
Introduction Background on the electricity market Model Data Estimation and calibration Results Conclusions

Intermittency and the Value of
Renewable Energy

Gautam Gowrisankaran Stanley Reynolds
Mario Samano

June 18, 2015



Introduction Background on the electricity market Model Data Estimation and calibration Results Conclusions

Views on solar energy

Like just about everyone who has looked at the
numbers on renewable energy, solar power in
particular, I was wowed by the progress. Something
really good is in reach.

-Paul Krugman, The New York Times, Apr. 21, 2014

For weeks now, the 1.1 million solar power systems in
Germany have generated almost no electricity.... As is
so often the case in winter, all solar panels more or
less stopped generating electricity at the same time.
To avert power shortages, Germany currently has to
import large amount of electricity [including by]
powering up an old oil-fired plant in the Austrian city of
Graz.

-Der Spiegel (German newsmagazine), Jan. 16, 2012
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Renewable energy

Renewable energy capacity has increased dramatically
Caused by huge drops in costs
Also, policies to mitigate greenhouse gas emissions

A key problem is intermittency
Solar generators only produce when the sun is shining

Intermittency might hugely affect economic value, or
equivalently social costs, of renewables

Der Speigel quote suggests that electricity system
operators use costly backup generation to manage
intermittency of large-scale solar

Large-scale solar may require significant changes
Different investment, operations, and demand-side
management policies
These changes may be necessary to mitigate social costs
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Intermittency

We develop an empirical method to quantify social costs
and CO2 emissions from large-scale renewables
Idea: solve for decisions that maximize total surplus given
different renewable energy capacity levels
Social costs depend crucially on:

1 Variability of energy source including how it correlates with
demand

2 Forecastability of source
3 Costs of building backup generation for system reliability

We develop formal model of reserve operations
Method can be used to examine social costs of different
renewable energy sources and in different contexts
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Intermittency: example from Aug. 15, 2011
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Relation to literature

Economic theory literature on reserve operations
Joskow and Tirole (2007) developed economic model
We take their model to data

Systems engineering literature
One strand focuses on output variability

E.g., Fabbri et al. (2005), Mills and Wiser (2010)
No optimization

Another uses power systems optimization models
E.g., Madaeni and Sioshansi (2013), Mills et al. (2013)
Optimization over scheduling
Reserve operations and investment use rules of thumb

Empirical economics literature
Some studies deal with time-varying generation profile

E.g., Denholm and Margolis (2007), Borenstein (2008)
Use of price not ideal for out-of-sample forecasting

Others deal with fossil fuel capacity adjustment
E.g., Lamont (2008), Skea et al. (2008)
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What does our economic analysis bring to the table?

Systems engineering literature already evaluates costs of
renewable energy

No optimization of welfare maximization problem
Our economic analysis is fundamentally different

We reoptimize operator decisions as a function of
renewable energy penetration
Requires balancing consumer welfare lost from system
outages against costs of backup capacity
Model both long- and short-run decisions and consistent
with large-scale penetration

Without reoptimization, output fluctuations from large-scale
solar could lead to suboptimal decisions

E.g., high probabilities of system outage, or excess
investment in backup capacity

To our knowledge, first paper to use weather forecast data
to identify forecastable component of renewable variability
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Remainder of talk

1 Background on the electricity market

2 Model

3 Data

4 Estimation and calibration

5 Results
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Electricity industry in the Tucson area

Vertically integrated electricity service provider: Tucson
Electric Power (TEP)

We model planner’s problem and don’t model market power
TEP owned 2,275 MW of capacity in 2011

Almost all coal or natural gas
91% of planned fossil fuel capacity in Arizona is from
natural gas combined cycle generators
Our base analysis only allows new fossil fuel investment in
this one generator type

Tucson is situated within the Western Interconnection
which allows for import or export of power

Base model treats Tucson in isolation but we consider
imports/exports in a robustness check
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System operations

System operations involve:
Control of generators
Decisions about rationing power to customers
Control of backup systems

System operator ensures reliability in part by having
generators available on a stand-by basis
Without system operations, each supplier imposes an
externality
NERC standards specify contingency reserves:

Must be sufficient in case of failure of largest generator
Utilities also hold balancing reserves of 1-1.5% of peak load
Provides benchmark against which we can compare
predictions of model
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Solar photovoltaic (PV) energy

Solar PV systems use panels of material (such as silicon)
to convert solar radiation into DC electricity
Inverters convert DC current to AC
Technology has been improving rapidly
Interconnection costs are not huge

Utility-scale solar typically located near transmission lines
Reported interconnection costs are < $1 per MWh
Different than wind power
We don’t model them

Arizona’s Renewable Portfolio Standard mandates 30%
distributed generation for renewables, e.g. rooftop solar

We model reduction in transmission costs and different
installation costs of rooftop solar

Entire Southwest U.S. has high solar potential
See figure
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Photovoltaic solar resources
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Overview of model

System operator is faced with:
Fixed solar capacity level
Fixed retail price of electricity
Existing generators

In Stage 1:
Operator chooses new capacity investment
Price for interruptible power contracts

In Stage 2:
For each hour of each year operator observes:

Next day weather forecast
Generators under maintenance

Operator then chooses:
Generators to schedule for production/reserves
Quantity to curtail from interruptible contract customers
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Overview of model (continued)

In each hour, following scheduling and curtailment
decisions, solar output and load (demand) are realized and
some generators may fail
Two possible outcomes:

1 Load is less than output plus operating reserves (adjusting
for line losses)

Operator adjusts generation to balance output with load
2 Load is greater than output plus operating reserves

System outage: loss of load for large fraction of customers
Hopefully rare event!
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Demand and welfare

Assume retail price is a constant p
Constant elasticity demand up to reservation value v

QD(p,D) =

{
0, p > v
Dp−η, p ≤ v

Scale of demand D is time varying and depends on
weather forecast F D(·|w)

Define “value of lost load” as average per-unit value of
electricity
VOLL and v have a monotonic relation

=> Studies measure VOLL, which we can use to obtain v
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Demand curtailment

In first stage, operator offers interruptible power contracts
at price pc

Users who sign up agree to have power curtailed as
necessary (with one day notice) and be compensated a
per-unit price of pc − p
All users with valuation below pc will sign up

Assume that mass of known consumers is based on
minimum of F D(·|w) distribution

In second stage, observing the forecasted state, the
operator randomly selects customers to curtail
Higher pc implies:

More curtailment possible
But, higher per unit welfare loss from curtailment

Welfare Loss from Curtailment
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Generation and reserves

All generators last till year T
Generators can either be scheduled at 0 or full capacity
Each generator has:

a fixed production capacity
constant marginal cost of operation
per-period probability of maintenance
per-period probability of failure
ratio of reserve costs to operating costs, cs

There exists a set of current generators (from data)
New fossil fuel plants:

The operator can choose nFF new plants
All natural gas combined cycle or gas turbine

Solar production:
System operator faced with a level of listed solar capacity
Produced from sites dispersed in metropolitan area
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Transmission

Distributed solar output does not incur transmission costs
This reduces costs of solar in two ways:

1 Reduces line losses
Line loss is quadratic in non-distributed generation
Let Q be load net of distributed solar and curtailed demand
Then:

LL(Q) = α(Q + LL(Q))2

where Q + LL(Q) is non-distributed generation
Smaller root of quadratic implicitly defines LL(Q)
α can be estimated from line loss data

2 Reduces fixed costs of transmission
We assume FC proportional to maximum expected
non-distributed load
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System operator’s problem: second stage

1 Observes weather forecast and maintenance status
2 Schedules generators and chooses demand curtailment
3 Observes generator failures, demand and solar
4 Possibly a system outage occurs

Loss is VOLL× quantity× doutage, where doutage is number
of periods times fraction of people affected

5 Otherwise, operator adjusts actual generation to be exactly
equal to demand

This will occur by using highest cost plants for reserves

Operator trades off system outage against reserve costs

See production costs & system outage probability See hourly optimization problem
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System operator’s problem: first stage

Operator chooses the best curtailment price and the
number of new fossil fuel generators
Operator takes the expected value of the surplus over all
periods in one year and then discounting over the life of the
generation units
Building generators is costly, but it avoids system outage in
peak periods

See expected welfare & total surplus
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Data overview

We obtain data from several sources:
Energy Information Administration (EIA) and EPA data on
generator characteristics, and fuel and electricity prices
Solar data from UA Photovoltaics Research Lab:

58 geographically dispersed installations
Keep installations within 40 kilometers of center of Tucson
Total rated capacity 517 KW
Observe at 15 minute level
Data for one year from May, 2011 - April, 2012

ERCOT data from Texas for spinning reserve costs
Load and “system λ” data from the Federal Energy
Regulatory Commission (FERC)
For robustness exercises:

Import/export quantities from EPA
Startup costs from NREL
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Map of Tucson solar sites in our data
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Solar output summary statistics
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Load summary statistics
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Data overview (continued)

Weather forecast data from National Oceanic and
Atmospheric Administration (NOAA)

Forecast generally occurs around 3 AM for the next day
Forecast is given for windows of 3 hours
We interpolate to hourly level
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Calculating generator marginal costs

Following Wolfram (1999) and Borenstein et al. (2002) we
calculate MC by multiplying heat rate by fuel cost
Obtain heat rates from EPA eGRID2007 report
Fuel costs:

For coal plants: EIA Form 423 multi-year fuel contracts
For gas plants: NYMEX 2010 future prices for delivery
2011-15 at Henry Hub in Louisiana

Add SO2 cap-and-trade permit fees from EPA
Multiply fees by emissions rates from EPA

No NOx fees in western states
New generator MC and capacity from EIA
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Summary statistics on generator marginal costs

Unit type # Mean Mean Mean Mean Mean
Units size MC NOx SO2 CO2

MW $/MWh Lbs./MWh Lbs./MWh Tons/MWh

Solar PV 2 6.5
(0.5)

0
(0)

0
(0)

0
(0)

0
(0)

Coal 6 263
(133)

23
(10)

3.0
(1.7)

1.6
(1.3)

1.0
(0.06)

Natural gas combined cycle 1 185
(0)

35
(0)

.09
(0)

.01
(0)

0.4
(0)

Natural gas steam turbine 3 89
(13)

54
(0)

1.5
(0)

.03
(0)

0.5
(0)

Natural gas turbine 6 39
(20)

71
(13)

3.5
(2.0)

.05
(0.01)

0.8
(0.2)

Potential new natural gas
combined cycle

– 191 32.6 0.05 0.01 0.4

Potential new natural gas
turbine

– 91 47.6 0.31 0.01 0.5

Note: Standard deviations in parentheses. MC figures include emissions permits.
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Demand parameters

Use demand elasticity of η = 0.1 from the literature
Use VOLL estimates of $8,000/MWh from literature
Use demand growth of g = 20% from historical load growth
Use retail price of electricity p = $98.1 from EIA numbers
for Tucson
Estimate load and solar via a joint regression model during
the daytime

Regressors include:
Splines of forecast variables
Hours till sunset and from sunrise
Day-of-week and month-of-year indicators
Hour dummies

Precision of load and solar similar to forecasting studies
and values used by utilities

R2 of 0.959, 0.945, and 0.878 for daytime load, nighttime
load, and solar output
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Supply parameters

We estimate cs as the ratio of ERCOT reserve auction prices to
balancing market prices

Balancing market price mean: $65.41 / MWh
Responsive reserve (10 minute) mean: $27.05
Up regulation (5 second) mean: $22.71
Mean of the ratios: 0.42 and 0.40
Use cs = 0.41

Table : Mean hourly maintenance and failure probabilities

Failure probability, Pfail Maintenance probability,
Pmaint

Mean number of units
over period

Natural gas generator 0.0492% 0.0382% 342
(0.01%) (0.008%)

Coal generator 0.099% 0.047% 859
(0.027%) (0.010%)
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Remaining supply parameters

Param. Interpretation Value Source
doutage Mean hours × fraction af-

fected for system outage
0.98 EIA

α Line loss constant 0.000035 Computed from TEP re-
ported 6.5% line loss

AFCT Average transmission
fixed costs per MWh

$1.259M Borenstein and Holland
(2005), Baughman and
Bottaro (1976), TEP line
loss cost

FCsolar Solar capital cost per
rated MW

$4.41M EIA

FCFF New gas generator capi-
tal cost per rated MW

$1.10M EIA

β Discount factor 0.94
T Lifetime of generators

(years)
25

See details on computation of operator problem
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The social costs of large-scale solar

Fraction of generation from solar 0% 10% 15% 20%
Foregone new gas generators 0 2 2 3
Mean system outage probability 4.76e-5 5.82e-5 5.81e-5 8.4e-5
Reserves (% of energy) 30.5 32.1 33.6 35.2
Curtailment quantity (% of load) 0.11 0.19 0.14 0.24
Curtailment price pc ($/MWh) 661 469 431 804
Production costs 437.2 380.0 355.2 332.2
Reserve costs 78.1 81.5 82.8 84.8
Gas generator investment costs 2,090 1,672 1,672 1,463
Solar capacity investment costs 0 4,148 6,221 8,295
Transmission fixed costs 331.4 319.4 317.4 316.2
Loss in $ surplus per MWh solar – 126.7 133.7 138.4
Loss in $ surplus per ton CO2 – 293.1 283.5 279.1
Note: cost variables are measured in millions of dollars per year. Loss in $ surplus per MWh solar does not
account for environmental benefits except for SO2 permits.
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Comparison of results

Levelized cost difference value of solar
Average cost of solar PV: $181.2/MWh
Average cost of gas generation: $66.3 / MWh (EIA, 2011)
Difference: $114.9 / MWh
Compare to social cost of $138.4 for 20% solar

System outage probability of 0.0048% similar to NERC
“one day in ten year” standard

Depends on whether one day is “24 hours of system
outage” of “one event”
Interpretation varies across utilities (Cramton et al., 2013)

Reserve ratio of 30.5% is higher than used
NERC standards (mentioned earlier) imply 23% ratio

Curtailment prices similar to range reported in literature
Baldick et al. (2006) report [$150, $600] + p
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Decomposition of social costs of 20% solar

Experiment Loss in $
surplus per
MWh solar

New
gas
gener-
ators

Curtailment
price pc

($/MWh)

Base case – feasible solar 138.4 7 804
No unforecastable intermittency 132.3 7 792
Fully dispatchable 92.4 1 300
Equal generation profile 133.8 7 783
Eliminate distributed generation 118.7 7 834
Fixed costs drop from $4.41/W to $2/W 39.4 7 804
Same policies as without solar 281.6 10 661
Rule-of-thumb policy, 10% cap. credit 154.8 10 661
Rule-of-thumb policy, 12.5% cap. credit 153.2 9 661
Note: “no unforecastable variance” produces at the forecastable mean. “Fully dispatchable” solar can be dispatched
based on the demand forecast. “Equal generation profile” produces equally at every hour with the same total
capacity as the baseline. “Rule-of-thumb" policies reduce fossil fuel capacity by the capacity credit of installed solar
capacity and increase daytime reserves until the mean system outage probability is the same as in the base case.
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Solar capital costs versus social costs for 20% solar
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Robustness to functional form

Real-time pricing
A fraction γ of customers on real-time pricing contracts
The system operator sets the real-time prices at the same
time as scheduling generators, one day in advance
(Borenstein and Holland, 2005)

Imports and exports
We specify a net import supply curve of qI

t = αI
t + βI log pI

t
We estimate the net supply curve with an IV regression
(Bushnell et al., 2008)
We use TEP’s “system λ” as a proxy for market price
Estimates:

Operator would pay $32.7 per MWh to import 300 MW
Operator would receive $30.6 per MWh to export 300 MW in
an hour
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Social costs of 20% solar given different environments

Environment Base
surplus

Loss
per

New gas
generators

Curtailment
price

(million
$/year)

MWh
solar

No
solar

20%
solar

No
solar

20%
solar

Base environment 134,481 138.4 10 7 661 804
No interruptible power
contracts

134,453 137.8 12 10 – –

Imports and exports al-
lowed

134,508 139.2 10 8 – –

Investment in additional
generator type

134,482 138.4 8 / 3
(GT/CC)

6 / 3
(GT/CC)

677 696

Later (2PM) forecasts 134,482 139.3 10 8 701 488
Forecasts with 24-hour
lagged demand

134,485 138.5 10 7 600 1,020

VOLL ↑ to $12,000 202,225 138.9 10 8 661 469
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Costs from unforecastable intermittency, geographic
dispersion, and real-time pricing
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Conclusions

We analyze the value of renewable energy with a
three-part approach that accounts for intermittency

1 Theoretical model based on Joskow and Tirole (2007)
2 Process to estimate and calibrate parameters
3 Computational approach for counterfactual policies

Biggest limitations: no dynamics and no market power
Costs of unforecastable intermittency are less than most
utilities and forecasters believe to be true

Optimizing approach is important
Given large renewable penetration, utilities may need to
obtain knowledge about how to change decisions
Social costs likely similar for southwestern U.S.

Immediate investment in large-scale solar would reduce
welfare

Welfare neutral at capacity costs of $1.52 per watt
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Curtailment quantity z:

0 ≤ z ≤ D
min

(w)
[
p−η − p−ηc

]
where D

min
is the minimum demand for a given F D(·|w)

Welfare Loss from Curtailment:

WLC(z,pc) =
η(p1−η − p1−η

c )z
(η − 1)(p−η − p−ηc )

Return
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Define actual production costs as PC(D, x)
Example, two generators, capacity 1, c2 > c1, D = 1.6:

PC(1.6, (1,1)) = c1 + 0.6× c2 + 0.4× c2 × cs

Individual generator output

xj(ont
j ) =

{
kj , with prob (1− PFail

j )ont
j

0, otherwise

System outage probability

outage( ~on, z, ~w) =

1{
J+nFF∑

j=1

xj(onj) + nSLS < Dp−η − z + LL(Dp−η − z − dSLnSLS)}

Return
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Let mj denote 0− 1 maintenance status
Operator’s hourly optimization problem:

W (~w , ~m|nFF ,pc) = max
~on,z

E
[(

1− doutageoutage( ~on, z, ~w)
)
(Dp−ηVOLL−WLC(z,pc))

−PC
(

Dp−η − z − nSLS + LL(·), ~x( ~on)
)
| ~w , ~m

]
such that mj = 1 =⇒ onj = 0

LL(·) has same argument as in system outage probability
equation
Actual computation includes 15 minute solar data

4 solar observations per decision-making periods
Complicates notation, see Appendix B

Return
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Welfare per year from curtailment price decision:

V (nFF ) = max
pc

E [H ·W (~w , ~m | nFF ,pc)]

Value from investment decision:

V ∗ =

maxnFF {1−βT

1−β V (nFF )− nSLFCSL − nFF FCFF − TFC(nSL)}

Return
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Computation of system operator problem

We make some relatively small simplifying assumptions:
Operator will schedule plants in ascending order of MC
Operator will only curtail demand if all plants operating OR
MC of last plant > dWLC(z)/dz

System operator problem involves simulation of very small
probability events
We integrate over six dimensions:

Number of coal plants down for maintenance and failure (2)
Number of gas plants down for maintenance and failure (2)
All hours in sample period, which gives w t

Variation in demand and solar output given w t

For each point in these six dimensions, we randomly select
which generators are down

Return
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