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VVhy contextual stochastic
optimization!
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Practical motivation

Example I:
Shortest path over Los Angeles downtown (Kallus & Mao, 2022)

: Problem:find shortest path

traversing Los Angeles downtown area
from East to West
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Travel times over all arcs are uncertain.VVe
have relevant contextual information.




Practical motivation

Example |:
Shortest path over Los Angeles downtown (Kallus & Mao, 2022)

: Problem:find shortest path

traversing Los Angeles downtown area
. from East to West

/ -

Travel times over all arcs are uncertain.VVe
have relevant contextual information.

Period Temp. Wind speed Rain Visibility Day Month

Green path is optimal —— Midday 57.17 4 0 6.99 2 11
Blue path is optimal — AM 57.17 4 0 6.99 2 11




No. of Nurses

Practical motivation

Example 2:

Nurse Staffing in a Hospital (Ban & Rudin, 2019)

Decide how many nurse to schedule on a given day:
large penalty for under-/over-staffing

> A newsvendor model with uncertain demand

Historical data:
Demand and context
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Practical motivation

4 I
In uncertain environments: we should use available

contextual information to improve decisions
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Manage inventory Build portfolio Deliver packages




What is contextual
optimization!



Problem Definition
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Stochastic optimization
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Connection between CSO and policy optimization:
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Problem Definition

4 Stochastic optimization w

z* € argmin Ep(,)[c(z, y)| Comex

Conditional stochastic \
optimization (CSO)

(Contextual information / covariate / featuresj_

C S = j z*(aj) € arzgergin Ep(y|z)lc(z, yj
h(zP(y|z))

Conditional expected cost

Connection between CSO and policy optimization:

€ argminEplc(n(x),y)] & 7 (x) € argminEp(y ) |c(z,y)] a.s.

T X—>Z
H (7 ,P)

(Unconditional) expected cost

zc X




Overview of the three frameworks
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Decision rule/Policy
optimization
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Qutline of the Tutorial

® Decision rule optimization
® Sequential learning and optimization
® |[ntegrated learning and optimization

® Take-away messages



Decision rule optimization

Context | Decision rule | Decision
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Learning decision rules (LDRs)

= Find policy to minimize the expected cost

" Infinite dimensional problem

- Linear DRs to solve newsvendor problem [Ban & Rudin,

2019]
1 N
' H,I@) A{) = min — Tzt yh) 4+ A
pdmin  H(m Py) + M) mqu;c(q z',y') + Alall

= Linear DR have finite sample guarantees

- Linear DRs are asymptotically suboptimal in general



Decision rules on lifted space

= Linear in transformation of features: [Ban & Rudin, 2019]

= Policies in the reproducing kernel Hilbert space (RKHS)
[Bertsimas & Koduri, 2023]

- Piecewise affine decision rules [Zhang et al., 2023]

= Outperforms models with policy in the RKHS
= Policy Net [Oroojlooyjadid et al., 2020]
= Lack interpretability

= Challenge: Ensure constraints are satisfied



Distributionally robust optimization

= Estimation error: Empirical distribution
biased in low data regime

= One can robustify against all distributions in
an ambiguity set:

min sup H(m, Q

= E.g.:VWasserstein ambiguity set [Mohajerin
and Kuhn 201 8]
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DR-Newsvendor

= Two-step procedure [Zhang et al., 2023]

= Solve DRO problem with policy defined on
historical observations of features

= Use Shapley extension to interpolate to all
unobserved realizations of features

= Outperforms linear decision rules, kNN,
random forest, StochOptForest



DRO with causal transport

- [ Yang et al. 2023] raises issue that VWasserstein
distance distorts the conditional information
structure

= They suggest using a Causal transport metric,
which protects causal effects found in the data

= Tractable reformulations obtained when:
= Linear decision rules

= Cost function is affine



Sequential learning and
optimization
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Learning predictors

o

Data
N — {(wzvyz) =
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Predict / Estimate
Minimize estimation error.

méin o(fo,Pn) + Q(6)
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Learning predictors

-~

Datg |
Dy ={(=",y") }ilq

\

Predict / Estimate
Minimize estimation error.

méin o(fo,Pn) + Q(6)

~

—{ Optimize }

J

1 N

0

1=1

Non-=linear cost function

fo is 2 conditional density estimator

Maximum Log-Likelihood

f = arg min ~ > —log(Py, @i (y")) + Q(6)

21



Learning predictors

Data e Predict / Estimate A
LD _ {(ZBZ yz) N }. Minimize estAlmatlon error. _{ Optimize J
N ’ =1 min p( fe, Pn) + Q2(6)
N ’ J
Non-linear cost function Linear cost function

fo replaced with point predictor

fo is 2 conditional density estimator
(denoted g, )

Maximum Log-Likelihood Mean Square Error
N N
é:argminiZ—log(IP’ o (y") + Q9) 0 = argminiz lgo(x") — y*||* + Q(0)
0 N — fo(x") 0 N —

h(z, fo) = “3f9(a;)[yTZ] = Lt () [y]TZ — ge(w)TZ = h(z, go)
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Weighted SAA

Minimizing expected costs w.r.t. a distribution is often done through SAA:

min By, (o) (2, y)] with fo(@ Zéy (@)

zcZ
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Residual based

Measure the error of a trained regression

model on the historical data

1 N
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Weighted SAA

Minimizing expected costs w.r.t. a distribution is often done through SAA:

N

min Ey, (o) [c(z,y)] with fo(@) =) 8, wil@)

zcZ

1=

Residual based

Measure the error of a trained regression

model on the historical data

1 N
fo(x) == N Z(sge(w)—kei
1=1

Weight based

Measure proximity in feature space

between x and historical covariates x’

23



Proximity

in feature
space

Weighted SAA

= k-nearest neighbor: w};{NN(iB) = (l/k)]l[a)?’ e Ni(x)]

Kernel density estimats wiPE () = ]\/[C(a:,a:z)
n ; ¢ '
ernel density estimation ijl K(x,x9)

24




Proximity
in feature
space

Supervised
learning

Weighted SAA

= k-nearest neighbor: w,};{NN(CIJ) = (1//6)]1[:137’ e Ni(x)]
K(x,x")
KDE . ’
= Kernel density estimation: Wi (x)

YN K(x, @)

= Decision tree: ?T(w) L= N _ '
SN M[R(x) = R(zd)]

g=1

= Random forest: average over set of decision trees.

24




Why do sequential learning and

Theoretical guarantees

optimization!

>Train once on historical data:
no need to solve optimization models during training

>Can perform better than non-contextual approach
>Can be trained using less data when model is well specified

>Converges to optimal contextual policy as the size of the
training set increases when model is well specified.

25




Some benchmark results (utter et al, 2023)

Compare sequential L&O and decision rules

Newsvendor

Problem on 4 data sets.

Proportion of instances where methods achieved best performance

Restaurant
100

75

50

Percent

25

Models:

W Linear rule Kernel weights " Decision tree weights
. Deep learning | K-nearest neighbour weights [l Random forest weights

26



Sequential Learning & Optimization
References

Method Regularization Learning model

rCSO  wSAA EVB Reg.CSO DRO General Linear Kernel kNN DT

Hannah et al. (2010)
Ferreira et al. (2016)
Ban et al. (2019)
Chen and Paschalidis (2019)
Bertsimas and Kallus (2020)
Kannan et al. (2020)
Kannan et al. (2021)
Liu et al. (2021)
Srivastava et al. (2021)
Wang et al. (2021)
Bertsimas and Van Parys (2022)
Deng and Sen (2022)
Esteban-Pérez and Morales (2022)
Kannan et al. (2022)
Lin et al. (2022)
Nguyen et al. (2021)
Notz and Pibernik (2022)
Zhu et al. (2022)
Perakis et al. (2023)
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Going beyond SLO:

Integrated learning and optimization



Going beyond SLO:

Integrated learning and optimization

Context | Predictor | Prediction | Decision | Decision . Task loss

L ’ fo folx) ’ model | ,* (z, fe)’i H(z*(-,,fg),I/P’N) i




Wrong predictions lead to suboptimal decisions

max yTz Y + € Yy
zeZ
— S U + € H€1H < HGQH
optimal N
decision .

Figure adapted from [Elmachtoub and Grigas 2022]
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ILO training pipeline

------------------------------------------------------
*

( )
Predicc:lti;)n Fixed decision rule Task loss
mode .
- - H(Z, PN)
N(O x,1) 2(e, N0 x,1)) := ...
\_ 3525 SRR TRRRRRRR
A ,

O — 06 — UVQH(Q(ZU,N(HTQ% 1))7@]\7)

* [Bengio 1997] : Task-aware point prediction under a fixed
decision rule

30



ILO training pipeline

------------------------------------------------------

Predicc‘.ltilon Optimization model Task loss
mode )
() 2 (@, fol) | H(zPy)
—— = arg gélg h(z, fo(x)) S e

* [Bengio 1997] : Task-aware point prediction under a fixed
decision rule

* [Donti et al. 201 7] : Task-aware conditional density prediction
under CSO model

31



How to differentiate through argmin

operation!
Context | Predictor |Prediction| Decision | Decision E_  Taskloss
x fo fo(z) | model z"(x, fo) ’E_]_:I_(:ng_ fq)_’?_]\i)_i

A

- Implicit differentiation through KKT conditions for convex
problems

Unroll the operations made by the optimization process:
- Differentiate through its computational graph

- Implicit differentiation of the fixed point equations at local
optimum [Butler and Kwon, 2023] and [Kotary et al. 2023]

Replace optimizer with a differentiable deep neural network
(Grigas et al. 2021]

Libraries: TorchOpt [Bilevel], CvxpyLayer [Convex], PYEPO
:Linear] 32




Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
H(z"(z, fo),P) = Eplc(z"(x, fo), y)]

33



Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
Erfrteiestel. v)] Eplc(z*(x, fo),y) — mingez c(z,y)]
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Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
="Epfrteastil.y)] Eplc(2*(x, f5),y) — minsez c(z,y)]
- Non-convex and discontinuous in ¢
- Replace with SPO+:

mein Up | lspo+(90(T), Y)]

where

- gSPO—I—(@ay) = Sug(y—QQ)Tz+2gTz*(a3,y)—yTz*(w,y),
zZC

33



Smart “Predict, then optimize”

* Regret minimization [Elmachtoub & Grigas, 2022]:
= Exfrtaesfaly)] Eelc("(, fo),y) — minzez c(2,y))
- Non-convex and discontinuous in ¢
- Replace with SPO+:

mein Up | lspo+(90(T), Y)]

where

- gSPO—I—(@ay) = Sug(y—QQ)Tz+2gTz*(a:,y)—yTz*(w,y),
zZC

= Solve an optimization problem at each iteration
= SPO+ has slower convergence rate than SLO approach

= If model misspecified, SPO+ can outperform SLO

33
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Prediction - Imitati :
o . Imitation-

Optimization model f

N layer ) P based loss

7Y S :

- Imitation performance metric:
H(z"(x, fo),P) = Eplc(z™(z, fo), y)]

34



-

\

Prediction

layer

Optimization model

--------------------------------------------------
-

Imitation-
based loss
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. e, |

Prediction - Imitati :
Optimization model i " eation-

k layer ) P based loss

Eflotsmefaly)] Es [d(="(x. fo), 2" (,y)
-~ Training based on perturbed optimizers:

- [Berthet et al., 2020] uses additive perturbation of point prediction
- [Dalle et al., 2022] uses multiplicative perturbations

= [Mulamba et al,, 2021] and [Kong et al., 2022] uses energy-based
optimizer
exp(—ah(z, fo(x))

zZ(x, fo) ~ [ exp(—ah(z, fo(x))dz

34



Network flow cost

ILO outperforms SLO

Procedure M ILO B sLo

* — ILO
[ " —— sLo

S [T

% Unmet Demand
LN o (00
o o o

N
o

30 = ==
\\ \Z < O 0
150\\\\ O“ z© 2 N\ et o 00\ )
0 1 2 3 4 5 ?*((\0 0/?‘ A ‘\)((\% Og*(\
Degree of model mis-specification ()GQ (\65\ N\'\C’(
\e°

Essential Medicine

Source: [Grigas et al. 2021 ] Source: [Chung et al. 2022]
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Comparison of different approaches

Load forecasting and generator scheduling problem
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Source: [Kong et al. 2022] 56



Take-away messages

- Contextual stochastic optimization is a rapidly evolving
field that provides methods for identifying data-driven
decision that exploit most recently available information.

- Three types of approaches:
" Decision rule/policy optimization
-~ Sequential learning and optimization
" Integrated learning and optimization

"~ Four types of performance measures:
- Statistical accuracy of prediction model
- Task-based expected cost of induced policy (Link to survey paper)
- Task-based expected regret of induced policy
= Quality of imitation

- Many potential applications !

37
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