2) (3) (4) (5)
1(large bidder) 0.064 0.070 0.073

(0.070) (0.070) (0.071)
1(PAB P1) -0.019 -0.138∗∗ -0.107 -0.156 -1.433∗∗∗

(0.056) (0.065) (0.105) (0.129) (0.200)
1(PAB P2) -0.030 -0.187∗∗∗ -0.294∗∗∗ -0.357∗∗∗ -1.310∗∗∗

(0.052) (0.058) (0.065) (0.088) (0.260)
1(large bidder) × 1(PAB P1) 0.262∗∗ 0.305∗∗∗ 0.299∗∗∗ 0.333∗∗∗ 0.178∗

(0.106) (0.110) (0.112) (0.120) (0.106)
1(large bidder) ×1(PAB P2) 0.168∗∗ 0.193∗∗∗ 0.133∗ 0.236∗∗∗ 0.160∗

(0.074) (0.069) (0.069) (0.084) (0.082)
Estimated cost -0.044∗∗∗ -0.042∗∗∗ -0.037∗∗∗ -0.170∗∗∗

(0.011) (0.009) (0.011) (0.030)
Cost × 1(PAB P1) 0.190∗∗∗

(0.028)
Cost × 1(PAB P2) 0.121∗∗∗

(0.030)
N 1,441 1,424 1,424 1,424 1,424
Adjusted R2 0.13 0.15 0.19 0.28 0.30
Mean DV 0.40 0.39 0.39 0.39 0.39
Bid-specific controls No Yes Yes Yes Yes
Land-type FE No No Yes Yes Yes
State FE No No Yes Yes Yes
Year FE No No Yes Yes Yes
Bidder FE No No No Yes Yes

Notes: DV: bid awarded (binary). Linear probability model. Costs obtained from a model that only
considers ‘static’ auction payoffs. All regressions include a constant term and control for auction
volume. Bid-specific controls include distance to network and solar irradiation. Standard errors
clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table O.3: Bid prices and cost pass-through, no future payoffs

(1) (2) (3) (4)
1(large bidder) 0.086 -0.091 -2.558

(1.654) (1.670) (1.801)
1(PAB P1) 2.914∗∗ 2.969∗∗ 4.027∗∗∗ 2.385

(1.159) (1.168) (1.199) (1.449)
1(PAB P2) 0.957 1.023 2.351∗ 0.622

(1.191) (1.198) (1.232) (1.524)
1(large bidder) × 1(PAB P1) 0.027 0.278 2.975 -0.397

(2.577) (2.536) (2.524) (2.211)
1(large bidder) × 1(PAB P2) -2.044 -1.886 1.060 -0.430

(1.900) (1.871) (1.819) (2.213)
Estimated cost 0.597∗∗∗ 0.600∗∗∗ 0.654∗∗∗ 0.472∗∗∗

(0.137) (0.138) (0.142) (0.181)
Cost × 1(large bidder) -0.027 -0.011 0.286 0.110

(0.207) (0.207) (0.221) (0.280)
Cost × 1(PAB P1) -0.510∗∗∗ -0.520∗∗∗ -0.630∗∗∗ -0.442∗∗

(0.139) (0.140) (0.146) (0.180)
Cost × 1(PAB P2) -0.289∗ -0.299∗ -0.425∗∗∗ -0.213

(0.154) (0.153) (0.151) (0.189)
1(large bidder) × 1(PAB P1) × cost -0.045 -0.076 -0.396 0.081

(0.344) (0.337) (0.331) (0.276)
1(large bidder) × 1(PAB P2) × cost 0.314 0.295 -0.080 0.089

(0.250) (0.245) (0.233) (0.277)
N 1,424 1,424 1,424 1,424
Adjusted R2 0.70 0.70 0.78 0.84
Mean DV 6.57 6.57 6.57 6.57
Bid-specific controls No Yes Yes Yes
Land-type FE No No Yes Yes
State FE No No Yes Yes
Year FE No No Yes Yes
Bidder FE No No No Yes

Notes: DV: Bid values. Costs obtained from a model that only considers ‘static’ auction payoffs.
All regressions include a constant term and control for auction volume. Bid-specific controls include
distance to network and solar irradiation. Standard errors clustered at the bidder level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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O.4 Robustness Checks

O.4.1 Main model estimates, Rounds 2 to 5

Figure O.7: Lerner Index: UP versus PAB pricing (auction rounds 2 - 5)
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O.4.2 Main model regressions, omitting zero margins

Table O.4: Markups

(1) (2) (3) (4)
1(large bidder) 0.024 0.046 0.106

(0.052) (0.059) (0.067)
1(PAB P1) 0.345∗∗∗ 0.354∗∗∗ 0.416∗∗∗ 0.375∗∗∗

(0.043) (0.044) (0.095) (0.104)
1(PAB P2) 0.443∗∗∗ 0.446∗∗∗ 0.506∗∗∗ 0.505∗∗∗

(0.063) (0.062) (0.100) (0.170)
1(large bidder)× 1(PAB P1) -0.039 -0.056 -0.086 0.133

(0.153) (0.158) (0.171) (0.289)
1(large bidder) × 1(PAB P2) -0.300∗∗∗ -0.313∗∗∗ -0.336∗∗∗ -0.105

(0.098) (0.100) (0.106) (0.248)
N 974 974 974 974
Adjusted R2 0.12 0.12 0.14 0.35
Mean DV 1.40 1.40 1.40 1.40
Bid-specific controls No Yes Yes Yes
Land-type FE No No Yes Yes
State FE No No Yes Yes
Year FE No No Yes Yes
Bidder FE No No No Yes

Notes: DV: Markups defined as bi,k/ci,k. All regressions include a constant term and control
for auction volume. Bid-specific controls include distance to network and solar irradiation. All
observations with zero imputed margin, i.e., bi,k = ci,k, have been removed from the estimation
sample. Standard errors clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table O.5: Probability of winning the auction

(1) (2) (3) (4) (5)
1(large bidder) -0.088 -0.153∗ -0.158∗

(0.157) (0.090) (0.091)
1(PAB P1) -0.100 -0.381∗∗∗ -0.354∗∗∗ -0.463∗∗∗ -2.266∗∗∗

(0.066) (0.070) (0.113) (0.167) (0.348)
1(PAB P2) -0.095∗ -0.465∗∗∗ -0.516∗∗∗ -0.570∗∗∗ -2.152∗∗∗

(0.055) (0.059) (0.066) (0.109) (0.304)
1(large bidder) × 1(PAB P1) 0.084 0.106 0.086 0.238 0.036

(0.201) (0.144) (0.142) (0.208) (0.242)
1(large bidder) × 1(PAB P2) 0.245 0.345∗∗∗ 0.268∗∗∗ 0.187 -0.009

(0.163) (0.102) (0.100) (0.207) (0.229)
Estimated cost -0.100∗∗∗ -0.097∗∗∗ -0.092∗∗∗ -0.294∗∗∗

(0.011) (0.012) (0.013) (0.034)
Cost × 1(PAB P1) 0.252∗∗∗

(0.043)
Cost × 1(PAB P2) 0.208∗∗∗

(0.041)
N 991 974 974 974 974
Adjusted R2 0.11 0.22 0.25 0.38 0.41
Mean DV 0.28 0.26 0.26 0.26 0.26
Bid-specific controls No Yes Yes Yes Yes
Land-type FE No No Yes Yes Yes
State FE No No Yes Yes Yes
Year FE No No Yes Yes Yes
Bidder FE No No No Yes Yes

Notes: DV: bid awarded (binary). Linear probability model. All regressions include a constant
term and control for auction volume. Bid-specific controls include distance to network and solar
irradiation. All observations with zero imputed margin, i.e., bi,k = ci,k, have been removed from
the estimation sample. Standard errors clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table O.6: Bid prices and cost pass-through

(1) (2) (3) (4)
1(large bidder) -1.721∗ -1.546 -1.526

(0.993) (0.967) (1.296)
1(PAB P1) 0.322 0.369 2.439∗∗∗ 2.173∗∗∗

(0.487) (0.485) (0.521) (0.637)
1(PAB P2) -1.357∗∗∗ -1.300∗∗∗ 0.878 0.330

(0.430) (0.439) (0.544) (0.776)
1(large bidder) × 1(PAB P1) 3.552 3.434 3.782 -5.609∗∗

(2.769) (2.729) (2.898) (2.216)
1(large bidder) × 1(PAB P2) 0.047 -0.189 0.160 -6.729∗∗∗

(1.012) (0.991) (1.309) (1.389)
Estimated cost 0.347∗∗∗ 0.350∗∗∗ 0.496∗∗∗ 0.459∗∗∗

(0.051) (0.052) (0.056) (0.059)
Cost × 1(large bidder) 0.252∗ 0.231∗ 0.209 -0.694∗∗∗

(0.133) (0.130) (0.166) (0.172)
Cost × 1(PAB P1) -0.153∗∗ -0.162∗∗ -0.390∗∗∗ -0.378∗∗∗

(0.070) (0.070) (0.077) (0.078)
Cost × 1(PAB P2) 0.049 0.039 -0.211∗∗∗ -0.146

(0.069) (0.069) (0.078) (0.109)
1(large bidder) × 1(PAB P1) × cost -0.578 -0.568 -0.626 0.623∗

(0.432) (0.426) (0.443) (0.333)
1(large bidder) × 1(PAB P2) × cost -0.003 0.023 -0.023 0.870∗∗∗

(0.143) (0.141) (0.174) (0.192)
N 974 974 974 974
Adjusted R2 0.76 0.76 0.83 0.89
Mean DV 6.76 6.76 6.76 6.76
Bid-specific controls No Yes Yes Yes
Land-type FE No No Yes Yes
State FE No No Yes Yes
Year FE No No Yes Yes
Bidder FE No No No Yes

Notes: DV: Bid values. All regressions include a constant term and control for auction volume.
Bid-specific controls include distance to network and solar irradiation. All observations with zero
imputed margin, i.e., bi,k = ci,k, have been removed from the estimation sample. Standard errors
clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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O.4.3 Model estimates with symmetric bidders

Figure O.8: Estimated costs and observed bids densities: symmetric bidders
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(a) UP: Auction rounds 2-3
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(b) PAB, Period 1: Auction rounds 4-8
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(c) PAB, Period 2: Auction rounds 9-18
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(d) Lerner Index, all three periods

Notes: Kernel densities of the costs obtained for uniform pricing rule (Equation 7 , Panel (a)) and
PAB pricing (Equation 5, Panels (b) and (c)). Model does not consider bidder heterogeneity by
size. Individual bids are aggregated by bidder and period using quantity-weighted averages. Panel
(d) shows the average Lerner Index, defined as bi−ci

bi
, for each period separately.
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O.4.4 Model estimates, pooling several rounds for estimation

Figure O.9: Estimated costs and observed bids densities: symmetric bidders
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(b) PAB, Period 1: Auction rounds 4-8
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(c) PAB, Period 2: Auction rounds 9-18
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(d) Lerner Index, all three periods

Notes: Kernel densities of the costs obtained for uniform pricing rule (Equation 7 , Panel (a))
and PAB pricing (Equation 5, Panels (b) and (c)). Rounds are pooled for estimation based on
four-dimensional kernel, incl. number of bidders, auction id, auction volume, and pricing rule, so
that each auction is at most pooled with one round before and one round after. Individual bids are
aggregated by bidder and period using quantity-weighted averages. Panel (d) shows the average
Lerner Index, defined as bi−ci

bi
, for each period separately.
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O.4.5 Robustness: Alternative definition of large bidders

Analogously to the baseline size definition, we define ‘large’ bidders in an alternative manner

according to the number of projects submitted in each auction in which the bidder is present.

Specifically, we define a bidder as ‘large’ if the average number of submitted bids is larger

than two. This alternative definition classifies 25 bidders (out of 202 unique bidders) as

‘large’, which, however correspond to about 64% of all bids. The omitted category are ‘small

bidders’ with fewer project bids.

To obtain the regression tables, we first run the model with the alternative group defini-

tion, and in a second step, estimate the linear regressions. Size of individual coefficients and

direction of estimates are similar to the main regressions, yet, the alternative group definition

leads to lower statistical significance for the interaction terms.

Table O.7: Markups, alternative definition of ‘large’ bidder

(1) (2) (3) (4)
1(large bidder) 0.009 0.017 0.007

(0.014) (0.015) (0.021)
1(PAB P1) 0.537∗∗∗ 0.538∗∗∗ 0.609∗∗∗ 0.630∗∗∗

(0.048) (0.048) (0.094) (0.129)
1(PAB P2) 0.566∗∗∗ 0.567∗∗∗ 0.700∗∗∗ 0.683∗∗∗

(0.048) (0.048) (0.080) (0.123)
1(large bidder) × 1(PAB P1) -0.287∗∗∗ -0.288∗∗∗ -0.284∗∗∗ -0.399∗∗∗

(0.081) (0.080) (0.086) (0.137)
1(large bidder) × 1(PAB P2) -0.331∗∗∗ -0.335∗∗∗ -0.336∗∗∗ -0.339∗∗

(0.074) (0.073) (0.076) (0.146)
N 1,424 1,424 1,424 1,424
Adjusted R2 0.19 0.19 0.22 0.37
Mean DV 1.29 1.29 1.29 1.29
Bid-specific controls No Yes Yes Yes
Land-type FE No No Yes Yes
State FE No No Yes Yes
Year FE No No Yes Yes
Bidder FE No No No Yes

Notes: DV: Markups defined as bi,k/ci,k. All regressions include a constant term and control for
auction volume. Bid-specific controls include distance to network and solar irradiation. Standard
errors clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure O.10: Estimated costs and observed bids densities: alternative definition of ‘large’
bidders
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(a) UP: Auction rounds 2-3
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(b) PAB, Period 1: Auction rounds 4-8
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(c) PAB, Period 2: Auction rounds 9-18
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(d) Lerner Index, all three periods

Notes: Kernel densities of the costs obtained for uniform pricing rule (Equation 7 , Panel (a)) and
PAB pricing (Equation 5, Panels (b) and (c)). Estimates are based on an alternative definition of
‘large’ bidders, based on the average number of submitted projects per auction. Individual bids are
aggregated by bidder and period using quantity-weighted averages. Panel (d) shows the average
Lerner Index, defined as bi−ci

bi
, for each period separately.
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Table O.8: Probability of winning the auction, alternative definition of ‘large’ bidder

(1) (2) (3) (4) (5)
1(large bidder) 0.156∗∗ 0.161∗∗ 0.167∗∗

(0.074) (0.069) (0.069)
1(PAB P1) 0.019 -0.157∗∗ -0.154∗ -0.146 -1.638∗∗∗

(0.058) (0.069) (0.090) (0.118) (0.545)
1(PAB P2) 0.084 -0.140∗ -0.286∗∗∗ -0.312∗∗∗ -1.696∗∗∗

(0.056) (0.071) (0.071) (0.110) (0.530)
1(large bidder) × 1(PAB P1) -0.021 0.025 0.018 0.033 0.051

(0.116) (0.119) (0.111) (0.152) (0.128)
1(large bidder) × 1(PAB P2) -0.123 -0.076 -0.099 -0.076 -0.033

(0.092) (0.092) (0.082) (0.137) (0.133)
Estimated cost -0.054∗∗∗ -0.055∗∗∗ -0.060∗∗∗ -0.220∗∗∗

(0.011) (0.012) (0.013) (0.061)
Cost × 1(PAB P1) 0.194∗∗∗

(0.064)
Cost × 1(PAB P2) 0.171∗∗∗

(0.061)
N 1,441 1,424 1,424 1,424 1424
Adjusted R2 0.10 0.12 0.18 0.28 0.29
Mean DV 0.40 0.39 0.39 0.39 0.39
Bid-specific controls No Yes Yes Yes Yes
Land-type FE No No Yes Yes Yes
State FE No No Yes Yes Yes
Year FE No No Yes Yes Yes
Bidder FE No No No Yes Yes

Notes: DV: bid awarded (binary). Linear probability model. All regressions include a constant
term and control for auction volume. Bid-specific controls include distance to network and solar
irradiation. Standard errors clustered at the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table O.9: Bid prices and cost pass-through, alternative definition of ‘large’ bidder

(1) (2) (3) (4)
1(large bidder) 1.961 2.013 1.873

(1.330) (1.351) (1.144)
1(PAB P1) 6.159∗∗∗ 6.202∗∗∗ 7.521∗∗∗ 6.140∗∗∗

(0.425) (0.422) (0.331) (1.008)
1(PAB P2) 3.381∗∗∗ 3.432∗∗∗ 5.053∗∗∗ 3.687∗∗∗

(0.443) (0.443) (0.353) (1.015)
1(large bidder) × 1(PAB P1) -2.697∗∗ -2.763∗∗ -2.753∗∗ -1.574

(1.334) (1.358) (1.173) (1.461)
1(large bidder) × 1(PAB P2) -2.747∗ -2.798∗ -2.565∗∗ -1.110

(1.429) (1.448) (1.205) (1.471)
Estimated cost 0.929∗∗∗ 0.933∗∗∗ 0.998∗∗∗ 0.872∗∗∗

(0.043) (0.042) (0.020) (0.112)
Cost × 1(large bidder) -0.240 -0.249 -0.233∗ -0.068

(0.161) (0.164) (0.139) (0.176)

Cost × 1(PAB P1) -0.933∗∗∗ -0.940∗∗∗ -1.096∗∗∗ -0.924∗∗∗

(0.059) (0.059) (0.047) (0.126)
Cost × 1(PAB P2) -0.499∗∗∗ -0.508∗∗∗ -0.704∗∗∗ -0.527∗∗∗

(0.067) (0.067) (0.055) (0.127)
1(large bidder) × 1(PAB P1) × cost 0.374∗∗ 0.384∗∗ 0.396∗∗∗ 0.235

(0.164) (0.168) (0.145) (0.179)
1(large bidder) × 1(PAB P2) × cost 0.314∗ 0.323∗ 0.324∗∗ 0.123

(0.182) (0.184) (0.152) (0.185)
N 1,424 1,424 1,424 1,424
Adjusted R2 0.75 0.75 0.82 0.86
Mean DV 6.57 6.57 6.57 6.57
Bid-specific controls No Yes Yes Yes
Land-type FE No No Yes Yes
State FE No No Yes Yes
Year FE No No Yes Yes
Bidder FE No No No Yes

Notes: DV: Bid values. All regressions include a constant term and control for auction volume.
Bid-specific controls include distance to network and solar irradiation. Standard errors clustered at
the bidder level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

77


	Introduction
	Institutional Background
	Data and Descriptive Statistics
	Empirical Strategy
	Impact of Auction Payment Rules on Bid Prices
	Bidding Model for Multi-unit Auctions with Contracts-for-Difference Payments
	Payoff under pay-as-bid payment rule
	Payoff under uniform payment rule
	Estimation
	Costs estimates

	Analyzing Bidding Behavior
	Robustness

	Counterfactual Analysis
	Auction Format and Market Power
	Total Procurement Costs
	Costs Efficiency

	Conclusion
	Additional Figures and Tables
	Additional Institutional Details
	The German solar market around the introduction of the auctions
	Special auction rules
	Data and prediction of the capture prices

	Data Background
	Alternative Model Specifications
	Multi-unit auction model without future payoffs


	Robustness Checks
	Main model estimates, Rounds 2 to 5
	Main model regressions, omitting zero margins
	Model estimates with symmetric bidders
	Model estimates, pooling several rounds for estimation
	Robustness: Alternative definition of large bidders


