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VVhy contextual stochastic
optimization!
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Practical motivation

Example I:
Shortest path over Los Angeles downtown (Kallus & Mao, 2022)

: Problem:find shortest path

traversing Los Angeles downtown area
from East to West
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Travel times over all arcs are uncertain.VVe
have relevant contextual information.




Practical motivation

Example |:
Shortest path over Los Angeles downtown (Kallus & Mao, 2022)

: Problem:find shortest path

traversing Los Angeles downtown area
. from East to West

/ -

Travel times over all arcs are uncertain.VVe
have relevant contextual information.

Period Temp. Wind speed Rain Visibility Day Month

Green path is optimal —— Midday 57.17 4 0 6.99 2 11
Blue path is optimal — AM 57.17 4 0 6.99 2 11




What is contextual
optimization!
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h(z,P(g|z))

Conditional expected cost

Connection between CSO and policy optimization:

7w € arg min

T:X—2Z \———’
H (m,P)

(Unconditional) expected cost

tIP)[C(ﬂ-(m)vé)] S (m) = arzgérgin 4*IP’(£|:B)[C($7£)] a.s.




Overview of the three frameworks
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Sequential learning and
optimization



Learning predictors
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fo is 2 conditional density estimator
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Non-=linear cost function

fo is 2 conditional density estimator

f = arg min ~ Z —log(Py, 21 (£")) + Q(0)
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Linear cost function

fo replaced with point predictor

(denoted g, )

Mean Square Error
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Weighted SAA

Minimizing expected costs w.r.t. a distribution is often done through SAA:
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Weighted SAA

Minimizing expected costs w.r.t. a distribution is often done through SAA:

min By, o) |c(2, §)] with fo(x

Z Sei -wi(a

Measure the error of a trained regression

fo(x

Residual based

model on the historical data

1 N
— N Z(sge(m)_l_ei
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Weight based

Measure proximity in feature space

between x and historical covariates x’




Weighted SAA

= k-nearest neighbor: w};{NN(aB) = (l/k)]l[a:?’ e Ng ()]

Proximity

in feature

space KDE K((z—=z')/0)

= Kernel density estimation: W (@) = Zé\rzl K((x —2x7)/0)




Proximity
in feature
space

Supervised
learning

Weighted SAA

= k-nearest neighbor: w,};{NN(CIJ) = (1//6)]1[:137’ e Ng ()]

= Kernel density estimation: wi () = N .
2 =1 K((x —27)/0)

= Decision tree: ?T(w) L= N _ '
SN M[R(x) = R(zd)]

g=1

= Random forest: average over set of decision trees.




Why do sequential learning and

It works

Theoretical guarantees

optimization!

>Train once on historical data:
no need to solve optimization models during training

>Can perform better than non-contextual approach
>Can be trained using less data when model is well specified

>Converges to optimal contextual policy as the size of the
training set increases when model is well specified.




Some benchmark results (utter et al, 2023)

Compare sequential L&O and decision rules

Newsvendor

Problem on 4 real-world data sets.

Proportion of instances where methods achieved best performance

Restaurant
100

75

50

Percent

25

Models:

W Linear rule Kernel weights " Decision tree weights
. Deep learning | K-nearest neighbour weights [l Random forest weights




Going beyond SLO:

Integrated learning and optimization



Wrong predictions lead to suboptimal decisions

max £' 2 . S
FAS €2 A
— £+ e lex]] < [le2]
optimal N
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Figure adapted from [Elmachtoub and Grigas 2022]



ILO Training pipeline

------------------------------------------------------
*

(- )
Predlcc‘.ltllon Fixed decision rule Task loss
mode .
- - H(Z, PN)
N(O z,1) 2(e, N0 x,1)) := ...
\_ 5 2 SRR
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* [Bengio 1997] : Task-aware point prediction under a fixed
decision rule
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ILO Training pipeline

------------------------------------------------------

Predicc‘.ltilon Optimization model Task loss
mode )
() 2 (@, fol) | H(zPy)
—— = arg gélg h(z, fo(x)) S e

* [Bengio 1997] : Task-aware point prediction under a fixed
decision rule

* [Donti et al. 201 7] : Task-aware conditional density prediction
under CSO model
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How to differentiate through argmin

Context | Predictor | Prediction | Decision | Decision ' Task loss |
o Ll | g Lmodel (o fy) 1 S0) P

- Implicit differentiation through KKT conditions for convex
problems

Unroll the operations made by the optimization process:
- Differentiate through its computational graph

- Implicit differentiation of the fixed point equations at local
optimum [Butler and Kwon, 2023] and [Kotary et al. 2023]

Replace optimizer with a differentiable deep neural network
(Grigas et al. 2021]

Libraries: TorchOpt [Bilevel], CvxpyLayer [Convex], PYEPO
:Linear] 22




Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
H(z"(x, fo),IP) := Eplc(z"(z, fo), §)]
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* Regret minimization [Elmachtoub & Grigas, 2022]:
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Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
H(2"(x, fp),P) = Eplceitass il )] Eplc(z"(, f5),€) — minc(z,§)]

zEZ
- Non-convex and discontinuous in ¢

= Replace with SPO+: m@in Up | lspo+(g6(), )]
with

- ZSPO—I— (@7 y) — Sug(y_2fg)Tz+2gTz*(w7 y)_yTz*(ma y)7
A

= Solve two optimization problems (MILP) at each iteration

= SPO+ has slower convergence rate when compared to
sequential estimate then optimize model

= Model misspecification: SPO+ outperforms MSE

23
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- Imitation performance metric:
H(Z* (CB, f@), P) =

Uplc(27(x, fo), €]
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- Training based on erturbed opti4zers:
- [Berthet et al., 2020] uses additive perturbation of point prediction
- [Dalle et al., 2022] uses multiplicative perturbations
= [Mulamba et al,, 2021] and [Kong et al., 2022] uses energy based

optimizer
exp(ah(z, fo(x))

Z(x, fo) ~ fexp(Ozh(Z,fe(m))dz

24



Comparison of some models

Load forecasting and generator scheduling problem
(objective similar to newsvendor problem)
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Source: [Kong et al. 2022] 2



Take-away messages

- Contextual stochastic optimization is a rapidly evolving
field that provides methods for identifying data-driven
decision that exploit most recently available information.

- Three types of approaches:
" Decision rule/policy optimization
-~ Sequential learning and optimization
" Integrated learning and optimization

"~ Four types of performance measures:
- Statistical accuracy of prediction model
- Task-based expected cost of induced policy (Link to survey paper)
- Task-based expected regret of induced policy
= Quality of imitation

- Many potential applications in mining?
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