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1 Introduction

Studies evaluating social programs usually concentrate on overall population measures that

miss the possible heterogeneity in the program impacts. Knowledge of the degree of hetero-

geneity is relevant to policy makers when extending the program to another jurisdiction or

when reducing the number of beneficiaries since that may or may not bring potential welfare

losses. This paper considers an empirical method to infer the heterogeneous impacts of social

programs and how to map those into decisions using expected utility theory.

The problem can arise in the following situation, before implementing the social program

to a larger population, a pilot phase is run in order to get insight about its benefits. Using

the data collected in that phase, the social planner has to decide whether to implement the

program or not on a larger sample, also the planner could decide to restrict the application

of the program to a smaller population. The classical approach to answer this question is to

find an overall treatment effect of the program and if it is statistically significant different

from zero and positive, the program is likely to be preserved or extended. Here we propose a

method to make inference on the treatment effect conditional on covariates even if the sample

is very small within the subgroups, which brings a curse of dimensionality problem, and how

to use that information in a decision making process.

Specifically, we find the probability distributions of potential outcomes for treated and

controls for different subgroups of the population defined by covariates using a hierarchical

Bayesian model. Then we can determine whether a social planner with a strictly increasing

and concave utility function would prefer to assign a similar individual to the treatment or

not by taking the expectation over the potential outcomes probability distributions. This

can be done without having to specify the functional form of the planner’s utility func-

tion1. Moreover, with knowledge of the outcome distributions we can also calculate quantile

treatment effects within the subgroups. Thus the method gives not only information on the

heterogeneity across subgroups but also within.

1Specific conditions on the utility function are discussed later in the paper. The method is agnostic in
two cases: a risk-neutral social planner and positive conditional average treatment effect, and in the absence
of second order stochastic dominance.
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A few papers2 have considered the program evaluation assessment as a statistical decision

problem: by proposing a measure of the value of covariate information and how the higher the

variation in the treatment response as a function of covariates, the higher that value (Manski

[2001], Manski [2004]); by looking at predictive outcome distributions for treated and controls

and then using first order stochastic dominance to rank those distributions (Dehejia [2005]);

by extending and analyzing Manski’s approach to what the rules of assignment converge to

in distribution when a loss function evaluates the decision rule and its interaction with risk

rather than pure statistical rules (Hirano and Porter [2009]); by constructing a framework

to evaluate policies using quasi-experimental data (Kasy [2013]); and by deriving asymptotic

frequentist confidence intervals for welfare gains in randomized assignment experiments when

there are budget constraints (Bhattacharya and Dupas [2012]).

On the other hand, another rather small branch of the literature has looked into the

empirical problems to measure the heterogeneity of treatment effects (Abrevaya et al. [2012],

Bitler et al. [2006], Bitler et al. [2010]); and by considering the theoretical issues of the

hierarchical Bayesian models for evaluation programs when there is heterogeneity and the

use of an empirical Bayesian approach (Chamberlain [2011]). The use of Bayesian methods

to estimate treatment effects dates back to Rubin [1978]3.

More recently, a related branch of the literature has focused on extending Bayesian infer-

ence methods for the heterogeneity of endogenous treatment effects. Hu et al. [2011] and Hu

[2011] for example use a Dirichlet process mixture to determine the number of components

of heterogeneity based on a three-equation selection model. One equation for the selection,

one for the treated, and one for the controls. Chib et al. [2009] propose a four-equation

model to simultaneously allow for sample selection, endogeneity, and nonparametric covari-

2Imbens and Wooldridge [2009] describe how the literature has concentrated on the overall treatment
effect and argue that this would only make sense if we were to mandate exposure to the treatment to either
everyone in the population or to no one, which in practice that is not usually the case.

3He studies the estimation of causal effects by finding the predictive distribution of the outcomes that
correspond to the treatments that are not available in the experiment. The idea is that the unobservable
outcomes (because an individual can be assigned to either the treatment or to the control group but not both)
are missing data and those values can be imputed by giving a prior distribution on the potential outcomes.
After this paper, little had been done on estimating treatment effects using Bayesian techniques (Imbens
[2004]), perhaps because of the intensive computational requirements.
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ate effects. In their Bayesian implementation of the model there is no need to augment the

data to impute missing values due to the selection mechanism as opposed to the general non-

frequentist approach to latent variable models. Li and Tobias [2011] propose a three-equation

model and its Bayesian inference to obtain heterogenous causal effects. The model allows for

joint inference on the determinants of the outcome, the endogenous treatment variable, and

an individual-specific component of the causal effect. But instead of keeping these individual

effects throughout the inference, individuals are exogenously put in different groups leading

to determining heterogeneity using a mixture model over these groups, not across the indi-

viduals4. In general, estimation of treatment effects for small samples or for very restrictive

subsets of covariates has been avoided because of the potential lack of statistical significance

under classical approaches5.

The method we develop in this paper connects these two branches of the literature. We

use a model that captures correlations across the subgroups of the population through a

hierarchical Bayesian model and then second order stochastic dominance to map the within

subgroups probability distributions of potential outcomes into expected utility values6. In

our case we do not model any self-selection issue in the data, but focus on the randomized

experiment on those who signed up for cash assistance. Moreover, our approach keeps para-

metric assumptions at a minimum. An element in common with this literature is that in

order to implement the methods, it is needed to exogenously assume a number of subgroups

in the population over which heterogenous effects can be determined; Bayes factors or other

criteria could be used to choose the number of the subgroups.

Perhaps the closest papers to ours are Bitler et al. [2010] and Dehejia [2005]. In the

former they measured heterogenous impacts of the Connecticut’s Jobs First program by

4There is another branch of the literature developing tests to isolate the covariates that have an impact
on an outcome out of a large collection of covariates. This is the typical situation in studies attempting to
identify the genes associated with a specific disease, as in Efron [2011].

5Graham and Hirano [2011] discuss the performance of different estimators when there are no observations
for particular combinations of covariates values.

6At a broader scale, methods to estimate treatment effects can be classified as follows: (i) regressions of
the outcome on the covariates and a treatment dummy, (ii) matching on covariates, (iii) using the propensity
score, (iv) combinations of those methods, and (v) Bayesian methods. Imbens [2004] Heckman [2010] gives an
in-depth analysis of the state-of-the-art on the structural versus the reduced form approaches to do empirical
work on program evaluation.
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looking at the differences in income between treated and controls at each different quantile

of the income distribution for different subgroups of the population. Then they developed

a test for the null that conditional treatment effects across subgroups are the same. This

is similar to our work in that by using completely different methods we find a high degree

of heterogeneity. The main difference is that we can rank distributions. Dehejia [2005],

using data from a randomized experiment, estimates posterior densities for the treatment

effects and evaluates under different scenarios the maximization of welfare using the posterior

densities. His contribution is that he models program evaluation as a decision problem. For

example, in order to decide whether all the individuals should be assigned to the treatment.

Another scenario is the one of a caseworker that has to decide if a person should be assigned to

the treatment or to the control group. In order to carry out these decisions, he uses classical

expected utility theory since the predictive distributions for the outcomes are known in a

Bayesian framework. The main difference with respect to that paper is that we also condition

on covariates so that the heterogeneity problem overlaps with expected utility rankings.

We apply the method to the Connecticut’s Jobs First program. This arose as one of the

welfare reform experiments in the U.S. caused by the elimination of the Aid to Families with

Dependent Children (AFDC) program in 1996. The Federal government required the states

to replace AFDC with programs that had a time limit to participate and that would enhance

job training. Thus we focus in this paper on the transitional program Jobs First implemented

in Connecticut, specifically in Manchester and New Haven. The welfare experiment consisted

in randomly assigning 4,803 people with at least one dependent children to either AFDC or

to Jobs First7. The outcome of interest is the average quarterly amount of earnings over the

first seven quarters after inception to the experiment since positive earnings directly reflect

employment, which is the main program’s objective. One of the main differences of Jobs First

with respect to AFDC is that the former has a limit of time of cash assistance of 21 months

plus 6 months if an extension is requested and approved. This feature coupled with the

requirement of following a job training program instead of just general education programs,

7Of these, 96% were women.
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were expected to make a difference in the level of the impacts8. It is however unclear how the

program impacts vary with covariates, and even less so how to make decisions on extensions

of the program based on expected utility arguments. The impacts here are the differences

between the outcome level if the individual was in the experimental group and the outcome

level if she was in the control group.

Our results suggest that even though classical statistical measures of conditional treat-

ment effects on earnings are negative for 9 out of 24 subgroups, only 5 of them are welfare-

decreasing. When using total average income -earnings plus transfers-, the conditional aver-

age treatment effect for only one subgroup in our main specification is negative, when using

the expected utility approach there are two other subgroups for which exposure to the treat-

ment does not maximize utility. This difference is due to the curse of dimensionality when

trying to estimate expected values using very small sample sizes, and the lack of use of infor-

mation across subgroups. There is also a high degree of heterogeneity in quantile treatment

effects within the subgroups. A second specification in which pre-treatment covariates are

discarded when forming the subgroups wipes out most of the heterogeneity.

We believe it is relevant to understand the impacts of social programs not just as an overall

measure for the entire population but rather how large the heterogeneity of these impacts is

and how to make assignment decisions based on robust theoretical expected utility results

that do not depend on particular functional forms but only minimal conditions. The rest of

the paper is organized as follows. Section 2 presents the definitions and formal statements of

the problem. Details on Jobs First and some data issues are explained in Section 3. Section 4

presents a hierarchical Bayesian model and a Gibbs sampler. Finally, in Section 5 we present

the connection between predictive income distributions and expected utility theory as well

as the main results. Section 6 concludes.

8For more details on Jobs First see the MDRC’s Final Report (Adams-Ciardullo et al. [2002]).
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2 Conditional Average Treatment Effects

A social planner is trying to decide whether an individual should be assigned to a treatment

or not to maximize an outcome. In this paper, the main outcome is earnings and we do

robustness checks using total income. Equivalent outcomes in other applications are health

quality, level of education, and in general, any outcome of a social program that can be

quantified. Our social planner has data on N individuals. The data for each individual

consist of individual characteristics, whether the individual received the treatment or not,

and the outcome. Individuals are randomly assigned to receive the treatment or not. Each

individual is characterized by a vector of covariates Xi of size 1 × K. Denote by Ti = 1 if

individual is exposed to treatment and by Ti = 0 if the individual is not. The outcome will

be denoted by

Yi ≡ Ti · Yi(1) + (1− Ti) · Yi(0).

Since treatment is completely at random, the unconfoundedness assumption which captures

the idea that treatment assignment is exogeneous conditioned on Xi is automatically satisfied,

(Yi(0), Yi(1))⊥Ti|Xi
9. Thus, conditioning on X, treatment assignment is independent of the

potential outcome. However, the realization of T does affect which outcome is observed.

We are interested in estimating the effect of being under the treatment for a given X.

As one observes either Yi(0) or Yi(1) but not both at the same time for individual i, we

always have some uncertainty in one of the two outcomes. The statistic of interest is the

difference between the outcomes had the individual been in both cases. We call this quantity

the average treatment effect (ATE), β := E(Y (1) − Y (0)). A cell is each of the elements

of the discretization over all the covariates. If we are interested in the treatment effect for

individuals in the cell X = x, we define the conditional average treatment effect (CATE),

β(x) := E(Yi(1) − Yi(0)|X = x). Note that this can be interpreted as an average treatment

effect for a group of individuals with characteristics X = x. We can rewrite β(x) as β(x) =

E(Yi|T = 1, X = x)−E(Yi|T = 0, X = x) where Yi = Ti · Yi(1) + (1− Ti) · Yi(0). The overall

9First proposed by Rosenbaum and Rubin [1983].
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ATE can be obtained by taking the expectation with respect to X,

β = E(β(x)).

This suggests that estimation for β(x) consists of two parts, β1(x) = E(Y |T = 1, X = x)

and β0(x) = E(Y |T = 0, X = x). A simple estimator for the CATE can be constructed using

sample means,

β̂1(x) =
1

N1(x)

∑
i:Ti=1,X=x

Yi

β̂0(x) =
1

N −N1(x)

∑
i:Ti=0,X=x

Yi

where N1(x) is the number of individuals with covariate X = x and under the treatment.

An estimator for the CATE is the difference

β̂(x) = β̂1(x)− β̂0(x). (1)

It is a consistent estimator10 and its variance is V ar(β̂(x)) = 1
N1(x)

σ2
1(x) + 1

N−N1(x)
σ2
0(x),

where σ2
1(x) and σ2

0(x) are the variance of the outcomes for the treated and the controls

respectively when X = x. By replacing the variances with their sample analogs we have

̂V ar(β̂(x)) = 1
N1(x)

σ̂2
1(x) + 1

N−N1(x)
σ̂2
0(x).

Our problem is to find a rule to decide whether a new individual N+1 should be assigned

to the treatment or not. Suppose that the social planner wants to maximize the population

mean outcome of the treatment if she has an increasing and concave utility function. This is

equivalent to maximize the outcome of each individual. That is, conditional on X, she wants

to choose TN+1 such that

TN+1 = arg max
t∈{0,1}

{E(YN+1(t)|XN+1)}

10By using the unconfoundedness assumption to get the third equality,

p lim β̂ = E(Yi|T = 1, X = x)− E(Yi|T = 0, X = x)

= E(Yi(1)|T = 1, X = x)− E(Yi(0)|T = 0, X = x)

= E(Yi(1)|X = x)− E(Yi(0)|X = x) = β.
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so that the population mean outcome is E(maxt∈{0,1}{E(Y (t)|X)}), where the outside ex-

pectation is with respect to X (see Manski [2001]). In order to compute the last expectation

we need the entire distribution of Y (t)|X and not just one point statistic. It is clear that the

function E(Y (t)|X) is identified given the random assigment, but as the partition becomes

finer we get to a curse of dimensionality problem and there might not be in the data enough

individuals to estimate this function. We can use some non-parametric approach to infer

the distribution, or a Bayesian model that as an output gives us the desired distribution.

We opt for the latter since it easily handles correlations across different subgroups. Those

correlations should not arise given the random assignment of the treatment, however the

small sample sizes of the subgroups might induce across-subgroups correlation.

We use a characterization of second order stochastic dominance. This criterion for ranking

distributions relies on the inspection of the cumulative areas under each distribution function.

If for every point in the domain the cumulative area of the distribution function of one random

variable is lower than for another random variable’s, we say that the former second order

stochastic dominates the latter. The well-known result we use in this paper is that for two

random variables X and Z, E(u(X)) ≥ E(u(Z)) for any strictly increasing and concave

function u if and only if X second order stochastically dominates Z. The latter statement

can be easily evaluated using the predictive income distributions obtained from the data.

The assigning rule would now be to take the (N + 1)-th individual, and according to

her characteristics XN+1 = x, she would belong to one of the subgroups, and she would be

assigned to the treatment if the random variable Y |T = 1, X = x second order stochastically

dominates Y |T = 0, X = x.

The social planner has some information to decide how to discretize each covariate. In

the empirical application it is assumed that this criterion is exogenous to the problem of

maximization of the expected value of the outcome and the level of discretization is left for

future research. For example, if the covariate is age the social planner might discretize the

variable into young, adults and seniors according to specific ranges for the covariate age. If

the sample is large enough the level of discretization can be less coarse. In the example,

young, adults and seniors are the three cells obtained by the discretization. For identification
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purposes, we require that in each of the cells there is at least one individual under the

treatment and at least one individual in the control group. That is, in each segment of each

covariate there exists at least one pair (Xi, Yi(0)) and at least one pair (Xi, Yi(1)). Once

we have the discretization for each covariate we can form subgroups of individuals according

to all the possible combinations of the segments. This means that we take the cartesian

product over the segments of the covariates. In this way, every individual belongs to exactly

one subgroup and only one and each subgroup contains at least one pair (Xi, Yi(0)) and one

pair (Xi, Yi(1)).

3 Connecticut’s Jobs First Program

Connecticut’s Jobs First was put in place just before the passage of the Federal welfare re-

form through the Personal Responsibility and Work Opportunity Act (PRWORA) signed by

President Bill Clinton in 1996. One of the main consequences of PRWORA was the substi-

tution of AFDC with the Temporary Assistance for Needy Families (TANF) program. Jobs

First was one of the very first programs with all the TANF main features to be implemented,

and it is thus one of the few examples available to get an insight on the performance of

TANF programs versus the previous AFDC format. The main differences between the two

are that TANF-type programs have time limits, different implied rates of taxation, and work

requirements where as AFDC did not.11

The time limit consisted of a maximum allowable period of 21 months of cash assistance,

with the possibility of an extension of 6 months if the recipient complied with requirements

for an exemption. AFDC stops providing assistance when all children are 18 or older. TANF

now allows for up to 60 months of cash assistance. We should keep in mind though that

about two thirds of those in our sample who reached the time limit under Jobs First were

approved the extension of 6 months. This is why we look at the quarterly average of earnings

over the first seven quarters after inception to the program.

The second key feature of Jobs First is that the earnings from working are completely

11Adams-Ciardullo et al. [2002].
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disregarded when calculating the food stamps benefits as long as these earnings were below

the FPL12. This was not the case under AFDC where the earnings disregarded were a function

of the length of the time in the program13.

Jobs First required recipients to sign up for job training programs, not just any type

of education. Lack of compliance with this requirement imposed grant reductions of 20-

35% up to 100% reductions if in extended period. AFDC on the other hand removed non-

compliant individual from transfers calculations, which is equivalent to about a $100 per

month reduction. Other features of Jobs First are that the asset limit for cash assistance

is $3,000 whereas under AFDC was $1,000. The benefit per child conceived while mother

was receiving cash assistance was $50 per month under Jobs First and about $100 under

AFDC. Jobs First was a state-wide program, however the data we use here come from only

two locations: New Haven and Manchester which altogether account for about one fourth of

the entire caseload. Among all these recipients, 96% were women. All recipients are eligible

only if they have at least one child at the moment of inception to either program. Figure 1

compares the benefits between the two programs for typical households.

Estimates on the mean impact of Jobs First versus AFDC have been found to be $453 on

income per quarter according to the Final Report (Adams-Ciardullo et al. [2002])14. Other

studies such as Bitler et al. [2006] have found a mean impact of $294 per quarter over the first

seven quarters in the program. Moreover, Bitler et al. [2006] found significant heterogeneous

effects when looking at the impacts conditional on quantiles of the income distribution.

These impacts range from 0 to $800. The impacts increase with the quantile and then

decrease towards the upper quantiles. This may be attributed to an opt-in effect as some

individuals might lower their income in order to be eligible for the program. The type of

heterogeneity they looked at is the difference between the cumulative distribution of income

for the treated and for the controls at each different quantile15. These large variations in

12Federal Poverty Line, which was $1,138 per month for a family of three people in 1998.
13AFDC disregarded $120 plus 33% of earnings per month during the first four months in the program.

During months 5-12 only $120 per month were disregarded. After 12 months only $90 were disregarded per
month when calculating the food stamps benefits.

14Income is defined as the sum of earnings from working and the food stamps benefits.
15The horizontal difference between the graphs of the cumulative distribution functions for any given

10



the impacts conditional on income quantiles can be further decomposed into heterogeneous

impacts conditional on covariates. This is possible using the method proposed in this paper.

The sample consists of 2,396 Jobs First recipients and 2,407 AFDC recipients, making a

total of 4,803 families. In this paper we focus on four covariates: age, whether the individual

was employed before inception to the program, number of children, and high school degree.

Summary statistics for the entire sample are shown in Table 2. The partition of the sample

consists of the cartesian product of the segments created in each variable as follows: the

covariate age is segmented in two parts depending on whether the parent is at least 30 years

old or not; a dummy variable for employment before the program; dummy variables for being

pregnant or with one kid, with two kids, or with three or more kids; and whether the parent

has a high school degree or not. This gives a total of J = 24 subgroups and a total of 4,463

observations due to missing values in the high school degree covariate. Table 1 describes

the subgroups and Table 2 shows summary statistics for the entire sample. As explained

before, our main outcome of interest is the quarterly average of earnings since it reflects the

program’s main objective: employment. Over the first seven quarters, 27% of the sample has

zero earnings, 5.5% no transfers, and 1.2% neither. This produces a mass point over zero on

the empirical earnings distributions due to the individuals who are unemployed, an issue we

further discuss in the next section.

The particular choice of the subgroups is certainly exogenous in the model. This however

has been done using covariates that the Final Report uses as explanatory variables in their

estimation of impacts. Bitler et al. [2010] use the same covariates as well to diagnose subgroup

heterogeneity in Jobs First. In general this is a good approach to form the subgroups because

it is realistic to think that a social planner extending or constraining the program to a different

population will be able to sustain her criteria if they are based on such covariates because

age can determine your expertise in your job and the number of kids your actual economic

needs. Having being previously employed is also used as a criterion for welfare aid, such as

in unemployment benefits. Even though we have data on race, we believe its use in reality

number between 0 and 1. For example, at the q-th quantile, the difference Y1,q−Y0,q is the quantile treatment
effect, where Fi(Yi,q) = q is the cumulative distribution function of income Y for group i.
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could bring problems as it could be taken as racial profiling. In the robustness section we

discuss two other different specifications for the subgroups, using the race information and

using only non-historical covariates. We also discuss the results when the outcome is the

average total income -earnings plus transfers- over the first seven quarters of inception to the

program.

As a benchmark for the results, Table 3 and Table 4 report the estimates for the CATEs

using the estimator (1). We can see the tremendous amount of variation between the sub-

groups’ CATEs. The goal is to find which subgroups have a high value for their CATE, not

only by taking the within subgroup sample means because of the lack of statistical significance

we could get in some of the subgroups, but from a decision making standpoint. Column 10 in

Table 3 and Table 4 shows the t-statistic for the null hypothesis that the CATE is zero16 and

how in most subgroups the null hypothesis cannot be strongly rejected. This paper proposes

how to calculate predictive probability distributions for income and how to use them in an

expected utility maximization setting.

4 Estimation and Results

Once the subgroups are formed, the sample can be described by pairs (Tij, Yij) where i

represents the individual observation and j is the index for different subgroups in the sample.

Each subgroup can have a different number of observations, so i = 1, . . . , nj and j = 1, . . . , J

where J is the number of subgroups. One could estimate the CATEs by taking the difference

of the sample means in each subgroup but this might not give any meaningful results since

the size of the subgroup could be very small. That would not be taking into account the

correlation with other cells either. Table 3 and Table 4 show the results. There are two

observations to make, first, statistical significance of these differences as measured by the

t-statistic is rarely found, and second, among the CATEs that exhibit certain degree of

significance it is evident that the size of the program impacts substantially differs from one

16These are calculated to test whether the two means are statistically significantly different. The statistic

is t = Ȳ (1)−Ȳ (0)√
(n1−1)S2

1+(n0−1)S2
0

n1+n0−2

√
1
n1

+ 1
n0

where S2
i are the sample variances for the treated and the controls. See

Dehejia [2008] for more details on rules-of-thumb for inference of treatment effects.
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subgroup to another. The former is just a consequence of the lack of statistical power of

this simple estimator on small sample sizes. The second suggests that in effect, the impact

of the program is not constant across subgroups. A different approach, which also relies

on asymptotics, is to create dummy variables for each subgroup and then estimate a linear

model on these dummies and their interactions with the treatment indicator variable. The

results are available from the author upon request. Once again, it is rare to come across with

a statistically significant coefficient.

4.1 A Hierarchical Bayesian Model

To overcome issues of estimators that rely on asymptotics we use a Bayesian approach instead.

We assume that each realization of the random variable Yij is an independent draw from a

normal distribution,

Yij ∼ N(µj, τµj).

This way, each subgroup has its own mean µj and own precision τµj
17. We want to capture

that these means are not independent, equivalently, there is some correlation across the

subgroups18. Assume an underlying common distribution for all the subgroups from which

we draw these means,

µj ∼ N(µ, h1),

where µ is the overall outcome mean. If we independently draw from that distribution we have

that the subgroup means µj|µ are conditionally independent. However, without conditioning

on µ, the subgroup means are correlated. To see why, we complete this model with two more

layers and then compute the correlation across subgroups.

Assume the prior on µ and on ν,

µ ∼ N(ν, h2) (2)

ν ∼ N(0, h3)

17We assume the traditional notation in the Bayesian literature in which the second parameter of the
normal distribution specification refers to the precision not the variance.

18As discussed earlier, in principle there should not be any correlation since assignment to treatment is
random but the curse of dimensionality may bring a non-negligible correlation across subgroups.
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and a gamma density prior on τµj for each j = 1, . . . , J,

τµj ∼ G(α, β).

The parameters h3, α and β are fixed. Since we do not know how the subgroup means µj

are allocated with respect to µ, we give a prior on the precision h1 that captures whether

the subgroups share more or less information. A flexible prior is a gamma distribution with

most of its mass close to the origin which is equivalent to have a difuse prior on µj
19 20.

Suppose that the subgroups are very similar to each other, then the subgroup means µj will

be similar as well. On the other hand, if the subgroups do not share much information, we

expect the subgroup means µj to be very different and the posterior distribution should be

using little information from µ to estimate the subgroup means. This completes the model,

a hierarchical Bayesian model.

Alternatively, we can rewrite the model as µj = µ+ εj with εj ∼ N(0, h1), and µ = ν+ εµ

with εµ ∼ N(0, h2). This implies that

µj ∼ N(ν, 1/(h−11 + h−12 )).

Thus the variance of a subgroup and the covariance between two given subgroups are respec-

tively,

V ar(µj) = h−11 + h−12

Cov(µj, µk) = E(ε2µ) = h−12 .

If the subgroups are very different from each other, the covariance between two subgroups

should be small, large h2, and thus the variance of one single subgroup mean primarily

depends on the size of h−11 and not on the size of h−12 . Although it may seem restrictive

at first to have a constant value for the subgroup means correlation, this greatly simplifies

the number of parameters in the model. If each pair of subgroups had its own correlation

parameter, this would require J(J−1)
2

prior distributions and an equal number of posterior

distributions to determine. Notice also that the constant correlation property of this model

19See details in the Appendix.
20Gamma distributions will be denoted as G(a, b) with mean a/b and variance a/b2.
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in its specification does not mean it cannot provide information about the heterogeneity of

such correlation. The Bayesian model outputs a posterior distribution on h2, and even though

we cannot distinguish where the pairwise correlations are found with respect to that density,

it gives information on the dispersion of the different correlations could they be modelled

separately. Other properties about the across subgroups correlation arise in the posterior

distributions below.

The normality assumption for the outcome is not ideal since there is a probability mass

point on the left of the income distribution at zero as explained in the previous section. The

censoring at the left of the distribution occurs because of the people in the sample that are

unemployed, or because they did not receive any transfers in the form of food stamps benefits

in the case of the total income distribution. For this reason we choose a Tobit likelihood for

our most general model21. For the ease of exposition, we first present the model as if there

was no mass point at zero and then present the full model.

The full conditional density is proportional to

p(µ1, . . . , µJ , µ, τµ1 , . . . , τµJ |Yij, h1, h2, h3, α, β) ∝

(∏
i,j

τ
1/2
µj exp

(
−1

2
τµj(Yij − µj)2

))
×(

J∏
j=1

h
1/2
1 exp

(
−1

2
h1(µj − µ)2

))
×

h
1/2
2 exp

(
−1

2
h2µ

2

)
×

J∏
j=1

τα−1µj
exp(−βτµj)

where each term of the product above is the kernel of the densities for Yij, {µj}j=1,...,J , µ and

{τµj}j=1,...,J respectively.

The estimation is done using a Gibbs sampler. In general, this method produces, when

the number of iterations is large enough, a random draw from some density p(θ|A), where θ

is the random vector of interest and A is the set of fixed parameters. Assume that θ can be

decomposed in blocks of parameters θ = (θ1, θ2), so that p(θ|A) can be written as p(θ1|θ2, A)

21A third suitable likelihood is a mixture of a mass point on zero and a normal density on the log(income)
for the positive observations.
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and as p(θ2|θ1, A) and it is possible to get random draws from these two densities. In this

setting, a Gibbs sampler consists of getting a random draw θ
(1)
1 from p(θ1|θ(0)2 , A) using some

initial value θ
(0)
2 where the superscripts denote the number of the iteration, then getting a

random draw θ
(1)
2 from p(θ2|θ(1)1 , A). Note that an initial value was needed in order to sample

from p(θ1|θ2, A), and also note that we update the values of θi in the next iteration. If the

iteration is done N times, we get a random sample of size N of draws for θ1 and for θ2. Under

some general conditions, it can be shown that22

E(g(θ)) ≈ 1

N

N∑
j=1

g(θ
(j)
1 , θ

(j)
2 ).

for large values of N.

Going back to the estimation of CATEs, it is of interest to write down the joint distribution

as a set of full conditional distributions. Because of the form of the joint distribution in this

particular setting, we can write the full conditional distributions as23

µj|µ, µ−j, τµ, Yij, h1, h2, α, β ∼ N

(∑nj
i=1 Yij + h1µ/τµj
nj + h1/τµj

, τµjnj + h1

)
, j = 1, . . . , J,

µ|{µj}j=1,...,J , {τµj}j=1,...,J , Yij, h1, h2, α, β ∼ N

( ∑J
j=1 µj

J + h2/h1
, Jh1 + h2

)
,

τµj |µ, {µj}j=1,...,J , τµ −j, Yij, h1, h2, α, β ∼ G

(
α + nj/2, β +

1

2

∑
i∈j

(Yij − µj)2
)
, j = 1, . . . , J.

where µ−j is the collection of the µk with k 6= j. These three densities can be used in a Gibbs

sampler. We can see that the posterior mean of the subgroup means24 µj|A is a weighted

average of the outcomes within the subgroup and the overall outcome mean µ. The precision

is a weighted sum of the precision of the income for subgroup j and the precision of µj. The

overall mean µ is weighted by the precision of subgroup j. Also, the precision of the overall

distribution is weighted by the precision of group j. Observe that if nj increases -there are

more individuals in subgroup j-, the posterior precision τµjnj +h1 increases, which is a good

attribute of the model.
22See Geweke [2005].
23See Appendix for details.
24The letter A henceforth will denote all the parameters and data we are conditioning on at that particular

step of the sampler.
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From the posterior distribution of µ we see that its posterior mean is almost the average of

the subgroup means, but the denominator contains the term h2/h1. This suggests that h2/h1

should be small compared to J, the number of subgroups, in order to let the data dominate and

not the initial values of the parameters. Then, in the specification of the priors we will require

h2 < h1. As shown in the Appendix, the posterior distributions for these hyperparameters do

not explicitly depend on the value of the observations. The posterior precision suggests that

when the number of subgroups increases, the precision is higher and that h2, the precision

in the prior for µ, should be very small to have an uninformative prior on µ.

The third posterior distribution is for the subgroup precisions. Observe that these hy-

perparameters do not depend on h1 nor h2 in the conditional density, but in the number of

total observations and the overall sum of the squares of the deviations from the subgroup

means. The parameters α and β should take on values that do not dominate the data. Let

εj ≡ 1
2

∑
i∈j(Yij − µj)

2. The mean of τµj is clearly not dominated by the parameters if α

is much smaller than half the size of the smallest subgroup, and if β is much smaller than

ε. However, when there is not much variation in the outcomes within the subgroup, i.e.

when ε→ 0, the expected value should be large enough to reflect the fact that the subgroup

variance is close to 0. Therefore (α + nj/2)/β cannot be too small. At the same time, the

variance for this conditional density is (α+nj/2)/(β+ε)2 and it should be relatively larger in

the ε→ 0 case since there is not much information to accurately infer the subgroup variance.

A good compromise on these parameter values is as shown in Table 5 and robustness checks

are discussed at the end of the next section.

Finally, a discussion on the prior for h1. As mentioned before, the precision of the

distribution of µj is h1 ∼ G(γ, γ), and a similar prior for h2 applies. Another possibility

is to use a generalized inverse gamma prior, but since our model is parameterized with the

precisions, not with the variances, it is more tractable to use gamma densities. Remember

that the posterior distribution for µ suggests that h2 < h1 is a good selection for the initial

value of these parameters. The posterior distribution for h1|A−h1 , where A−h1 represents

the rest of the parameters, is h1|A−h1 ∼ G(γ + J/2, γ + 1
2

∑
j(µj − µ)2).25 Note that if the

25See Appendix for details.
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subgroup means µj are very far from each other then the posterior mean for h1 is close to

zero, which implies a large variance in the distribution of the subgroup means. The posterior

density for h2 is h2|A−h2 ∼ G(γ + 1/2, γ + 1
2
µ2) so the dispersion of the subgroup means

depends on their overall mean and initial parameters, however the influence of the latter is

negligible compared to the size of the other arguments.

The posterior densities above form a Gibbs sampler. Given some initial values for (µj, τµj)

for j = 1, . . . , J and µ, the posterior distribution for µj is known and we can get a draw from

that distribution and update those values to draw a value for µ, then we use that value

to draw values for the τµjs from their posterior distribution. We repeat this process until

getting convergence for all the posterior distributions. The estimation is made separately

for the treated and the controls. The CATE for subgroup j is defined as µtreatedj − µcontrolj .

The link between µtreatedj and µcontrolj is the prior from which the overall mean for the treated

and the overall mean for the controls are drawn as in (2). The specification also allows for

different variances for the overall mean of treated and controls, respectively.

As pointed out above, the data show evidence of censoring close to the zero earnings

point. To alleviate this problem we include, on top of the Gibbs sampler explained above,

a data augmentation step for Tobit models first proposed by Chib [1992]. Once the mass

point at the extreme left of the distribution has been replaced with hypothetical negative

observations, the Gibbs sampler above is applied in the exact same way as before26.

4.2 Posterior CATEs

After an amount of iterations of the Gibbs sampler27 and a burn-in phase28 the histograms

for all the parameters’ posterior distributions show convergence in distribution, see Figure 2

which shows the time series of one of the Markov chains for selected parameters from the

treated subsample. We can now calculate posterior means for the parameters, in particular

we are interested in the posterior means for µj and the τµj . Table 6 presents the results

26See Appendix for details.
272,000 iterations for the outer loop and 2,000 iterations for the data augmentation step at each iteration

of the outer loop.
28The first 1,000 draws from the Gibbs sampler are discarded to avoid any influence from the initial

parameters of the priors in the final results.
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by subgroup. Columns 2-5 from the top part of that table show the posterior means and

the posterior standard deviations for the treated. The last four columns do the same for

the controls. The bottom part of the table shows posterior means for the hyperparameters.

Notice that even though the posterior mean values for the precisions τµj are in the order of

10−7, the implied subgroup standard deviations are in the order of 103 dollars, which is in the

same order of magnitude as our data on outcomes29. The bottom part of that table shows the

posterior means for the rest of the hyperparameters. In particular, the values for h2 imply

non-negligible correlations, although this value is much larger for treated than for controls

in the case of average earnings. For the case of total income both controls and treatment

exhibit about the same level of correlation and it is not concentrated on a single point.

When looking at the distributions of predicted earnings, we can see how the mass point

near zero has been spread out over negative values of the outcome30. This is an essential step

to tackle the censoring problem in the data. With posterior densities of the subgroup means

in hand we can calculate posterior densities for the CATEs for each subgroup. For every draw

of the joint posterior distribution of parameters we find the predicted outcome for treated

and for controls and their difference, this is the conditional average treatment effect posterior

distribution. Figure 3 and the last two columns of Table 3 show these results. Figure 3

plots the kernel density estimates for the distribution of the posterior of CATEs for earnings.

These densities can be used as well for calculating the probability of a positive treatment

impact. Most subgroups’ CATEs distributions span over the negative values range, leading

to unclear evidence of any gains from the program.

We also run the model when the outcome is total average income. The posterior means

for this case are shown in the last two columns of Table 4. The sign of the treatment effect

does not change in the posterior means with respect to the sample means results. However,

the level of the effects slightly changes in most cases. We can also see from the posterior

densities of the CATEs the heterogeneity of the impacts within each of the subgroups. For

example, subgroups 9, 10, 12, and 15 have a lot of heterogeneity if measured by the spread

29We further discuss sensitivity to different initial parameter values in the section on robustness checks.
30The next section explains how to construct predictive earnings distributions.
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of the distribution. The first three correspond to people who were previously employed and

no high school degree, whereas the last one corresponds to people with high school degree

and three or more children31.

5 Welfare

We can form predictive distributions for the outcome in the following way.

1. Get a random draw from the posterior distributions p(µj|A−µj) and p(τµj |A−τµj ).

2. Get a random draw from p(Yij|A).

Where A represents all the other parameters and data respectively updated at each step.

Since this posterior distribution is the one of a normal, we censored the negative random draws

to get back to the original format of the data, that is, non-negative earnings or income. Had

we not done this censoring and just taken sample means over the non-censored random draws,

those means would be negative in some cases, that is why in Table 6 some of the subgroup

control posterior means are equal to zero. The same censoring applies when computing the

CATE posterior means in Table 3 and Table 4 but not for the CATE densities shown in

Figure 3.

The social planner is concerned with the optimal choice of subgroups to be assigned to or

exempted from the treatment in order to maximize welfare. Using the definition of second

order stochastic dominance we can get a natural welfare interpretation of the relationship

between the posterior predictive distributions within each group.

Define GX(a) as the integral of the cumulative distribution function,

GX(a) =

∫ a

FX(t)dt

for a random variable X with density dFX and a real number a. Using this notation, a

random variable X second order stochastically dominates (SOSD) a random variable Y if

GX(a) ≤ GY (a) (3)

31The complete results on average income are available upon request.
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for all a in the support of the distributions, where Gi is defined as above.

A well-known result on stochastic dominance relates expected utility theory and SOSD.

This result allows us to translate our problem into an expected utility inequality. A random

variable X SOSD the random variable Y if and only if EX(u(X)) ≥ EY (u(Y )) for all increas-

ing and concave functions u, where the operator EX(·) represents the expected value with

respect to the distribution of X32.

Thus, if the social planner has a utility function that is increasing and concave she will

always prefer X to Y if X SOSD Y 33. From the predictive posterior distributions we can

get the CDFs and compute the quantity GX(a) for the treated and for the controls for any

given range of values for a. Specifically, we choose a to be positive and no larger than the

maximum quarterly income observation in the data. This guarantees that we are ranking the

two distributions for income values within the appropriate domain of this random variable.

The ranking may not exist or change for very large values of a, but since we do not observe

individuals getting such large values, the ranking is irrelevant at those points. By doing this

we can examine whether the relation (3) holds, if that is the case we can determine whether

the social planner prefers one outcome over the other, all this without having to specify any

particular functional form for the utility function, other than requiring it to be increasing and

concave. Furthermore, there is no need to run any kind of statistical test since we integrated

out all the parameter uncertainty. There are cases however, in which the method is agnostic

as to what ranking is welfare maximizing. For example, if u(Y ) = Y and CATE(X = x) > 0

then a risk-neutral social planner prefers treatment assignment even though there may not

be SOSD. Thus for the following results to hold, we need to restrict our attention to strictly

increasing and concave utility functions.

Figure 4 shows the CDFs by subgroup for average earnings and Figure 5 and Figure 6

show the graphs for differences between the functions Gi(·) for the treated (i = 1) and for

the controls (i = 0) for average earnings and total income respectively. The CDFs also give a

stochastic ranking according to the first order stochastic dominance. However, we could get

32For a proof of this result see Green et al. [1995].
33Another characterization of SOSD is that X SOSD Y is equivalent to a mean-preserving spread of the

distribution of X in order to obtain the distribution of Y , see Green et al. [1995].
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intersections of the two CDFs for the same subgroup and there is no natural link with utility

theory when this happens34. Thus we look for the subgroups where the distribution for the

treated SOSD the one from the controls. This would look as negative values for the functions

in Figure 5 and Figure 6 and because of the characterization above this would mean that the

expected utility of having that subgroup exposed to the treatment is greater than the same

subgroup’s utility when left as a control. This seems to occur in most cases for total income,

although in most of them there is indifference at low income levels. These results suggest

that subgroups 3, 10, and 23 would not have been picked to be exposed to the treatment

by our social planner if the relevant domain for this random variable is [0, 3000] and only

subgroups 3 and 10 if the relevant domain is [0, 5000] dollars per quarter. These subgroups

correspond to subjects with no high school degree, not previously employed and 3 or more

kids and previously employed with 1 kid or pregnant, respectively. The positive differences

appear over the entire interval of observed income. In the cases where the inequality does

not hold for the entire interval there is no dominance since the criterion applies when the

inequality holds for the entire support of the distribution, which in our case is the range of

observed total income. Some of these results contrast with what was obtained by just looking

at the CATEs. In that case, only subgroup 3 did not benefit from the program. Subgroups

10 and 23, under the glasses of CATE, have positive mean impacts.

In the case of earnings, 5 out of the 24 subgroups exhibit SOSD from being exposed to

the control over being exposed to the treatment. These subgroups have in common that

the subjects were previously employed although at the beginning of the program they are

unemployed. This might suggest that having employment experience makes an individual

more likely to have greater earnings if exposed to the treatment in such a way that the

expected utility value is larger in this case. The number of subgroups that exhibit SOSD is

in contrast with the 9 out of 24 subgroups that have a negative sample CATE, although none

of those is statistically significant. The results for earnings are also different from the ones

34X FOSD Y is equivalent to EX(u(X)) > EY (u(Y )) for all increasing functions u regardless of their
concavity or convexity. So if there are crossings in the CDFs nothing can be said about FOSD, but there
could still be SOSD. In other words, FOSD implies SOSD, but SOSD does not necessarily imply FOSD. To
summarize, if the CDFs do not intersect, for sure there is SOSD, but if they do intersect, there might or
might not be SOSD.
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when the outcome is total income because in the former we are only capturing employment

enrolment, whereas in the latter both employment and transfers are confounded. Moreover,

as it will be explained in the robustness checks section, the subgroups for which the program

was not welfare enhancing if using the income outcome is a subset of the corresponding

subgroups when the outcome is average earnings.

The heterogeneity across subgroups can be theoretically explained by looking at the dif-

ferent possible scenarios of a person facing either JF or AFDC in an income-leisure space35.

A budget line represents the maximum attainable bundles of income and leisure. JF and

AFDC however distort this budget line in different ways. AFDC modifies the budget line

only at its right lower corner by shifting it upwards by the maximum amount of benefits

attainable and by changing the slope of the original budget line up to a certain number of

work hours. JF shifts the budget line upwards in a parallel way over a wider interval than

AFDC because JF disregards all earnings below the FPL. Depending on where the person

finds herself along the AFDC budget line and the shape of her indifference curves, exposure

to JF can have different effects on income. A person at a very low income level, exposure to

JF can either increase her income or let it unchanged. A person at a top income level would

either remain with the same income or reduce her number of working hours, thus lowering

her final income in order to maximize her utility.

That explanation works at two different levels. First, two different subgroups contain

each homogenous individuals that behave one way or the other as described in the previous

paragraph. Second, within a subgroup there is more than one type of individual and the

explanation above works equally for each of them within the subgroup. This is an aspect we

further discuss in the next section through the use of quantile treatment effects.

5.1 Within-QTEs

Another appealing feature of the method in this paper is that we can recover the quantile

treatment effects (QTE) for each subgroup by taking the horizontal difference between the

35See Bitler et al. [2006]. Leisure is represented in the horizontal axis as work hours in decreasing order,
i.e. 0 is to the right of the axis.
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graphs of the two cumulative distribution functions for the outcome. Figure 7 shows the

subgroup QTEs when the outcome is quarterly average earnings36. This is in some way

an extension of the heterogeneity analysis of Jobs First in Bitler et al. [2006] except that

here we disaggregated that heterogeneity by subgroups. The first thing to remark is that the

increasing and then decreasing behavior of the QTEs is not characteristic to all the subgroups

as it has been documented in that paper for the entire sample. Observe also how at the left

of the distribution the QTEs are zero because at low income levels there are not any impacts

on employment. In some subgroups the QTEs are rather a constant (subgroups 1, 7, and

23) and in a few cases with non-decreasing QTEs (subgroups 2, 13, and 15). The opt-in

effect that Bitler et al. [2006] found at the upper quantiles and then confirmed by Kline and

Tartari [2013] using partial identification arguments is present in almost all the subgroups.

We remain agnostic as to whether the behavior in subgroups 2, 13, and 15 is driven by

behavior not captured before by other methods or whether the QTEs at extreme quantiles

are not reliable enough. For the case of total income as the outcome, subgroups 19 and 22

show almost constant QTEs and subgroups 8 and 12 non-decreasing QTEs.

These within-QTEs also explain why in some subgroups the CATEs are positive and yet

the decision making method suggests the opposite. For example, in subgroups 3, 8, and 15

the QTEs are both positive and negative depending on the specific interval of income we are

looking at. This means that within these subgroups there is a lot of heterogeneity in the

impacts, heterogeneity that is not captured by the CATEs, but it is captured by the utility

theory analysis through the stochastic dominance because it uses the entire distribution over

the subgroup instead of using one single statistic.

5.2 Robustness Checks

A related paper is the study by Bitler et al. [2010] where they further extend their analysis

from their previous work37 to disentangle heterogeneity within- and across-subgroups of the

population in a randomized control trial. One of their conclusions is that when only using

36There is no need to construct any confidence interval because these graphs were obtained by integrating
out all the parameter uncertainty.

37Bitler et al. [2006].
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covariates with information originated at the time of the program, it is not possible to

distinguish heterogeneity of impacts across subgroups. However, when using covariates with

information pre-program and contemporaneous covariates the opposite occurs. Our results

are consistent with this in the sense that we find substantial heterogeneity across subgroups

when using the two types of covariates but not so when we eliminate the use of pre-treatment

variables. We evaluated this using the total income outcome and found that Jobs First would

lead to higher expected utilities than not using the program over almost the entire population.

If we disregard the censoring problem of the data and only use the normal likelihood

instead of the Tobit likelihood, the results are qualitatively identical as the ones shown in

the tables for the case of total income. Not so for the case of average earnings where the

censored part amounts to 27% of the total sample38.

As mentioned before, there are other covariates that could be used to evaluate the perfor-

mance of the program such as a race variable. This would however be the subject of potential

conflicts due to basing a decision on the expansion or restriction of the program to a different

sample on this type of covariate. We analyze Jobs First when the outcome is total income

by substituting the number of kids variable with a race variable that splits the sample into

Hispanics or other race, black, and white individuals39. In this case four subgroups would not

have been picked to be exposed to the treatment by the social planner. This contrasts with

the results from the sample CATEs in which only one of those four subgroups had negative

impacts. QTEs are relatively constant in four subgroups and only one subgroup exhibits a

negatively sloped QTE curve.

Since there are not hyperpriors on the parameters of the prior for the subgroup precisions

τµj , we ran a number of different specifications to measure the sensitivity to the hyperpa-

rameters α and β. Following our observations in Section 4.1, we ran the entire model with

each of the combinations of parameter values shown in Table 7 and Table 8 and the rest of

parameter values as in the main specification. Greater values for α and β would dominate

the data in the smallest subgroups. None of our results on SOSD changes for any of those

38We only present the results for the Tobit model as it handles the censoring problem, the results without
the augmentation data step are available upon request.

39These results are available upon request.
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alternative specifications except for subgroups 9 and 19 for the case of average earnings and

only for subgroup 10 for the case of total income when the ratio α/β is relatively large.

This might be the result of an exacerbated ratio in the variance for the conditional posterior

distribution for τµj since the denominator, when ε → 0, becomes considerably smaller with

respect to the numerator.

6 Conclusions

Heterogeneity of treatment effects is a relevant issue when extending or reducing the tar-

get population of a welfare program. There has been a literature exploring non-parametric

methods to measure this heterogeneity and in a parallel way, a rather small literature has

focused on mapping outcome distributions into expected utility theory criteria to make de-

cisions. This paper combines those two literatures to develop a method that finds predictive

outcome distributions conditional on covariates for treated and controls and maps those into

second order stochastic dominance criteria. This gives a ranking of treatment versus control

for each subgroup of the sample without having to specify the utility functional form other

than minimal requirements. This can be used to assess whether to extend or restrict the

program to a larger or smaller sample to maximize welfare.

We use a Bayesian approach since the size of the subsamples can be very small and

classical approaches tend to not be reliable in these cases. Another issue is that the effect

of the program in each subgroup is potentially correlated with other subgroups’ effects since

there might be covariates that make them similar and we did not capture that when dividing

into the subsamples despite the random assignment to treatment. Our hierarchical Bayesian

model allows for correlation across subgroups.

We find that one fifth of the number of subgroups in which we divided our sample does not

maximize expected utility when exposed to the treatment, whereas almost twice as many show

negative impacts using simple mean differences. This is because our method sheds light on

the benefits from being assigned to the program not just from a point-estimation perspective,

but by using the entire distribution of predictive outcomes in order to make a decision. We
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can also calculate quantile treatment effects by subgroup showing that as documented in

previous studies, there is almost zero impact at low income levels, then positive impacts

around the median and then negative impacts for the upper quantiles. This within-variation

in part explains the discrepancy between the non-parametric methods and our approach.

Even though we have information on race, we do not believe it could successfully be used as

a profiling covariate when extending or restricting a program to a different sample.

We let for future research the endogeneity of the number of subgroups and how to split

the sample. A close approach to this, although not entirely solving the endogeneity problem,

is to use a latent class model or mixture of normal densities to determine the probability of

each individual belonging to each subgroup given an exogenous number of subgroups. Then

we could compare across different models, each defined as a different number of subgroups,

using Bayes factors.

Finally, learning about the differences in impacts across subsamples in a decision making

framework can guide policymakers towards welfare improving modifications to the design of

welfare programs.

Appendix

Gibbs sampler

To get the posterior distribution of one of the subgroup means, we condition on all the other

variables and the parameters of the model, where µ−j is the collection of the µk with k 6= j,

then
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so that each mean subgroup has a normal posterior distribution,

µj|A ∼ N

(
τµj
∑nj

i=1 Yij + h1µ

τµjnj + h1
, τµjnj + h1

)
, for j = 1, . . . , J

or equivalently,

µj|A ∼ N

(∑nj
i=1 Yij + h1µ/τµj
nj + h1/τµj

, τµjnj + h1

)
, for j = 1, . . . , J.

We can see that the posterior mean is a weighted average of the observations within the

group and µ. The precision is a weighted sum of the precision of the income for subgroup j

and the precision of µj.

Now, let’s calculate the posterior distribution of µ. From the joint distribution, condi-

tioning on the other variables we have that

p(µ|A) ∝
(

Πj exp

(
−1

2
h1(µj − µ)2

))
× exp

(
−1

2
h2µ

2

)
= exp

(
−1

2
h1

(
J∑
j=1

µ2
j − 2µ

J∑
j=1

µj + Jµ2

)
− 1

2
h2µ

2

)

∝ exp

(
−1

2
h1

(
−2µ

J∑
j=1

µj + Jµ2

)
− 1

2
h2µ

2

)

= exp

(
−1

2

(
(Jh1 + h2)µ

2 − 2µh1

J∑
j=1

µj

))

∝ exp

−1

2
(Jh1 + h2)

(
µ−

h1
∑J

j=1 µj

Jh1 + h2

)2


so the hyperparameters are

µ|A ∼ N

(
h1
∑J

j=1 µj

Jh1 + h2
, Jh1 + h2

)
,

or equivalently,

µ|A ∼ N

( ∑J
j=1 µj

J + h2/h1
, Jh1 + h2

)
,

the posterior mean is a weighted average of the subgroup means and the posterior precision

is a weighted sum of the precisions of the subgroup means and the precision of µ. Also note

that these hyperparameters do not depend explicitly on the value of the observations.
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The posterior distribution of τµj .

p(τµj |A) ∝ τnj/2µj
exp

(
−1

2
τµj
∑
i∈j

(Yij − µj)2
)
τα−1µj

exp(−βτµj)

= τα+nj/2−1µj
exp

(
−

(
β +

1

2

∑
i∈j

(Yij − µj)2
)
τµj

)
, for j = 1, . . . , J.

This expression is the kernel of a gamma distribution, the hyperparameters are

τµ|A ∼ G

(
α + nj/2, β +

1

2

∑
i∈j

(Yij − µj)2
)
.

Observe that these hyperparameters do not depend on h1 or h2 in the conditional posterior

distribution, but in the number of total observations and the overall sum of the squares of

the deviations from the subgroup means.

Remember that we gave a prior on h1, the precision of the group means µj,

p(h1) ∝ hγ−11 exp(−γh1).

If A represents all the other parameters, the full conditional distribution for h1 is

p(h1|A) ∝ h
J/2
1 exp

(
−1

2
h1

J∑
j=1

(µj − µ)2

)
× hγ−11 exp(−γh1)

= h
γ+J/2−1
1 exp

(
−h1

(
γ +

1

2

J∑
j=1

(µj − µ)2

))

so h1|A ∼ G(γ+J/2, γ+ 1
2

∑J
j=1(µj−µ)2). In the actual estimation, γ = 0.1. For h2 we assume

exactly the same prior as for h1 but its posterior distribution is h2|A ∼ G(γ + 1/2, γ + 1
2
µ2)

and γ = 0.1. Finally, ν was given the prior ν ∼ N(0, h3). Its posterior distribution is

ν|A ∼ N( µ
1+h3/h2

, h3 + h2). Note that if h2 did not have a posterior distribution then h3/h2

would be a constant. The initial parameters for the model are specified in Table 5.

Tobit model

In the case of a mass point at Y = a the strategy to be adopted is a Tobit model (Dehejia

[2005]). To simplify the notation we will write everything as if a = 0. With this we transform
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the likelihood to be the one of a censored normal distribution. With this new likelihood there

is a mass point on 0 and then a truncated normal distribution for the rest of the observations.

This likelihood has the form

p(Yij|A) =
∏

i:Yij=0

(1− Φ(µjτ
1/2
µ ))×

∏
i:Yij>0

τ 1/2µ exp

(
−1

2
τµ(Yij − µj)2

)
.

Where A represents all the parameters of the model and Φ is the normal cumulative distribu-

tion function. The priors are exactly the same as before. Following the idea of Chib [1992] for

Bayesian estimation of a model with censored observations, we can transform the likelihood

into a product of normals as before. To do so, let’s assume that there exist (hypothetical)

negative observations of Yij when we observe Yij = 0. We can do that by simulating nega-

tive observations from truncated normal distributions with parameters µj and τµ. Now the

mass point over 0 has been substituted by a collection of hypothetical negative observations

that contribute to the likelihood as normal densities, leading to the same expressions at the

beginning of this section.

Assume that the collection of observations for Y is {Ỹij}. But we observe the censored

sample40

Yij =

 Ỹij if Ỹij > 0,

0 if Ỹij ≤ 0.

There is a known, set valued function Cij so that

Cij =

 Ỹij if Ỹij > 0,

(−∞, 0] if Ỹij ≤ 0.

Then the joint distribution of observables and unobservables is

p(Yij, µ, {µj}j=1,...,J , {τµj}j=1,...,J |A) = p(Yij|µ, µj, τµj , A)p(C|Yij, A)×

×p(µ|A)p({µj}j=1,...,J |A)p({τµj}j=1,...,J |A)

where

p(C|Yij, A) =
∏
i,j

p(Cij|Yij, A) =
∏
i,j

1Cij(Yij).

40As in Geweke [2005].
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So that the joint distribution is proportional to

∏
i,j

1Cij(Yij)×

(∏
i,j

τ
1/2
µj exp

(
−1

2
τµj(Yij − µj)2

))
×(

J∏
j=1

h
1/2
1 exp

(
−1

2
h1(µj − µ)2

))
×

h
1/2
2 exp

(
−1

2
h2µ

2

)
×

J∏
j=1

τα−1µj
exp(−βτµj).

This expression is almost identical to the one presented at the beginning of this section. The

censoring data is not a problem in the model because the posterior distributions will have the

same kernels as before. But now the posterior kernels include those Yij’s that are negative

too. Then the posterior distributions will be slightly different.

The Gibbs sampler for this likelihood is like the one from the previous section except that

now there is a data augmentation step. The Gibbs sampler from the previous section is now

nested in the data augmentation step. In the first iteration, negative values are drawn from

a truncated normal distribution to replace the observations of zero income. Then the Gibbs

sampler from the previous section is carried out exactly as in the normal model. In order to

get predictive distributions we need to slightly modify the algorithm from the normal model:

1. Get a random draw from the posterior distributions p(µj|A) and p(τµj |A).

2. Get a random draw from

p(Yij|A) =
∏

i:Yij=0

(1− Φ(µjτ
1/2
µj

))×
∏

i:Yij>0

τ 1/2µj
exp

(
−1

2
τµj(Yij − µj)2

)
.

The last step can be done for treated and controls and for each j = 1, . . . , J this way:

1. get a random number u from a uniform density on [0, 1].

2. if u < 1 − Φ(µjτ
1/2
µj ) then Yij = 0. Otherwise, get a random draw from a truncated

normal on [0,∞) with the appropriate parameters.
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Tables

Table 1: Subgroups definitions

group age > 
30 

Prev. 
employed  

0 or 1 
kids 

2 kids 3+ kids high school 
degree 

1   X    
2    X   
3     X  
4 X  X    
5 X   X   
6 X    X  
7  X X    
8  X  X   
9  X   X  

10 X X X    
11 X X  X   
12 X X   X  
13   X   X 
14    X  X 
15     X X 
16 X  X   X 
17 X   X  X 
18 X    X X 
19  X X   X 
20  X  X  X 
21  X   X X 
22 X X X   X 
23 X X  X  X 
24 X X   X X 

 
Note: Subgroups are exogenously defined by covariates used in similar studies.
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Table 2: Summary statistics

T = 0 T = 1
mean std. dev. mean std. dev.

age > 30 0.491 0.500 0.495 0.500
prev. employed 0.598 0.491 0.564 0.496

0 - 1 kids 0.505 0.500 0.497 0.500
2 kids 0.278 0.448 0.266 0.442

3+ kids 0.217 0.412 0.236 0.425
high school diploma 0.498 0.500 0.462 0.499

female 0.960 0.195 0.968 0.177
black 0.383 0.486 0.381 0.486
white 0.364 0.481 0.377 0.485

hispanic or other 0.234 0.424 0.223 0.417
avg total income per quarter ($) 2,449 1,390 2,758 1,572

avg earnings per quarter ($) 1,120 1,583 1,173 1,511

Note: Summary statistics for the entire sample by treated and controls. Each of the covariates is coded as a
dummy variable equal to 1 if the described characteristic is true for the individual, except for the last two
rows which are averages over the first 7 quarters since inception to the program.
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Table 3: Sample and posterior means. Average earnings.
 

Avg earnings  

group n T = 1 
sample mean 

n       T = 0 
sample mean 

sample  
CATE 

t stat. posterior mean 
CATE 

1 132 441 (865) 95 414 (936) 27 (120) 0.2 16 (52) 
2 87 520 (846) 77 333 (624) 186 (117) 1.6 139 (134) 
3 70 457 (626) 52 556 (1,190) -99 (166) -0.6 254 (141) 
4 106 460 (855) 113 301 (662) 159 (103) 1.5 33 (64) 
5 94 826 (1,225) 82 475 (929) 351 (166) 2.1 317 (190) 
6 110 687 (1,169) 102 382 (1,196) 305 (163) 1.9 113 (133) 
7 223 1,069 (1,261) 228 1,176 (1,361) -107 (124) -0.9 -92 (139) 
8 67 1,325 (1,229) 79 1,440 (1,768) -115 (257) -0.4 34 (271) 
9 50 1,145 (1,393) 44 1,251 (1,604) -106 (309) -0.3 -84 (360) 
10 108 1,734 (2,429) 106 1,940 (2,394) -206 (330) -0.6 -225 (386) 
11 92 1,776 (1,931) 82 1,338 (1,644) 438 (274) 1.6 561 (305) 
12 76 1,586 (1,652) 73 1,438 (2,119) 147 (311) 0.5 596 (379) 
13 94 837 (1,182) 73 533 (856) 303 (164) 1.8 311 (220) 
14 35 828 (1,255) 50 602 (1,091) 226 (256) 0.9 314 (326) 
15 24 457 (1,095) 26 511 (796) -54 (269) -0.2 -134 (243) 
16 81 883 (1,227) 103 422 (971) 462 (162) 2.9 387 (211) 
17 60 688 (1,202) 66 551 (1,078) 137 (203) 0.7 80 (157) 
18 93 905 (1,282) 68 578 (1,267) 327 (204) 1.6 522 (192) 
19 249 1,569 (1,486) 307 1,689 (1,629) -120 (134) -0.9 -93 (144) 
20 77 1,979 (1,763) 77 1,828 (1,551) 150 (268) 0.6 118 (275) 
21 33 1,535 (1,270) 41 1,551 (1,586) -17 (340) 0.0 220 (397) 
22 131 1,821 (1,636) 113 1,575 (1,696) 246 (214) 1.2 356 (249) 
23 90 1,632 (1,791) 115 1,780 (1,812) -148 (254) -0.6 -171 (281) 
24 78 2,088 (1,751) 83 1,874 (1,944) 214 (292) 0.7 187 (327) 

 

Note: Sample standard errors in parentheses. Total sample size for T = 1 is 2,227 and for T = 0 is
2,236. Contrasts between the sample CATE estimates and the CATEs were obtained by taking the difference
µtreated
j − µcontrol

j using the Markov chains from the Gibbs sampler. Tobit likelihood specification. Sample
standard errors in parentheses. See main text for details.
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Table 4: Sample and posterior means. Average total income.
Avg$total$income$

$

group n T = 1 
sample mean 

n       T = 0 
sample mean 

sample  
CATE 

t stat. posterior mean 
CATE 

1 132 1,852 (1,072) 95 1,658 (980) 194 (142) 1.4 183 (137) 
2 87 2,324 (1,103) 77 2,086 (857) 238 (157) 1.5 243 (155) 
3 70 2,832 (1,322) 52 2,906 (1,120) –74 (229) –0.3 –43 (218) 
4 106 1,725 (1,054) 113 1,526 (900) 199 (134) 1.5 203 (130) 
5 94 2,596 (1,235) 82 2,035 (1,019) 561 (175) 3.2 557 (170) 
6 110 2,948 (1,493) 102 2,561 (1,270) 387 (193) 2.0 385 (185) 
7 223 2,466 (1,212) 228 2,332 (1,127) 134 (110) 1.2 143 (109) 
8 67 3,225 (1,170) 79 2,871 (1,486) 354 (225) 1.6 373 (210) 
9 50 3,609 (1,360) 44 3,229 (1,193) 380 (268) 1.4 396 (265) 
10 108 2,837 (2,254) 106 2,819 (2,119) 18 (300) 0.1 67 (288) 
11 92 3,204 (1,808) 82 2,707 (1,373) 497 (246) 2.0 490 (240) 
12 76 3,846 (1,928) 73 3,064 (2,002) 782 (323) 2.4 769 (291) 
13 94 2,216 (1,240) 73 1,883 (854) 333 (175) 1.9 338 (169) 
14 35 2,528 (1,317) 50 2,149 (1,065) 379 (260) 1.5 399 (256) 
15 24 2,722 (1,143) 26 2,622 (1,016) 100 (308) 0.3 135 (299) 
16 81 2,084 (1,261) 103 1,670 (956) 414 (163) 2.5 429 (170) 
17 60 2,386 (1,236) 66 2,051 (971) 336 (198) 1.7 344 (206) 
18 93 3,291 (1,469) 68 2,763 (1,205) 528 (218) 2.4 527 (209) 
19 249 2,784 (1,371) 307 2,664 (1,326) 120 (115) 1.0 126 (111) 
20 77 3,611 (1,459) 77 2,987 (1,026) 624 (203) 3.1 599 (195) 
21 33 4,016 (1,354) 41 3,257 (1,127) 759 (288) 2.6 677 (285) 
22 131 2,983 (1,477) 113 2,373 (1,488) 610 (191) 3.2 584 (192) 
23 90 3,034 (1,901) 115 2,941 (1,360) 92 (228) 0.4 98 (222) 
24 78 3,988 (1,762) 83 3,240 (1,566) 748 (262) 2.9 719 (260) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Sample standard errors in parentheses. Total sample size for T = 1 is 2,227 and for T = 0 is
2,236. Contrasts between the sample CATE estimates and the CATEs were obtained by taking the difference
µtreated
j − µcontrol

j using the Markov chains from the Gibbs sampler. Tobit likelihood specification. Sample
standard errors in parentheses. See main text for details.

Table 5: Initial parameter values

Parameter Value

α 0.1
β 0.1
h3 1E − 12
γ 0.1
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Table 6: Posterior means. Average earnings.

subgroup µT s.d. τT s.d. µU s.d. τU s.d.

1 19 49 5.09E-07 9.44E-08 3 20 3.75E-07 8.53E-08
2 163 125 6.32E-07 1.32E-07 24 51 9.71E-07 2.35E-07
3 294 104 1.49E-06 3.11E-07 41 94 2.74E-07 7.84E-08
4 33 64 5.17E-07 1.13E-07 0 0 4.93E-07 1.20E-07
5 323 187 3.05E-07 6.25E-08 5 28 3.51E-07 9.07E-08
6 113 133 3.00E-07 5.86E-08 0 0 1.85E-07 4.55E-08
7 969 96 5.17E-07 5.27E-08 1062 102 4.44E-07 4.44E-08
8 1282 152 6.30E-07 1.10E-07 1248 225 2.66E-07 4.51E-08
9 975 232 3.94E-07 8.52E-08 1060 263 3.22E-07 7.53E-08
10 1277 261 1.23E-07 1.88E-08 1502 285 1.27E-07 2.05E-08
11 1582 206 2.27E-07 3.67E-08 1021 230 2.49E-07 4.78E-08
12 1471 211 3.30E-07 5.71E-08 875 315 1.42E-07 2.87E-08
13 489 168 3.99E-07 7.02E-08 178 139 6.49E-07 1.47E-07
14 438 273 3.36E-07 1.06E-07 125 163 3.63E-07 1.05E-07
15 58 139 2.51E-07 1.21E-07 192 201 7.10E-07 2.69E-07
16 388 211 3.00E-07 6.78E-08 0 6 2.83E-07 7.16E-08
17 95 148 2.53E-07 7.09E-08 15 50 2.72E-07 7.70E-08
18 524 191 3.43E-07 6.33E-08 2 17 1.64E-07 4.69E-08
19 1476 101 3.96E-07 3.87E-08 1569 104 3.12E-07 2.71E-08
20 1851 200 3.02E-07 5.10E-08 1732 184 3.75E-07 6.32E-08
21 1420 232 5.55E-07 1.39E-07 1200 314 2.64E-07 6.79E-08
22 1667 161 3.04E-07 4.32E-08 1311 197 2.52E-07 3.92E-08
23 1444 214 2.52E-07 4.21E-08 1615 182 2.56E-07 3.59E-08
24 1833 228 2.51E-07 4.50E-08 1645 228 2.17E-07 3.67E-08

T = 1 µ s.d. h1 s.d. h2 s.d.
806 168 1.92E-06 6.51E-07 2.16E-06 4.04E-06

T = 0 µ s.d. h1 s.d. h2 s.d.
428 239 1.14E-06 3.70E-07 1.55E-02 2.55E-01

Note: Columns 2-5 show the posterior means for the parameters indicated for the controls by subgroup.
Columns 6-9 show the posterior means for parameters from the treated sample. At bottom of the table
the rest of the posterior mean parameters for controls and treated. Re-censoring was applied to eliminate
negative mean draws after using the Tobit model.
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Table 7: Initial parameter values. Robustness checks. Average earnings.

α β Subgroups∗

0.1 0.1 7, 9, 10, 19, 23
0.2 0.2 7, 10, 19, 23
1 0.2 7, 9, 10, 23
2 2 7, 10, 23
5 2 7, 9, 10, 15, 23
10 2 7, 9, 10, 15, 23

Note: ∗These subgroups exhibit SOSD from being exposed to the control over being exposed to the treatment.
The subgroups listed are those for which the differences between the G functions are strictly positive over
the interval [0, 5000]. Subgroups 3 and 9 would otherwise be in the table above for every specification if we
allowed for very small negative values at the very low quarterly average earnings.

Table 8: Initial parameter values. Robustness checks. Average total income.

α β Subgroups∗

0.1 0.1 3, 10, 23
0.2 0.2 3, 7, 10, 23
1 0.2 3, 23
2 2 3, 23
5 2 3, 7, 10, 23
10 2 3, 23

Note: ∗These subgroups exhibit SOSD from being exposed to the control over being exposed to the treatment.
The subgroups listed are those for which the differences between the G functions are strictly positive over
the interval [0, 5000].
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Table 9: Posterior means. Average total income.

subgroup µT s.d. τT s.d. µU s.d. τU s.d.

1 1,874 95 8.69E-07 1.10E-07 1,691 100 1.04E-06 1.53E-07
2 2,345 118 8.21E-07 1.27E-07 2,102 96 1.36E-06 2.08E-07
3 2,833 153 5.73E-07 9.63E-08 2,876 150 7.92E-07 1.64E-07
4 1,759 98 9.05E-07 1.29E-07 1,556 87 1.23E-06 1.69E-07
5 2,609 126 6.57E-07 9.82E-08 2,053 114 9.68E-07 1.50E-07
6 2,942 143 4.49E-07 5.84E-08 2,557 118 6.22E-07 8.99E-08
7 2,474 80 6.82E-07 6.51E-08 2,331 75 7.90E-07 7.29E-08
8 3,202 138 7.35E-07 1.23E-07 2,830 165 4.57E-07 7.31E-08
9 3,540 190 5.39E-07 1.16E-07 3,144 180 7.02E-07 1.50E-07
10 2,841 211 1.97E-07 2.73E-08 2,774 191 2.24E-07 3.14E-08
11 3,176 181 3.10E-07 4.53E-08 2,686 150 5.33E-07 8.35E-08
12 3,733 218 2.70E-07 4.58E-08 2,955 209 2.51E-07 4.28E-08
13 2,250 128 6.47E-07 9.76E-08 1,911 106 1.37E-06 2.38E-07
14 2,575 220 5.81E-07 1.38E-07 2,176 148 8.89E-07 1.80E-07
15 2,740 238 7.73E-07 2.24E-07 2,607 203 9.70E-07 2.71E-07
16 2,123 144 6.31E-07 9.84E-08 1,694 92 1.09E-06 1.59E-07
17 2,422 161 6.54E-07 1.20E-07 2,078 122 1.06E-06 1.84E-07
18 3,265 154 4.60E-07 6.73E-08 2,738 143 6.88E-07 1.19E-07
19 2,788 85 5.33E-07 5.04E-08 2,662 75 5.70E-07 4.66E-08
20 3,560 161 4.71E-07 7.58E-08 2,961 113 9.48E-07 1.51E-07
21 3,855 230 5.41E-07 1.38E-07 3,172 173 7.86E-07 1.74E-07
22 2,975 132 4.59E-07 5.41E-08 2,391 133 4.53E-07 6.01E-08
23 3,015 182 2.77E-07 4.04E-08 2,918 125 5.43E-07 7.38E-08
24 3,885 206 3.22E-07 5.18E-08 3,163 164 4.04E-07 6.50E-08

T = 1 µ s.d. h1 s.d. h2 s.d.
2,870 134 2.71E-06 8.71E-07 1.52E-07 1.93E-07

T = 0 µ s.d. h1 s.d. h2 s.d.
2,500 115 3.92E-06 1.19E-06 2.06E-07 2.70E-07

Note: Columns 2-5 show the posterior means for the parameters indicated for the controls by subgroup.
Columns 6-9 show the posterior means for parameters from the treated sample. At bottom of the table
the rest of the posterior mean parameters for controls and treated. Re-censoring was applied to eliminate
negative mean draws after using the Tobit model.
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Figures

Figure 1: Connecticut’s Jobs First

Note: Source: MDRC’s Final Report.
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Figure 2: Times series of draws from the Gibbs sampler. Average earnings.
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Note: Each graph shows the time series of random draws that form the posterior distributions. These are
only the last 1,000 draws from the Gibbs sampler for selected parameters from the treated subsample.
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Figure 3: Kernel estimates for the CATEs posterior densities by subgroup. Average earnings.
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Figure 4: Cumulative distribution functions of predictive income. Average earnings.
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Figure 5: Second order stochastic dominance by subgroup. Average earnings.
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Figure 6: Second order stochastic dominance by subgroup. Average total income.
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Figure 7: Quantile treatment effects by subgroup. Average earnings.
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