To Rebate or Not to Rebate: Fuel Economy Standards vs. Feebates

Isis Durrmeyer Toulouse School of Economics HEC Montreal

Mario Samano

June 29, 2017

Environmental regulation

How to go from this

to this ...?

Instruments for regulation

- Fuel Economy Standards
 - U.S.: Corporate Average Fuel Economy (CAFE) standards since 1978
 - Minimum level of fuel efficiency that each manufacturer must reach
 - Europe: Mandatory emissions reduction target, fully binding in 2015
- Monetary incentives for consumers: feebates
 - Acquisition or ownership tax related to CO₂ emissions
 - · Purchase subsidy for fuel efficient vehicles
 - **Feebate**: combination of purchase tax and subsidy (France)

What we do

3

- Construct a unifying framework to compare fuel efficiency standards and feebates
- Compare the two instruments when they are equivalent in terms of:
 - Fuel efficiency outcome
 - Tax revenue
- Is one instrument better than the other?
 - Investigate different levels of stringency
 - Two different countries: U.S. and France
- Estimate a structural model of demand and supply for the car industry in the U.S. and France
- Simulate the effects of hypothetical fuel economy standards and feebates

What we find

- Feebate policy is better for both consumer surplus and manufacturers profits
- Robust for different levels of stringency of the policy
- Feebate allows for compensation across manufacturers, conceptually equivalent to imposing a standard allowing manufacturers to trade fuel efficiency levels
- But the two policies have different distributional impacts on manufacturers
- 8 out of 16 manufacturers would prefer the fuel economy standard over the feebate in the U.S. (5 out 18 in France)

Model Demand

5

Consumer chooses a car among J different models or not to buy a car (outside option)

- Nested logit model:
 - 1 Choice of a car segment (compact, SUV, high-end...)
 - 2 Choice of a car model (Renault Clio, Ford Focus...)
- Consumer obtains utility

$$U_{ij} = \underbrace{\delta_j}_{=X_j\beta + \xi_j} - \alpha p_j + \zeta_{ig} + (1 - \sigma)\epsilon_{ij}$$

Final market share of car model j from segment g is

$$s_j(\delta,\sigma) = s_{j|g}s_g = \frac{\exp((\delta_j - \alpha p_j)/(1 - \sigma))}{D_g^{\sigma} \left[\sum_g D_g^{1 - \sigma}\right]}$$

Model Demand

· Simple manipulations show that

this is the equation we take to the data

 We use an instrumental variable approach to address the potential endogeneity of price and the intra-segment market share

Model Supply

Each manufacturer's profits function:

$${f \Pi}_m = \sum_{j \in \mathcal{M}} oldsymbol{N} \left(oldsymbol{
ho}_j - oldsymbol{c}_j
ight) oldsymbol{s}_j$$

- N is the number of potential buyers, c_i is the marginal cost
- Actual prices are assumed to satisfy FOCs for the maximization of Π_m

$$\sum_{j\in\mathcal{M}}(oldsymbol{
ho}_j-oldsymbol{c}_j)rac{\partialoldsymbol{s}_j}{\partialoldsymbol{
ho}_k}+oldsymbol{s}_k=oldsymbol{0}\;,\quadorall k\in\mathcal{M}$$

Matrix of derivatives of market shares w.r.t. prices:

$$\Omega(k,j) = \begin{cases} -\frac{\partial s_j}{\partial p_k}, & \text{if } k \text{ and } j \in \mathcal{M} \\ 0, & \text{otherwise} \end{cases}$$

Model Supply

Optimal vector price (in the absence of policies) satisfies

$$p_j^* = c_j + [\Omega^{-1}S]_j$$

where $[\Omega^{-1}S]_j$ represents the *j*th element of the markup vector defined by $[\Omega^{-1}S]$

Environmental Policies: CAFE

- CAFE standard in the U.S. is defined by the weighted harmonic mean of fuel efficiency (in mpg)
- Equivalently, CAFE standard can be defined by the weighted arithmetic mean of fuel consumption in (gpm)
- Manufacturer's average fuel consumption:

$$e_{\mathit{m}}(\mathsf{p}) = rac{\sum_{j \in \mathcal{M}} s_{j}(\mathsf{p}) e_{j}}{\sum_{j \in \mathcal{M}} s_{j}(\mathsf{p})}$$

Manufacturer sets prices to maximize:

$$\max_{p_{j,j\in\mathcal{M}}} \Pi_m(p_1,\ldots,p_J)$$

s.t. $e_m(\mathbf{p}) \leq \bar{e}$, Lagrange multiplier: λ_m

Environmental Policies: CAFE

• If $e_m(\mathbf{p}) > \bar{e}$, manufacturer pays fines:

$$F = N imes \sum s_j imes \phi imes (e_m(\mathbf{p}) - \bar{e})$$

where ϕ is penalty per gpm above the standard

Environmental Policies: CAFE

- Three different types of responses:
 - Complier

$$\boldsymbol{p}_{j}^{*} = \left(\boldsymbol{c}_{j} + \lambda_{m} \frac{(\boldsymbol{e}_{j} - \bar{\boldsymbol{e}})}{\sum \boldsymbol{s}_{j}}\right) + \underbrace{\left[\Omega^{-1}\boldsymbol{S}\right]_{j}}_{\text{markup}}$$

Payer

$$p_j^* = (c_j + \phi(e_j - \bar{e})) + \underbrace{\left[\Omega^{-1}S
ight]_j}_{ ext{markup}}$$

Non-affected

$$p_j^* = c_j + \underbrace{\left[\Omega^{-1}S\right]_j}_{\text{markup}}$$

Environmental Policies: Feebate

- We consider linear schemes
- Feebate modifies final prices:

$$p_j^f = p_j + \tau (e_j - \tilde{e})$$

Manufacturer's optimal price:

$$p_j^f = (c_j + \tau(e_j - \tilde{e})) + \underbrace{\left[\Omega^{-1}S
ight]_j}_{ ext{markup}}$$

Making the policies equivalent

- We set the parameters of the CAFE standard: \bar{e} and ϕ
- We solve for the new equilibrium and get: e^{CAFE} and R^{CAFE}
- We solve for the new equilibrium under feebate and the feebate parameters τ and ẽ such that:
 - The same level of fuel efficiency:

$$rac{\sum_{j=1}^J s_j(\mathbf{p}) e_j}{\sum_{j=1}^J s_j(\mathbf{p})} = e^{ ext{CAFE}}$$

The same tax revenue:

$$N au\sum_{j=1}^{J} s_{j}(\mathbf{p}) imes (e_{j} - ilde{e}) = R^{ ext{CAFE}}$$

Data and estimation results

- U.S.: 3,393 car-models (2000-2007)
- France: 4,142 car-models (2003-2008)

	U.S		France			
Variable	Parameter	Std err	Parameter	Std err		
Price	-0.83***	0.21	-0.76***	0.10		
log s _{ilg}	0.13	0.10	0.30***	0.05		
Fuel cost	-0.07***	0.03	-0.21***	0.01		
Length	0.01*	0.01				
Acceleration	0.02***	0.01				
Weight			0.79***	0.24		
Horsepower			0.31***	0.04		
Coupe			-0.42***	0.13		
Three doors			-0.05	0.10		
Wagon			-0.08	0.09		
Intercept	-9.29***	1.23	-5.75***	0.37		

Simulations: Welfare effects

- Both policies are welfare decreasing
 - Decreases particularly consumer surplus
 - · Welfare losses are mitigated by the tax revenues
- Feebate policy is better than standard
 - Because the feebate allows redistribution of fuel efficiency across manufacturers
 - While standard allows redistribution only within manufacturers
 - Fuel efficient manufacturers compensate the least efficient ones (e.g Toyota compensates Porsche)
 - Generates less distortions at the aggregate level

Distributional Effects on Manufacturers

U.S.: 5% increase in standard

Durrmeyer Samano To Rebate or Not to Rebate: Fuel Economy Standards vs. Feebates

Distributional Effects on Manufacturers

France: 5% increase in standard

Change in the regulation parameters

Change in the regulation parameters Tax Revenue

Change in the regulation parameters Welfare

Change in the regulation parameters CO₂ emissions

Optimal combination of regulation parameters

Benchmark, standard with credits, and attribute-based

-			U.S.					France		
	AB					AB				
	S	F	ST	S	F	S	F	ST	S	F
Average mpg	21.82	21.82	21.82	21.75	21.75	41.5	41.5	41.5	42.1	42.1
Tax revenue	3,923	3,923	0	3,617	3,617	315	315	0	31	31
Δ Sales	-2.58	-2.48	-0.17	-2.38	-2.3	-2.8	-2.45	-0.77	-2.1	-2.1
∆ Profits	-2.61	-2.46	-0.07	-2.3	-2.22	-2.56	-2.19	-0.46	-1.67	-1.67
Δ CS	-3.14	-3.03	-0.21	-2.9	-2.81	-3.09	-2.71	-0.85	-2.32	-2.32
ΔCO_2	-3.87	-3.78	-1.5	-3.38	-3.3	-4.3	-3.22	-1.55	-1.13	-1.13
ΔW	-1.31	-1.18	-0.16	-1.17	-1.07	-1.77	-1.39	-0.69	-1.94	-1.94
$\Delta W (w/CO_2)$	-1.29	-1.16	-0.15	-1.15	-1.05	-1.76	-1.38	-0.69	-1.95	-1.95

Notes: All numbers are in percentages except for the first two rows. Tax revenues are in millions of dollars. "W" represents welfare net of emissions. We use a value of \$35/tCO_. "AB" stands for attribute-based, "S" for standard, "F" for feebate, and "ST" for standard with trading.

Benchmark, imports, and hybrids: U.S.

	Benchmark Impo		Imports	orts		Hybrid	ls	
	S	F	Initial	S	F	Initial	S	F
Mean mpg	21.82	21.82	21.56	21.86	21.86	21.74	21.98	21.98
Tax revenue	3,923	3,923	38	3,782	3,782	16	3,683	3,683
∆ Sales	-2.58	-2.48	0.27	-2.2	-2.1	0.85	-1.3	-1.19
∆ Profits	-2.61	-2.46	0.29	-2.25	-2.1	0.83	-1.42	-1.27
Δ CS	-3.14	-3.03	0.33	-2.68	-2.56	1.05	-1.59	-1.45
ΔCO_2	-3.87	-3.78	0.09	-3.71	-3.61	-0.14	-3.32	-3.22
ΔW -	-1.31	-1.18	0.31	-0.95	-0.82	0.95	-0.01	0.13
$\Delta W (w/CO_2)$	-1.29	-1.16	0.32	-0.93	-0.8	0.95	0.02	0.16
Imports/Hybrids			0.5	0.65	0.57	4.82	5.15	5.6

Notes: All numbers are in percentages except for the first two rows. Tax revenues are in millions of dollars. "W" represents welfare gross of emissions. "W w/CO₂ " represents welfare net of emissions. We use a value of 36\$/tCO₂. "Initial" stands for the initial regulation level, "S" for standard, "F" for feebate. "T1" stands for the gas tax that leads to the same average fuel efficiency (31.6%).

Benchmark and hybrids: France

	Bench	nmark		Hybrids		
	S	F	Initial	S	F	-
Mean mpg	41.5	41.5	40.47	41.64	41.64	
Tax revenue	315	315	0	272	272	
Δ Sales	-2.8	-2.45	1.19	-1.26	-0.87	
∆ Profits	-2.56	-2.19	1.06	-1.21	-0.81	
Δ CS	-3.09	-2.71	0	-1.4	-0.96	
ΔCO_2	-4.3	-3.22	-6.83	-11.35	-11.04	
ΔW -	-1.77	-1.39	0.43	-0.36	0.06	
$\Delta W (w/CO_2)$	-1.76	-1.38	0.46	-0.32	0.09	
Hybrids			2.28	3.02	2.86	

Notes: All numbers are in percentages except for the first two rows. Tax revenues are in millions of dollars. "W" represents welfare gross of emissions. "W w/CO₂ " represents welfare net of emissions. We use a value of 36\$/rCO₂. "Initial" stands for the initial situation without policy, "S" for standard, "F" for feebate.

Conclusion

- We develop a unifying framework to compare the CAFE and feebate policies
- Compare the two policies when they are equivalent in terms of fuel efficiency outcome and tax revenue
- We compare the effects on profits and consumers' surplus
- The feebate is always better if we consider aggregate levels of profits, consumer surplus and welfare
- ...but the two policies imply different distributional effects
 on manufacturers
- Some manufacturers are better off under the standard regulation