Data-Driven Conditional Robust Optimization

Abhilash Chenreddy Nymisha Bandi Erick Delage

HEC Montréal, GERAD & McGill University Montréal, Canada

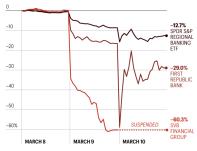
ICSP Tutorial on End-to-end Learning July 23rd, 2023

Presentation overview

- 1 Introduction
- 2 Deep Data-Driven Robust Optimization (DDDRO)
- 3 Deep Cluster then Classify (DCC) Algorithm
- 4 Integrated Deep Cluster then Classify (IDCC)
- 6 Comparative Study
- 6 End-to-end CRO with Conditional Coverage

Motivating example

- Returns of different assets are unknown but may depend on historical returns, economic factors, investor sentiments via social media.
- Portfolio manager can formulate an allocation problem to minimize the value-at-risk (VaR) of the portfolio while preserving an expected return above a given target.



Investor News
@newsfilterio

Banks tumble as SVB ignites broader fears about the sector \$SIVB \$FRC
\$ZION \$SI \$\$SRNY newsfilter.io/articles/banks...

12:41 PM · Mar 9, 2023 · 938 Views

FORTUNE

What is contextual optimization?

- Optimization problems arising in practice almost always involve unknown parameters $\xi \in \mathbb{R}^{m_{\xi}}$
- Oftentimes, there is a relationship between unknown parameters and some contextual data $\psi \in \mathbb{R}^{m_\psi}$

What is contextual optimization?

- Optimization problems arising in practice almost always involve unknown parameters $\xi \in \mathbb{R}^{m_{\xi}}$
- Oftentimes, there is a relationship between unknown parameters and some **contextual data** $\psi \in \mathbb{R}^{m_{\psi}}$
- Contextual Optimization:
 - ullet Optimizes a policy, $oldsymbol{x}:\mathbb{R}^{m_\psi} o \mathcal{X}$
 - I.e., action $x \in \mathcal{X}$ is adapted to the observed context ψ
 - Risk Neutral Contextual Optimization problem maximizes the expected cost of running the policy over the joint distribution of (ψ, ξ) :

$$(\mathsf{RN}\text{-}\mathsf{CO}) \qquad \min_{\mathbf{x}(\cdot)} \mathbb{E}[c(\mathbf{x}(\psi), \xi)]$$

Relation to conditional stochastic optimization

 Interchangeability property (see Theorem 14.60 of Rockafellar and Wets [2009]) states that:

$$\mathbf{x}^*(\cdot) \in \mathop{\arg\min}_{\mathbf{x}(\cdot)} \mathbb{E}[c(\pi(\psi), \xi)] \ \Leftrightarrow \ \mathbf{x}^*(\psi) \in \mathop{\arg\min}_{\mathbf{x} \in \mathcal{X}} \mathbb{E}[c(\mathbf{x}, \xi) | \psi] \text{ a.s.}$$

Relation to conditional stochastic optimization

 Interchangeability property (see Theorem 14.60 of Rockafellar and Wets [2009]) states that:

$$\mathbf{x}^*(\cdot) \in \mathop{\arg\min}_{\mathbf{x}(\cdot)} \mathbb{E}[c(\pi(\psi), \xi)] \ \Leftrightarrow \ \mathbf{x}^*(\psi) \in \mathop{\arg\min}_{\mathbf{x} \in \mathcal{X}} \mathbb{E}[c(\mathbf{x}, \xi) | \psi] \text{ a.s.}$$

 An optimal policy for RNCO problem can therefore be obtained using the following conditional stochastic optimization (CSO) problem:

$$\mathbf{x}(\psi) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmin}} \mathbb{E}[\mathbf{c}(\mathbf{x}, \xi) | \psi],$$

What is contextual/conditional robust optimization?

 We introduce a novel Robust Contextual Optimization paradigm for solving contextual optimization problems in a risk-averse setting:

(Robust-CO)
$$\min_{\mathbf{x}(\cdot)} \max_{\psi \in \mathcal{V}, \xi \in \mathcal{U}(\psi)} c(\mathbf{x}(\psi), \xi)$$

where $\mathcal{U}(\psi)$ is an uncertainty set designed to contain with high probability the realization of ξ conditionally on observing ψ .

What is contextual/conditional robust optimization?

 We introduce a novel Robust Contextual Optimization paradigm for solving contextual optimization problems in a risk-averse setting:

$$(\mathsf{Robust\text{-}CO}) \qquad \min_{\substack{ \pmb{x}(\cdot) \\ \pmb{\nu} \in \mathcal{V}, \xi \in \mathcal{U}(\psi)}} c(\pmb{x}(\psi), \xi)$$

where $\mathcal{U}(\psi)$ is an uncertainty set designed to contain with high probability the realization of ξ conditionally on observing ψ .

• A weaker interchangeability property states:

$$\begin{aligned} \mathbf{x}^*(\cdot) \in \arg\min_{\mathbf{x}(\cdot)} \max_{\psi \in \mathcal{V}, \xi \in \mathcal{U}(\psi)} c(\pi(\psi), \xi) \\ & \Leftarrow \mathbf{x}^*(\psi) \in \underbrace{\arg\min_{\mathbf{x} \in \mathcal{X}} \max_{\xi \in \mathcal{U}(\psi)} c(\mathbf{x}, \xi)}_{\text{Conditional Robust Optimization (CRO)}}, \, \forall \, \psi \in \mathcal{V} \end{aligned}$$

Desirable coverage properties for $\mathcal{U}(\psi)$

The field of conformal prediction identifies two important properties for conditional uncertainty sets

- Marginal coverage property: $\mathbb{P}(\xi \in \mathcal{U}(\psi)) \geq 1 \epsilon$
- Conditional coverage property: $\mathbb{P}(\xi \in \mathcal{U}(\psi)|\psi) \geq 1 \epsilon$ a.s.
- Conditional coverage ⇒ Marginal coverage

E.g., target coverage $1 - \epsilon = 90\%$:

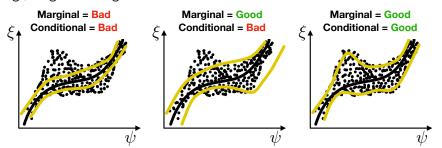


Image from Angelos and Bates, A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification, CoRR, 2021.

Connection to contextual optimization with VaR I

 Marginal coverage implies that CRO is a conservative approximation to:

$$(\mathsf{Static}\;\mathsf{VaR}\text{-}\mathsf{CO}) \qquad \min_{\mathbf{x}(\cdot)}\mathsf{VaR}_{1-\epsilon}(c(\mathbf{x}(\psi),\xi))$$

where $\text{VaR}_{1-\epsilon}(X)$ is the $1-\epsilon$ quantile of X when X is continuous

Connection to contextual optimization with VaR I

 Marginal coverage implies that CRO is a conservative approximation to:

where $VaR_{1-\epsilon}(X)$ is the $1-\epsilon$ quantile of X when X is continuous

• Proof: Let $\mathbf{x}^*_{\mathsf{CRO}}(\cdot)$ be the CRO policy, and $\bar{v} := \mathsf{esssup}\,\mathsf{max}_{\xi \in \mathcal{U}(\psi)}\,c(\mathbf{x}^*_{\mathsf{CRO}}(\psi), \xi)$ then

$$\begin{split} \mathbb{P}(c(\mathbf{x}^*_{\mathsf{CRO}}(\psi), \xi) &\leq \bar{v}) \\ &\geq \mathbb{P}(\xi \in \mathcal{U}(\psi)) \cdot \mathbb{P}(c(\mathbf{x}^*_{\mathsf{CRO}}(\psi), \xi) \leq \bar{v} | \xi \in \mathcal{U}(\psi)) \\ &\geq (1 - \epsilon) \cdot \mathbb{P}\left(\max_{\xi' \in \mathcal{U}(\psi)} c(\mathbf{x}^*_{\mathsf{CRO}}(\psi), \xi') \leq \bar{v} \middle| \xi \in \mathcal{U}(\psi)\right) \\ &\geq (1 - \epsilon) \cdot 1 = 1 - \epsilon \end{split}$$

Hence $VaR_{1-\epsilon}(c(\boldsymbol{x}_{CRO}^*(\psi), \xi)) \leq \bar{v}$

Connection to contextual optimization with VaR II

 Conditional coverage implies that CRO is a conservative approximation to:

$$(\mathsf{Nested}\;\mathsf{VaR}\text{-}\mathsf{CO}) \qquad \min_{\mathbf{x}(\cdot)} \mathbb{E}[\;\mathsf{VaR}_{1-\epsilon}(c(\mathbf{x}(\psi),\xi)|\psi)\;]$$

Connection to contextual optimization with VaR II

 Conditional coverage implies that CRO is a conservative approximation to:

$$(\mathsf{Nested}\ \mathsf{VaR}\text{-}\mathsf{CO}) \qquad \min_{\mathbf{x}(\cdot)} \mathbb{E}[\ \mathsf{VaR}_{1-\epsilon}(c(\mathbf{x}(\psi),\xi)|\psi)\]$$

• Proof: Let $\mathbf{x}^*_{\mathsf{CRO}}(\cdot)$ be the CRO policy, and $\bar{v}(\psi) := \mathsf{max}_{\xi \in \mathcal{U}(\psi)} \, c(\mathbf{x}^*_{\mathsf{CRO}}(\psi), \xi)$ then

$$\mathbb{P}(c(\mathbf{x}_{\mathsf{CRO}}^*(\psi), \xi) \leq \bar{v}(\psi)|\psi)$$

$$\geq \mathbb{P}(\xi \in \mathcal{U}(\psi)|\psi) \cdot \mathbb{P}(c(\mathbf{x}_{\mathsf{CRO}}^*(\psi), \xi) \leq \bar{v}(\psi)|\psi, \xi \in \mathcal{U}(\psi))$$

$$\geq (1 - \epsilon) \cdot \mathbb{P}(\max_{\xi \in \mathcal{U}(\psi)} c(\mathbf{x}^*_{\mathsf{CRO}}(\psi), \xi) \leq \bar{\mathbf{v}}(\psi) | \psi, \xi \in \mathcal{U}(\psi))$$

$$= (1 - \epsilon) \cdot 1 = 1 - \epsilon$$

Hence
$$\operatorname{VaR}_{1-\epsilon}(c(\mathbf{x}^*_{\operatorname{CRO}}(\psi),\xi)|\psi) \leq \bar{v}(\psi)$$
 a.s. \Rightarrow

Related work in operations research literature

- Conditional Stochastic Optimization:
 - Hannah et al. [2010], Bertsimas and Kallus [2020], ...: Conditional distribution estimation used to formulate and solve the CSO problem.
 - Donti et al. [2017], Elmachtoub and Grigas [2022], ...: End to end paradigm applied to solve the data driven CSO problem.
- Distributionally robust CSO:
 - Bertsimas et al. [2022], McCord [2019], Wang and Jacquillat [2020], Kannan et al. [2020]: DRO approaches with ambiguity sets centered at the estimated conditional distribution
- Data-driven Robust Optimization:
 - Goerigk and Kurtz [2023], Johnstone and Cox [2021]: learns a traditional "non-contextual" uncertainty set using deep learning, and conformal prediction.
 - Ohmori [2021], Sun et al. [2023]: calibrates a box or ellipsoidal set to cover the realizations of a kNN-based or residual-based conditional distribution.
 - Chenreddy et al. [2022] learns a contextual uncertainty set using an integrated clustering then classification approach

Outline

- 1 Introduction
- 2 Deep Data-Driven Robust Optimization (DDDRO)
- 3 Deep Cluster then Classify (DCC) Algorithm
- 4 Integrated Deep Cluster then Classify (IDCC)
- **5** Comparative Study
- 6 End-to-end CRO with Conditional Coverage

Deep Data-Driven Robust Optimization (DDDRO)

• Classic non-contextual RO model is written as

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\xi \in \mathcal{U}} c(\mathbf{x}, \xi),$$

Deep Data-Driven Robust Optimization (DDDRO)

• Classic non-contextual RO model is written as

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\xi \in \mathcal{U}} c(\mathbf{x}, \xi),$$

ullet Goerigk and Kurtz [2023] describe the uncertainty set ${\cal U}$ in the form,

$$\mathcal{U}(W,R) = \{ \xi \in \mathbb{R}^{m_{\xi}} : ||f_{W}(\xi) - \bar{f}_{0}|| \leq R \},$$

where $f_W : \mathbb{R}^{m_{\xi}} \to \mathbb{R}^d$ is a DNN. The uncertainty set here is defined as a sphere of radius R centered at some \bar{f}_0 in the projected space.

Deep Data-Driven Robust Optimization (DDDRO)

• Classic non-contextual RO model is written as

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\xi \in \mathcal{U}} c(\mathbf{x}, \xi),$$

ullet Goerigk and Kurtz [2023] describe the uncertainty set ${\cal U}$ in the form,

$$\mathcal{U}(W,R) = \{ \xi \in \mathbb{R}^{m_{\xi}} : ||f_{W}(\xi) - \bar{f}_{0}|| \leq R \},$$

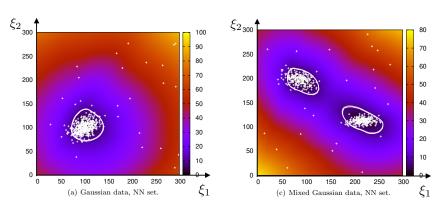
where $f_W: \mathbb{R}^{m_{\xi}} \to \mathbb{R}^d$ is a DNN. The uncertainty set here is defined as a sphere of radius R centered at some \bar{f}_0 in the projected space.

• Given a dataset $\mathcal{D}_{\xi} = \{\xi_1, \xi_2 \dots \xi_N\}$, \mathcal{U} is designed by training a NN to minimize the one-class classification loss

$$\min_{W} \frac{1}{N} \sum_{i=1}^{N} \|f_{W}(\xi_{i}) - \bar{f}_{0}\|^{2},$$

where $\bar{f}_0 := (1/N) \sum_{i \in [N]} f_{W_0}(\xi_i)$ is the center of the projected points and the radius R of \mathcal{U} is calibrated for $1 - \epsilon$ coverage on the data set.

Illustrative examples



Images from Goerigk and Kurtz. Data-driven robust optimization using deep neural networks. Computers and Operational Research, 151(C), 2023

Solving robust optimization with deep uncertainty sets

• When using piecewise affine activation functions, $\mathcal{U}(W,R)$ can be represented as:

$$\mathcal{U}(W,R) := \left\{ \left\{ \begin{array}{l} \exists u \in \{0,1\}^{d \times K \times L}, \ \zeta \in \mathbb{R}^{d \times L}, \ \phi \in \mathbb{R}^{d \times L} \\ \sum_{k=1}^K u_j^{k,\ell} = 1, \ \forall j,\ell \\ \phi^1 = W^1 \xi \\ \zeta_j^\ell = \sum_{k=1}^K u_j^{k,\ell} a_k^\ell \phi_j^\ell + \sum_{k=1}^K u_j^{k,\ell} b_k^\ell, \ \forall j,\ell \\ \phi^\ell = W^\ell \zeta^{\ell-1}, \ \forall \ell \geq 2 \\ \sum_{k=1}^K u_j^{k,\ell} \underline{\alpha}_k^\ell \leq \phi_j^\ell \leq \sum_{k=1}^K u_j^{k,\ell} \overline{\alpha}_k^\ell, \ \forall j,\ell \\ \|\zeta^L - \overline{f_0}\| \leq R \end{array} \right\}$$

• The problem $\max_{\xi \in \mathcal{U}(W,R)} c(x,\xi)$ can therefore be formulated as a mixed-integer linear program when $c(x,\xi)$ is linear.

Solving robust optimization with deep uncertainty sets

• When using piecewise affine activation functions, $\mathcal{U}(W,R)$ can be represented as:

$$\mathcal{U}(W,R) := \left\{ \left\{ \begin{array}{l} \exists u \in \{0,1\}^{d \times K \times L}, \ \zeta \in \mathbb{R}^{d \times L}, \ \phi \in \mathbb{R}^{d \times L} \\ \sum_{k=1}^K u_j^{k,\ell} = 1, \ \forall j,\ell \\ \phi^1 = W^1 \xi \\ \zeta_j^\ell = \sum_{k=1}^K u_j^{k,\ell} a_k^\ell \phi_j^\ell + \sum_{k=1}^K u_j^{k,\ell} b_k^\ell, \ \forall j,\ell \\ \phi^\ell = W^\ell \zeta^{\ell-1}, \ \forall \ell \geq 2 \\ \sum_{k=1}^K u_j^{k,\ell} \underline{\alpha}_k^\ell \leq \phi_j^\ell \leq \sum_{k=1}^K u_j^{k,\ell} \overline{\alpha}_k^\ell, \ \forall j,\ell \\ \|\zeta^L - \overline{f_0}\| \leq R \end{array} \right\}$$

- The problem $\max_{\xi \in \mathcal{U}(W,R)} c(x,\xi)$ can therefore be formulated as a mixed-integer linear program when $c(x,\xi)$ is linear.
- This can be integrated in a cutting plane method for solving the RO:

$$\min_{x \in \mathcal{X}, t} \ t$$
 subject to $c(x, \xi) \leq t$, $\forall \, \xi \in \mathcal{U}' \subset \mathcal{U}(W, R)$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Outline

- 1 Introduction
- 2 Deep Data-Driven Robust Optimization (DDDRO)
- 3 Deep Cluster then Classify (DCC) Algorithm
- 4 Integrated Deep Cluster then Classify (IDCC)
- **5** Comparative Study
- 6 End-to-end CRO with Conditional Coverage

Deep Cluster then Classify (DCC)

- We use $\mathcal{D} := \{(\psi_1, \xi_1), \dots, (\psi_N, \xi_N)\}$ to design data-driven conditional uncertainty sets $\mathcal{U}(\psi)$.
- This approach reduces the side-information ψ to a set of K different clusters and designs customized sets, i.e., $\mathcal{U}(\psi) := \mathcal{U}_{\mathbf{a}(\psi)}$
 - $a: \mathbb{R}^{m_\psi} o [K]$ is a trained K-class cluster assignment function
 - Each \mathcal{U}_k , for $k=1,\ldots,K$, is an uncertainty sets for ξ calibrated on the dataset $\mathcal{D}^k_{\xi}:=\cup_{(\psi,\xi)\in\mathcal{D}:a(\psi)=k}\{\xi\}$ using one-class classification as in Goerigk and Kurtz [2023].

Deep clustering using auto-encoder/decoder networks

We use an auto-encoder and decoder network to identify $a(\cdot)$,

$$\begin{split} \mathcal{L}^1(V,\theta) &:= \frac{1 - \alpha_K}{N} \sum_{i=1}^N \| g_{V_D}(g_{V_E}(\psi_i)) - \psi_i \|^2 \\ &+ \frac{\alpha_K}{N} \sum_{i=1}^N \| g_{V_E}(\psi_i) - \theta^{a(\psi_i)} \|^2 \,, \end{split}$$

where

$$a(\psi) := \underset{k \in [K]}{\operatorname{argmin}} \|g_{V_E}(\psi) - \theta^k\|$$

and V_E and V_D are the network parameters.

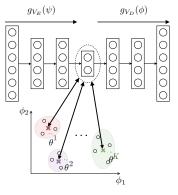


Image adapted from Fard et al. Deep k-means: Jointly clustering with k-means and learning representations. Pattern Recognition Letters, 138:185–192, 2020

Deep Cluster then Classify (DCC) shortcomings

- Fails to tackle the conditional uncertainty set learning problem as a whole
 - I.e., low total variation in the projected ψ space for cluster does not imply low total variation is possible for projections of ξ .
- 2 Can struggle for cases where clear separation of clusters isn't possible.

Outline

- 1 Introduction
- 2 Deep Data-Driven Robust Optimization (DDDRO)
- 3 Deep Cluster then Classify (DCC) Algorithm
- 4 Integrated Deep Cluster then Classify (IDCC)
- **5** Comparative Study
- 6 End-to-end CRO with Conditional Coverage

Integrated Deep Cluster then Classify (IDCC)

IDCC addresses the shortcomings of DCC:

1 Optimize V_E , V_D , θ , and $\{W^k\}_{k=1}^K$ jointly using a loss function that trades-off between the objectives used for clustering and each of the K versions of one-class classifiers

Integrated Deep Cluster then Classify (IDCC)

IDCC addresses the shortcomings of DCC:

- Optimize V_E , V_D , θ , and $\{W^k\}_{k=1}^K$ jointly using a loss function that trades-off between the objectives used for clustering and each of the K versions of one-class classifiers
- 2 The issue of hard assignment is handled by training a parameterized random assignment policy $\tilde{a}(\psi) \sim \pi(\psi)$:

$$\mathbb{P}(\tilde{\mathbf{a}}(\psi) = \mathbf{k}) = \pi_{\mathbf{k}}(\psi) := \frac{\exp\{-\beta \|\mathbf{g}_{V}(\psi) - \theta^{\mathbf{k}}\|^{2}\}}{\sum_{k'=1}^{K} \exp\{-\beta \|\mathbf{g}_{V}(\psi) - \theta^{\mathbf{k}'}\|^{2}\}}$$

Integrated Deep Cluster then Classify (IDCC)

With these changes, the proposed loss function is of the form,

$$\begin{split} \mathcal{L}_{\alpha}^{2}(V,\theta,\{W^{k}\}_{k=1}^{K}) &:= \alpha_{S} \Big((1-\alpha_{K}) \mathbb{E}_{\mathcal{D}}^{\pi}[\|\mathbf{g}_{V_{\mathcal{D}}}(\mathbf{g}_{V_{\mathcal{E}}}(\psi_{i})) - \psi_{i}\|^{2}] \\ &+ \alpha_{K} \mathbb{E}_{\mathcal{D}}^{\pi}[\mathsf{TotalVar}_{\mathcal{D}}^{\pi}(\mathbf{g}_{V_{\mathcal{E}}}(\psi),\theta^{\tilde{a}(\psi)}\,|\tilde{a}(\psi))] \Big) \\ &+ (1-\alpha_{S}) \frac{1}{K} \sum_{k=1}^{K} \min_{\vartheta^{k}} \mathsf{TotalVar}_{\mathcal{D}}^{\pi}(f_{W^{k}}(\xi),\vartheta^{k}\,|\tilde{a}(\psi) = k) \,, \end{split}$$

where $\mathsf{TotalVar}^\pi_{\mathcal{D}}(\phi,\theta|\tilde{\mathsf{a}}(\psi)) := \sum_{j=1}^d \mathbb{E}^\pi_{\mathcal{D}}[(\phi_j-\theta_j)^2|\tilde{\mathsf{a}}(\psi)]$ is the conditional centered total variation of ϕ given $\tilde{\mathsf{a}}(\psi)$.

The **random** uncertainty set is $\tilde{\mathcal{U}}(\psi) := \mathcal{U}(W^{\tilde{\mathbf{a}}(\psi)}, R^{\tilde{\mathbf{a}}(\psi)})$

IDCC conservatively approximates Value-at-Risk contextual optimization

Lemma

Under DCC and IDCC, if the uncertainty set is calibrated to satisfy:

$$\mathbb{P}_{\mathcal{D}}^{\pi}(\xi \in \tilde{\mathcal{U}}(\psi)|\tilde{\mathbf{a}}(\psi) = \mathbf{k}) \ge 1 - \epsilon, \, \forall \mathbf{k} \,, \tag{1}$$

then the random policy $ilde{ extbf{x}}(\cdot)$ to the randomized CRO problem together with

$$v^* := \max_{k \in [K]} \min_{x \in \mathcal{X}} \max_{\xi \in \mathcal{U}(W^k, R^k)} c(x, \xi)$$

provide a conservative approximate solution to the VaR-CO problem:

$$\min_{\mathbf{x}(\cdot)} \mathit{VaR}^{\mathcal{D},\pi}_{1-\varepsilon}(c(\mathbf{x}(\psi),\xi)),$$

under the empirical measure $\mathbb{P}^{\pi}_{\mathcal{D}}$. Namely, $VaR_{1-\epsilon}^{\mathcal{D},\pi}(c(\tilde{\mathbf{x}}(\psi),\xi)) \leq v^*$.

- 《ㅁ》《라》《글》《글》 돌[3

Outline

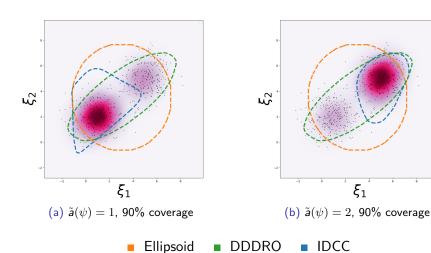
- 1 Introduction
- 2 Deep Data-Driven Robust Optimization (DDDRO)
- 3 Deep Cluster then Classify (DCC) Algorithm
- 4 Integrated Deep Cluster then Classify (IDCC)
- 6 Comparative Study
- 6 End-to-end CRO with Conditional Coverage

Experiments

Two environments:

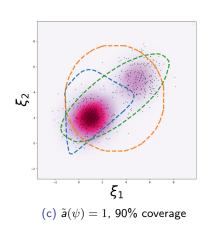
- Simple Synthetic Environment:
 - $(\psi,\xi)\in\mathbb{R}^2\times\mathbb{R}^2$ drawn from a mixture of two multivariate Gaussian distributions

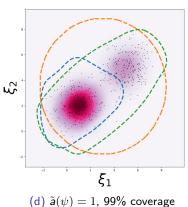
Illustration of conditional uncertainty sets in synthetic environment



4D > 4A > 4B > 4B > 5B 990

Illustration of conditional uncertainty sets in synthetic environment





Ellipsoid

DDDRO

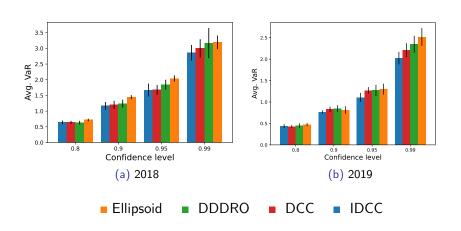
IDCC

Experiments

Two environments:

- Simple Synthetic Environment:
 - $(\psi,\xi)\in\mathbb{R}^2\times\mathbb{R}^2$ drawn from a mixture of two multivariate Gaussian distributions
- Robust portfolio optimization with market data
 - Decision model: $\min_{x \in \mathcal{X}} \operatorname{VaR}_{1-\epsilon}(\xi^\mathsf{T} x)$ where $\mathcal{X} := \{x \in \mathbb{R}^n | \sum_{i=1}^n x_i = 1, \ x \geq 0 \}$ captures the need to invest one unit of wealth among the available assets while minimizing risk exposure.
 - Contextual info: Trading volume of individual stocks, market indices such as volatility index (VIX), 10-year treasury yield index (TNX), oil index (CLF), S&P 500 (GSPC), gold price (GC=F), Dow Jones (DJI) as covariates.
 - Market data from Yahoo! Finance: 70 different stocks from 8 sectors during period from Jan. 1st 2012 to Dec. 31 2019.

Portfolio optimization: Comparison of Avg. VaR across portfolio simulations



Outline

- 1 Introduction
- 2 Deep Data-Driven Robust Optimization (DDDRO)
- 3 Deep Cluster then Classify (DCC) Algorithm
- 4 Integrated Deep Cluster then Classify (IDCC)
- 6 Comparative Study
- 6 End-to-end CRO with Conditional Coverage

End-to-End CRO

- The IDCC approach suffers from two issues:
 - Training is done solely based on total variation measurements, disregarding entirely the out-of-sample performance of the solution obtained from robust optimization.
 - While the calibration process encourages marginal coverage by making the coverage accurate for each cluster:

$$\mathbb{P}(\xi \in \mathcal{U}(\psi) | \tilde{\mathbf{a}}(\psi) = \mathbf{k}) \geq 1 - \epsilon \forall \mathbf{k} \quad \checkmark \quad \Rightarrow \quad \mathbb{P}(\xi \in \mathcal{U}(\psi)) \geq 1 - \epsilon \quad \checkmark$$

it does not promote **conditional coverage** over all ψ :

$$\mathbb{P}(\xi \in \mathcal{U}(\psi)|\psi) \geq 1 - \epsilon$$
 a.s. *

 In this next part, we propose End-to-end Conditional Robust Optimization that promotes conditional coverage.

A sequential approach for continuous adaptation

• We consider a continuously adapted conditional ellipsoidal set:

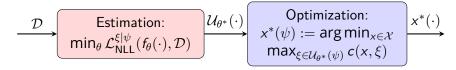
$$\mathcal{U}_{\theta}(\psi) := \left\{ \xi \in \mathbb{R}^{m_{\xi}} : (\xi - \mu_{\theta}(\psi))^{T} \Sigma_{\theta}^{-1}(\psi) (\xi - \mu_{\theta}(\psi)) \le R_{\theta} \right\},\,$$

A sequential approach for continuous adaptation

• We consider a continuously adapted conditional ellipsoidal set:

$$\mathcal{U}_{\theta}(\psi) := \left\{ \xi \in \mathbb{R}^{m_{\xi}} : \left(\xi - \mu_{\theta}(\psi) \right)^{T} \Sigma_{\theta}^{-1}(\psi) \left(\xi - \mu_{\theta}(\psi) \right) \le R_{\theta} \right\},\,$$

• Given a data set $\mathcal{D} = \{(\psi_1, \xi_1), (\psi_2, \xi_2) \dots (\psi_N, \xi_N)\}$, a sequential learning and optimization approach takes the form:



where $\mathcal{L}_{\text{NLL}}^{\xi|\psi}$ is the negative log likelihood for a conditional Gaussian density estimator (see Barratt and Boyd [2021]):

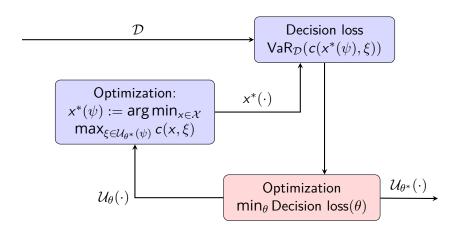
$$\xi \sim f_{\theta}(\psi) := \mathcal{N}(\mu_{\theta}(\psi), \Sigma_{\theta}(\psi))$$

and
$$R_{\theta}$$
 s.t. $\mathbb{P}_{\mathcal{D}}(\xi \in \mathcal{U}_{\theta}(\psi)) = 1 - \epsilon$

▶ **4** ∰ ▶ **4** 둘 ▶ **4** 둘 ▶ **5** |달 ♥ 9 Q (~

End-to-end objective

An end-to-end approach learns the estimator by trying to minimize the decision loss, e.g. the portfolio risk based on $VaR_{1-\epsilon}$



Conditional coverage objective I

Lemma

An uncertainty set $\mathcal{U}_{\theta}(\psi)$ has an a.s. conditional coverage of $1-\epsilon$ if and only if

$$\mathcal{L}_{CC}(\theta) := \mathbb{E}[\left(\mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi) - (1 - \epsilon)\right)^{2}] = 0$$

Conditional coverage objective I

Lemma

An uncertainty set $\mathcal{U}_{\theta}(\psi)$ has an a.s. conditional coverage of $1-\epsilon$ if and only if

$$\mathcal{L}_{CC}(\theta) := \mathbb{E}[\left(\mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi) - (1 - \epsilon)\right)^{2}] = 0$$

Proof:

$$\begin{split} \text{Condition coverage} \; \Leftrightarrow \; \mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi) &= 1 - \epsilon \text{ a.s} \\ \Rightarrow \; \mathcal{L}_{\text{CC}}(\theta) &= \mathbb{E}[(\mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi) - (1 - \epsilon))^2] \\ &= \mathbb{E}[(1 - \epsilon - (1 - \epsilon))^2] = 0 \\ \Rightarrow \; (\mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi) - (1 - \epsilon))^2 = 0 \text{ a.s.} \\ \Rightarrow \; \mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi) = 1 - \epsilon \text{ a.s.} \end{split}$$

Conditional coverage objective II

The loss function $\mathcal{L}_{CC}(\theta) := \mathbb{E}[(\mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi) - (1-\epsilon))^2]$ can be approximated using:

$$\mathcal{L}^{3}(\theta) := \mathbb{E}^{\mathcal{D}}[(\mathbf{g}_{\phi^{*}(\theta)}(\psi) - (1 - \epsilon))^{2}]$$

where $g_{\phi^*(\theta)}(\psi) \approx \mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi)$ is obtained using logistic regression of membership variable $y(\psi, \xi; \theta) := \mathbf{1}\!\!1 \{ \xi \in \mathcal{U}_{\theta}(\psi) \}$ on ψ .

Conditional coverage objective II

The loss function $\mathcal{L}_{CC}(\theta) := \mathbb{E}[(\mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi) - (1-\epsilon))^2]$ can be approximated using:

$$\mathcal{L}^{3}(\theta) := \mathbb{E}^{\mathcal{D}}[(\mathbf{g}_{\phi^{*}(\theta)}(\psi) - (1 - \epsilon))^{2}]$$

where $g_{\phi^*(\theta)}(\psi) \approx \mathbb{P}(\xi \in \mathcal{U}_{\theta}(\psi)|\psi)$ is obtained using logistic regression of membership variable $y(\psi, \xi; \theta) := \mathbf{1} \{ \xi \in \mathcal{U}_{\theta}(\psi) \}$ on ψ .

I.e., letting the augmented data set

$$\mathcal{D}_{\psi\xi y}^{\theta} := \{ (\psi_1, \xi_1, y(\psi_1, \xi_1; \theta)), \dots, (\psi_N, \xi_N, y(\psi_N, \xi_N; \theta)) \},$$

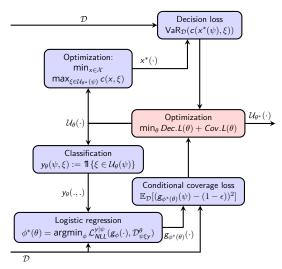
one solves $\phi^*(\theta) \in \operatorname{argmin}_{\phi} \mathcal{L}^{y|\psi}_{\mathit{NLL}}(g_{\phi}(\cdot), \mathcal{D}^{\theta}_{\psi \xi_{\mathit{Y}}})$ with

$$g_{\phi}(\psi) := \frac{1}{1 + \exp^{\phi^T \psi + \phi_0}}$$

◆ロト ◆個ト ◆意ト ◆意ト 連伸 からぐ

End-to-end approach with conditional coverage

We train $\mathcal{U}_{\theta}(\psi)$ using the two tasks: produce good decision + produce good conditional coverage:

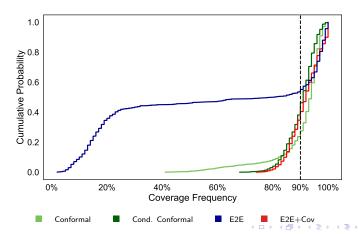


Comparative study

	Conf.	Cond. Conf.	E2E	E2E+cov.
CVaR _{0.9}	1.55	1.47	1.29	1.24
VaR _{0.9}	0.91	0.88	0.82	0.78
Marginal cov.	91%	90%	66%	94%

Comparative study

	Conf.	Cond. Conf.	E2E	E2E+cov.
CVaR _{0.9}	1.55	1.47	1.29	1.24
VaR _{0.9}	0.91	0.88	0.82	0.78
Marginal cov.	91%	90%	66%	94%



Concluding remarks

- We introduced a new contextual robust optimization approach for solving risk averse contextual optimization problems.
- In Robust-CO, deep neural networks can be used to:
 - Represent richly structured uncertainty sets, e.g. DDDRO, IDCC implementation
 - Adapt uncertainty set continuously to covariates, e.g. E2E+cov. implementation
- Two types of training procedures:
 - IDCC produces sets that are more interpretable but less adaptable
 - E2E+cov. is more obscure but highly adaptive
- Two types of training objectives:
 - Statistical performance: achieving the right marginal/conditional coverage
 - Task-based performance: Producing decisions that achieve low VaR/CVaR

Thank you

Appendix

Bibliography I

- Shane Barratt and Stephen Boyd. Covariance prediction via convex optimization, 2021.
- Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. *Management Science*, 66(3):1025–1044, 2020.
- Dimitris Bertsimas, Christopher McCord, and Bradley Sturt. Dynamic optimization with side information. *European Journal of Operational Research*, 2022.
- Abhilash Reddy Chenreddy, Nymisha Bandi, and Erick Delage. Data-driven conditional robust optimization. In *Advances in Neural Information Processing Systems*, volume 35, pages 9525–9537, 2022.
- Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic optimization. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
- Adam N Elmachtoub and Paul Grigas. Smart "predict, then optimize". *Management Science*, 68 (1):9–26, 2022.
- Marc Goerigk and Jannis Kurtz. Data-driven robust optimization using deep neural networks. Computers and Operational Research, 151(C), 2023.
- Lauren Hannah, Warren Powell, and David Blei. Nonparametric density estimation for stochastic optimization with an observable state variable. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010.
- Chancellor Johnstone and Bruce Cox. Conformal uncertainty sets for robust optimization, 2021.

Bibliography II

- Rohit Kannan, Güzin Bayraksan, and James R Luedtke. Residuals-based distributionally robust optimization with covariate information. arXiv preprint arXiv:2012.01088, 2020.
- Christopher George McCord. *Data-driven dynamic optimization with auxiliary covariates.* PhD thesis, Massachusetts Institute of Technology, 2019.
- Shunichi Ohmori. A predictive prescription using minimum volume k-nearest neighbor enclosing ellipsoid and robust optimization. *Mathematics*, 9(2):119, 2021.
- R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational Analysis. Springer, Berlin, 2009.
- Chunlin Sun, Linyu Liu, and Xiaocheng Li. Predict-then-calibrate: A new perspective of robust contextual lp, 2023.
- Kai Wang and Alex Jacquillat. From classification to optimization: A scenario-based robust optimization approach. *Available at SSRN 3734002*, 2020.