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Presentation overview

@ Introduction

@® Deep Data-Driven Robust Optimization (DDDRO)
© Deep Cluster then Classify (DCC) Algorithm

O Integrated Deep Cluster then Classify (IDCC)

® Comparative Study

® End-to-end CRO with Conditional Coverage
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Motivating example

® Returns of different
assets are unknown but
may depend on historical
returns, economic
factors, investor
sentiments via social
media.

® Portfolio manager can
formulate an allocation
problem to minimize the
value-at-risk (VaR) of
the portfolio while
preserving an expected
return above a given
target.
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What is contextual optimization?

e Qptimization problems arising in practice almost always involve
unknown parameters £ € R™¢

® QOftentimes, there is a relationship between unknown parameters and
some contextual data ¢y € R™
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What is contextual optimization?

® Optimization problems arising in practice almost always involve
unknown parameters £ € R™

® Oftentimes, there is a relationship between unknown parameters and
some contextual data ¢y € R™

e Contextual Optimization:
® Optimizes a policy, x : R™ — X
® |.e., action x € X is adapted to the observed context v

® Risk Neutral Contextual Optimization problem maximizes the expected
cost of running the policy over the joint distribution of (v, &):

(RN-CO)  minE[e(x(v), )]
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Relation to conditional stochastic optimization

® Interchangeability property (see Theorem 14.60 of Rockafellar and
Wets [2009]) states that:

x*(+) € arg(TinE[c(w(qp),f)] = x"(Y) € arger)rgin Elc(x,&)|Y] a.s.
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Relation to conditional stochastic optimization

® Interchangeability property (see Theorem 14.60 of Rockafellar and
Wets [2009]) states that:

x*(+) € arg(TinE[c(w(¢),§)] & x'(y) € arger)rgin Elc(x,&)|y] ass.

® An optimal policy for RNCO problem can therefore be obtained using
the following conditional stochastic optimization (CSO) problem:

x(¢) = argmin Ec(x, §)|¢],

xXEX
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What is contextual /conditional robust optimization?

® We introduce a novel Robust Contextual Optimization paradigm
for solving contextual optimization problems in a risk-averse setting:

Robust-CO min  max c(x(¢),
( ) min_max clx(v).o

where U (1)) is an uncertainty set designed to contain with high
probability the realization of £ conditionally on observing ).
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What is contextual /conditional robust optimization?

® We introduce a novel Robust Contextual Optimization paradigm
for solving contextual optimization problems in a risk-averse setting:

Robust-CO min  max c(x(¢),
( ) min_max clx(v).o

where U (1)) is an uncertainty set designed to contain with high
probability the realization of £ conditionally on observing ).

® A weaker interchangeability property states:
x*(-)eargmin max c(w(v),&
©) e3(.) YEVLEU(Y) ®).0)

< x* € argmin max c(x, Vo ey
®) §€X EEU () (:8) v

Conditional Robust Optimization (CRO)
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Desirable coverage properties for U(1))

The field of conformal prediction identifies two important properties for
conditional uncertainty sets

e Marginal coverage property: P(§ e U(¢)) > 1 —¢

e Conditional coverage property: P(§ € U(¢)|[¢p) > 1 —€ ass.
e Conditional coverage = Marginal coverage

E.g., target coverage 1 — ¢ = 90%:

Marginal = Bad Marginal = Good Marginal = Good
5“ Conditional = Bad 6‘ Conditional = Bad 6“ Conditional = Good

Image from Angelos and Bates, A Gentle ion to C liction and Distributi

Free Uncertainty Q ification, CoRR, 2021.
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Connection to contextual optimization with VaR |

® Marginal coverage implies that CRO is a conservative approximation
to:

(Static VaR-CO) m(lgl VaRy_(c(x(¢),£))

where VaR;_.(X) is the 1 — € quantile of X when X is continuous

A. Chenreddy, N. Bandi, E. Delage (HEC) Data-Driven Conditional RO July 23, 2023 8/41



Connection to contextual optimization with VaR |

® Marginal coverage implies that CRO is a conservative approximation
to:

(Static VaR-CO) min VaR1_c(c(x(¢),£))

x(-)

where VaR;_.(X) is the 1 — ¢ quantile of X when X is continuous
® Proof: Let x{ry(-) be the CRO policy, and
V 1= esssup MaXeey/(y) c(x¢ro (), &) then

P(c(xcro(¥): ) < V)
> B(€ € UW)) - Plc(xino(),€) < VIE € U(W))
> (1P max clxenov).) < vle cU(w))
(I—¢-1=1—¢

Vv

Hence VaR;_c(c(x¢ro(¥),€)) < v
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Connection to contextual optimization with VaR |l

® Conditional coverage implies that CRO is a conservative
approximation to:

(Nested VaR-CO) T(TE[ VaRi—c(c(x(¥),&)|¥) ]
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Connection to contextual optimization with VaR |l

e Conditional coverage implies that CRO is a conservative
approximation to:

(Nested VaR-CO) rP(TE[VaRl—e(C(X(i/))af)W) ]

® Proof: Let x{ry(-) be the CRO policy, and
V(1) 1= MaXecy(y) C(Xgro(¥), &) then

P(c(xcro (), €) < v(¥)[¢)
> P(E e UW)[) - Ple(xcro(¥),€) < v(¥)[1, € € UY))

>(1-¢- P(ggfgz) c(xcro(¥), ) < v(¥)[¥, € € U(¥))

=(1—-¢-1=1-¢

Hence VaR;_c(c(x¢ro(¥),E)|Y) < v(¥) as. =
E[VaRl e(c(xgro (%), €1¥))] < E[v()]
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Related work in operations research literature

e Conditional Stochastic Optimization:
® Hannah et al. [2010], Bertsimas and Kallus [2020], ..: Conditional
distribution estimation used to formulate and solve the CSO problem.
® Donti et al. [2017], Elmachtoub and Grigas [2022], ..: End to end
paradigm applied to solve the data driven CSO problem.
® Distributionally robust CSO:
® Bertsimas et al. [2022], McCord [2019], Wang and Jacquillat [2020],
Kannan et al. [2020]: DRO approaches with ambiguity sets centered at
the estimated conditional distribution
® Data-driven Robust Optimization:

® Goerigk and Kurtz [2023], Johnstone and Cox [2021]: learns a
traditional “non-contextual” uncertainty set using deep learning, and
conformal prediction.

® Ohmori [2021], Sun et al. [2023]: calibrates a box or ellipsoidal set to
cover the realizations of a KNN-based or residual-based conditional
distribution.

® Chenreddy et al. [2022] learns a contextual uncertainty set using an
integrated clustering then classification approach
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Outline

@® Deep Data-Driven Robust Optimization (DDDRO)
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Deep Data-Driven Robust Optimization (DDDRO)

e (Classic non-contextual RO model is written as

min max
xeX ¢ell C(Xv 6)7
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Deep Data-Driven Robust Optimization (DDDRO)

e (Classic non-contextual RO model is written as

min max
xeX ¢ell C(X7£)7

® Goerigk and Kurtz [2023] describe the uncertainty set ¢ in the form,
UW,R) ={§eR™ :|fw(&) — il <R},

where fiy : R™ — R is a DNN. The uncertainty set here is defined
as a sphere of radius R centered at some fy in the projected space.
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Deep Data-Driven Robust Optimization (DDDRO)

e (Classic non-contextual RO model is written as

min max
xeX ¢ell C(X7§)7

® Goerigk and Kurtz [2023] describe the uncertainty set ¢ in the form,
UW,R) ={eR™ : |[fw(§) — hll < R},

where fiy : R™ — R? is a DNN. The uncertainty set here is defined
as a sphere of radius R centered at some fy in the projected space.

® Given a dataset D¢ = {{1,&2...&n}, U is designed by training a NN
to minimize the one-class classification loss

N
1 _
min — fw (&) — Bl
iy (e
where fy := (1/N) >_ie[n) wo (&) is the center of the projected points

and the radius R of U is calibrated for 1 — e coverage on the data set.
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lllustrative examples

0 50 100 150 200 250 300 100 150 200 250 300
(a) Gaussian data, NN set. 51 (c) Mixed Gaussian data, NN set. é‘l

Images from Goerigk and Kurtz. Data-driven robust optimization using deep neural networks. Ct and O i 151(C), 2023
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Solving robust optimization with deep uncertainty sets

® When using piecewise affine activation functions, (W, R) can be

represented as:

UW,R) =

Eiue{() 1}d><K><L CGRdXL ¢€Rd><L
Tt ”—1 i, £
¢i
=3, J” £¢Z+Zk 1 Mbl& vj, £
#t = W’fd Lve>2
25:1 Wlol < o < TI, uPtL, VLe
It =Rl <R

® The problem mMaxgcy(w,r) €(x,§) can therefore be formulated as a
mixed-integer linear program when c(x, &) is linear.

A. Chenreddy, N. Bandi, E. Delage (HEC)
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Solving robust optimization with deep uncertainty sets

® When using piecewise affine activation functions, (W, R) can be
represented as:

3u€{0 1}d><K><L CERdXL ¢€Rd><L
K ”_1 ), £
¢i
UW,R) ={¢ Zk 1 sz £¢Z+Zk 1 klbfv Vj, €
#t = W‘fd Lve>2
L 0— .
Zszl “J,'(’ o < of < Zl,le ”J"“ ay, Vit
I¢t—Rhll <R

® The problem mMaxgcy(w,r) €(x,§) can therefore be formulated as a
mixed-integer linear program when c(x, &) is linear.

® This can be integrated in a cutting plane method for solving the RO:
min t
XEX,t
subject to c(x,&) <t,véelU CcU(W,R)
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Outline

© Deep Cluster then Classify (DCC) Algorithm
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Deep Cluster then Classify (DCC)

® We use D := {(¢1,&1),. .., (¢¥n,En)} to design data-driven
conditional uncertainty sets U(1)).

® This approach reduces the side-information 1 to a set of K different
clusters and designs customized sets, i.e., U(1)) 1= U,y
® 2:R™ — [K] is a trained K-class cluster assignment function
® Each Uy, for k =1,..., K, is an uncertainty sets for £ calibrated on the

dataset Dé‘ = U(y,6)eD:a(y)=k1E€} using one-class classification as in
Goerigk and Kurtz [2023].
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Deep clustering using auto-encoder/decoder networks

We use an auto-encoder and decoder
network to identify a(-),

gve () 9vo (9)

£1(V,0) = aKZugVD (evew) —wil> |2
i=1

O

K N O

WZ |gVE _03(¢i)”2’ @)

=1 O

where
a(y) := argmin [lgv, (¥) — 6|

kelK]

and Ve and Vp are the network
parameters.
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Deep Cluster then Classify (DCC) shortcomings

@ Fails to tackle the conditional uncertainty set learning problem as a
whole

® |.e., low total variation in the projected 1) space for cluster does not
imply low total variation is possible for projections of &.

® Can struggle for cases where clear separation of clusters isn't possible.
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Outline

O Integrated Deep Cluster then Classify (IDCC)
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Integrated Deep Cluster then Classify (IDCC)

IDCC addresses the shortcomings of DCC:

@ Optimize Vg, Vp, 6, and {W"}kK:1 jointly using a loss function that
trades-off between the objectives used for clustering and each of the
K versions of one-class classifiers
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Integrated Deep Cluster then Classify (IDCC)

IDCC addresses the shortcomings of DCC:

@ Optimize Vg, Vp, 6, and {W"},(K:1 jointly using a loss function that
trades-off between the objectives used for clustering and each of the
K versions of one-class classifiers

® The issue of hard assignment is handled by training a parameterized
random assignment policy a(¢)) ~ m(v):

s explBlavlv) 0%}
B =R =) = Sk e (= Blaw(®) — ¢}
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Integrated Deep Cluster then Classify (IDCC)

With these changes, the proposed loss function is of the form,

La(V,0{W ) —as<(1 — ak)Ep|lgv, (gve (v1) — ¥ill?]

+ akEp[TotalVark (gve (1), 6 [a(1))))

K
1 . ” .
+(1—as) ; min TotalVar, (fiyx (€), Ok |a(y) = k),
where TotalVarp (¢, 0]a(v)) := Zj‘-le EX[(¢; — 0,)%a(1)] is the
conditional centered total variation of ¢ given a(v)).

The random uncertainty set is U(¢)) := U(W3¥) R3(¥))
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IDCC conservatively approximates Value-at-Risk contextual
optimization

Lemma
Under DCC and IDCC, if the uncertainty set is calibrated to satisfy:

PR (¢ € U¥)[a(y) = k) = 1 —¢, Vk, (1)
then the random policy x(-) to the randomized CRO problem together with

vii=maxmin max c¢(x,&)
ke[K] xeX celd(Wk,Rk)

provide a conservative approximate solution to the VaR-CO problem:

T(ip VaRY(c(x(1)), £)),

under the empirical measure PT,. Namely, VaR?_”Z(c()N((q/J), €)) < v
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Outline

©® Comparative Study
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Experiments

Two environments:
@ Simple Synthetic Environment:

® (1,¢) € R? x R? drawn from a mixture of two multivariate Gaussian
distributions
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lllustration of conditional uncertainty sets in synthetic
environment

&
&

&1 &1

(a) a(yp) =1, 90% coverage (b) a(xp) = 2, 90% coverage

u Ellipsoid = DDDRO = IDCC
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lllustration of conditional uncertainty sets in synthetic

environment
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Experiments

Two environments:
@ Simple Synthetic Environment:
® (1,€) € R? x R? drawn from a mixture of two multivariate Gaussian
distributions

® Robust portfolio optimization with market data

® Decision model: min,cx VaR;_.(£Tx) where
X :={xeR"|Y.]_, x; =1, x > 0} captures the need to invest one
unit of wealth among the available assets while minimizing risk
exposure.

® Contextual info: Trading volume of individual stocks, market indices
such as volatility index (VIX), 10-year treasury yield index (TNX), oil
index (CLF), S&P 500 (GSPC), gold price (GC=F), Dow Jones (DJI)
as covariates.

® Market data from Yahoo! Finance: 70 different stocks from 8 sectors
during period from Jan. 1st 2012 to Dec. 31 2019.

A. Chenreddy, N. Bandi, E. Delage (HEC) Data-Driven Conditional RO July 23, 2023 27 /41



Portfolio optimization: Comparison of Avg. VaR across
portfolio simulations

3.5

3.0

o 251
> 20

Z 159

051 0.5

0.0
08 0.9 0.95 0.99 00

. 0.9 0.95
Confidence level Confidence level

(a) 2018 (b) 2019

m Ellipsoid = DDDRO = DCC m IDCC
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Outline

@ End-to-end CRO with Conditional Coverage
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End-to-End CRO

® The IDCC approach suffers from two issues:

@ Training is done solely based on total variation measurements,
disregarding entirely the out-of-sample performance of the solution
obtained from robust optimization.

@ While the calibration process encourages marginal coverage by
making the coverage accurate for each cluster:

PEcUW)|a()=k)>1—eVk v = PlelUy)>1—€ vV
it does not promote conditional coverage over all v:

P cU)|p) >1—cas. %

® In this next part, we propose End-to-end Conditional Robust
Optimization that promotes conditional coverage.
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A sequential approach for continuous adaptation

® We consider a continuously adapted conditional ellipsoidal set:

Up(v) = { € €R™ (€ — po(1) 55 (V) (€ = po(¥)) < Ra},
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A sequential approach for continuous adaptation

® We consider a continuously adapted conditional ellipsoidal set:

Up(¥h) = { €€ R™ : (€ — po(¥) TS5 (W) (€ — no(¥)) < Ro},

® Given a data set D = {(¢1,&1), (¥2,&2) ... (¥n,En) ), a sequential
learning and optimization approach takes the form:

D Estimation: Up+(-) *(w(;ptin;i:;trig?r:] x*(+)
i £|¢ f‘ . D X = xeX

where Eﬂﬂ_ is the negative log likelihood for a conditional Gaussian

density estimator (see Barratt and Boyd [2021]):

§~ fo(1h) == N (po(), Zo(¢))
and Ry s.t. PD(§ S Z/fg(lﬁ)) =1—c¢
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End-to-end objective

An end-to-end approach learns the estimator by trying to minimize the
decision loss, e.g. the portfolio risk based on VaR;_.

D ‘ Decision loss ’

| VaRp(c(x* (). €))

Optimization: x* ()
x*(¢) := arg minyecy
MaXe ey, () €(X, )

Up(+) Optimization Up+(+)
' ming Decision loss(f)
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Conditional coverage objective |

Lemma

An uncertainty set Up(v)) has an a.s. conditional coverage of 1 — € if and
only if
Lcc(8) = E[(P(E € Up(¥)|9) — (1~ €))*] =0
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Conditional coverage objective |

Lemma

An uncertainty set Up(v)) has an a.s. conditional coverage of 1 — € if and
only if

Lec(8) := E[(P(€ € Up(¥)[9) — (1 —€))*] =0

Proof:

Condition coverage < P(§ € Up(¢)|p) =1 —€ ass

= Lcc(9) =E[(P(¢ € Up(¥)[1)) — (1 = €))?]
=E[(1-¢e~(1-¢)’] =0
)

= (P& €Up()[¥) — (1 —€))* =0 as.
= P elp(y)|yp) =1—¢cas.
A. Chenreddy, N. Bandi, E. Delage (HEC) Data-Driven Conditional RO
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Conditional coverage objective Il

The loss function Lcc () := E[(P(¢ € Up()|1) — (1 — €))?] can be
approximated using:

L£3(0) :=EP[(gg()(¥) — (1 = €))?]

where g4 (g) (1) = P(§ € Up(1)[1)) is obtained using logistic regression of
membership variable y (v, &;60) := M{& € Uy(v)} on 2.
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Conditional coverage objective Il

The loss function Lcc () := E[(P(¢ € Up()|1) — (1 — €))?] can be
approximated using:

L£3(0) :=EP[(gg()(¥) — (1 = €))?]

where g4 (g) (1) = P(§ € Up(1)[1)) is obtained using logistic regression of
membership variable y (v, &;60) := M{& € Uy(v)} on 2.

® | e, letting the augmented data set

Dle, = {01, &1, y(11,&:0)), ..., (Un, En, y(n, Eni 0))

one solves ¢*(¢) € argmin,, [,X,lipL(gd,(),De ) with

(3%
1
g¢(¢) - 1 + eXp¢Tw+¢0
A. Chenreddy, N. Bandi, E. Delage (HEC)
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End-to-end approach with conditional coverage

We train Uy (1)) using the two tasks: produce good decision + produce
good conditional coverage:

D Decision loss

| VaRo(c(x*(6),€)

Optimization: x*(-)
Minyex
MaXeey- () €(X, §)

u Optimization Up-(+)
o) ming Dec.L(8) + Cov.L(6)

Classification
yo(1,€) == T{€ € Uy(¢)}

Conditional coverage loss
Ep[(g4+a) (%) — (1 —€))?]

Logistic regression
* P Y
¢*(0) = argmin,, L31%,(85(). Dle,) [gpm0)()

[

yo(--)

D
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Comparative study

Conf. | Cond. Conf. | E2E | E2E+-cov.
CVaRg g 1.55 1.47 1.29 1.24
VaRy 9 0.91 0.88 0.82 0.78
Marginal cov. | 91% 90% 66% 94%
July 23, 2023
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Comparative study

Conf. | Cond. Conf. | E2E | E2E+cov.
CVaRg.o 1.55 1.47 1.29 1.24
VaRg g 0.91 0.88 0.82 0.78
Marginal cov. | 91% 90% 66% 94%
1.0 E
208 i
e !
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o
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B 04
:
002 !
0.0 i
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Coverage Frequency
| | Conformal | | Cond. Conformal B E2E | | E2E+Cov
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Concluding remarks

® We introduced a new contextual robust optimization approach for
solving risk averse contextual optimization problems.
® In Robust-CO, deep neural networks can be used to:

® Represent richly structured uncertainty sets, e.g. DDDRO, IDCC
implementation

® Adapt uncertainty set continuously to covariates, e.g. E2E+cov.
implementation

® Two types of training procedures:
® |IDCC produces sets that are more interpretable but less adaptable
® E2E-+cov. is more obscure but highly adaptive
® Two types of training objectives:
® Statistical performance: achieving the right marginal/conditional
coverage

® Task-based performance: Producing decisions that achieve low
VaR/CVaR
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