Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Data-Driven Optimization with Distributionally Robust Second-Order Stochastic Dominance Constraints

Erick Delage

HEC Montréal & GERAD, Montréal, Canada erick.delage@hec.ca

(Joint work with Chun Peng)

INFORMS Annual Meeting October 18th. 2022

Canada

Chaires de recherche du Canada

Canada

HEC MONTREAL

Distributionally Robust Stochastic Dominance

INFORMS Annual Meeting October 18th, 2022

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
00000	000	0000	0000	0000	000

Stochastic Dominance

Definition (Second-Order Stochastic Dominance, SOSD)

Given any two random variables X and Y capturing some earnings, X stochastically dominates Y in the second-order, $X \succeq_{(2)} Y$, if and only if

$$\int_{-\infty}^{\eta} F_X(t) \, dt \le \int_{-\infty}^{\eta} F_Y(t) \, dt, \forall \eta \in \mathbb{R},$$

where $F_X(t) = \mathbb{P}(X \leq t)$.

Equivalent representations:

• $X \succeq_{(2)} Y \Leftrightarrow \mathbb{E}[u(X)] \ge \mathbb{E}[u(Y)]$ for all non-decreasing concave functions u.

 $\blacktriangleright X \succeq_{(2)} Y \Leftrightarrow \mathbb{E}[(\eta - X)^+] \le \mathbb{E}[(\eta - Y)^+], \forall \eta \in \mathbb{R}.$

0000 000 0000 0000 0000	Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
	00000	000	0000	0000	0000	000

Optimization with SOSD Constraints

Consider the SOSD Constrained Problem¹:

$$\begin{array}{ll} [\mathsf{SOSDCP}] & \min_{\boldsymbol{x} \in \mathcal{X}} & \boldsymbol{c}^\top \boldsymbol{x} & (1a) \\ & \text{subject to} & f(\boldsymbol{x}, \boldsymbol{\xi}) \succeq_{(2)}^{\mathbb{P}} f_0(\boldsymbol{\xi}). & (1b) \end{array}$$

► $f(x, \xi)$ is the random controlled performance function, and $f_0(\xi)$ is the random reference performance function: e.g., $f_0(\xi) := f(x_0, \xi)$ with $x_0 \in \mathcal{X}$.

► E.g. SOSD constrained portfolio optimization problem:

$$\underset{\boldsymbol{x}: \ \mathbf{1}^{\top} \boldsymbol{x} = 1, \boldsymbol{x} \geq 0}{\text{maximize}} \ \mathbb{E}_{\mathbb{P}}[\boldsymbol{\xi}]^{\top} \boldsymbol{x}, \ \text{s.t.} \ \boldsymbol{\xi}^{\top} \boldsymbol{x} \succeq_{(2)}^{\mathbb{P}} \ \boldsymbol{\xi}^{\top} \boldsymbol{x}_{0}.$$

¹[Dentcheva and Ruszczyński. 2003]

Erick Delage (HEC & GERAD)

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Distributionally Robust Stochastic Dominance²

Definition (Distributionally Robust Second-Order Stochastic Dominance, DRSOSD)

Given two random variables X and Y, we say that X robustly stochastically dominates Y in the second order if and only if:

 $X \succeq_{(2)}^{\mathbb{P}} Y \quad \forall \mathbb{P} \in \mathcal{P},$

where $X \succeq_{(2)}^{\mathbb{P}} Y$ refers to the fact that X stochastically dominates Y in the second-order when the probability measure is \mathbb{P} .

²[Dentcheva and Ruszczyński 2010]

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000
000000	000	0000	0000	0000	000

Data-Driven DRSOSD using Wasserstein ambiguity

Consider DRSOSD constraint under a type-1 Wasserstein Ambiguity Set:

$$\begin{bmatrix} \mathsf{WDRSOSDCP} \end{bmatrix} \underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{minimize}} \boldsymbol{c}^{\top} \boldsymbol{x}$$
(2a)
subject to $f(\boldsymbol{x}, \boldsymbol{\xi}) \succeq_{(2)}^{\mathbb{P}} f_0(\boldsymbol{\xi}) \qquad \forall \mathbb{P} \in \mathcal{P}^1_{\mathsf{W}}(\hat{\mathbb{P}}, \epsilon),$ (2b)

where $\hat{\mathbb{P}}$ is the empirical distribution of M i.i.d. observations.

Definition (Type-1 Wasserstein Ambiguity Set)

The type-1 Wasserstein ambiguity set^a of radius ϵ centered at $\hat{\mathbb{P}}$ is defined by

$$\mathcal{P}^1_{\mathsf{W}}(\hat{\mathbb{P}}, \epsilon) := \left\{ \mathbb{P} \in \mathcal{M}(\Xi) \left| d^1_{\mathsf{W}}(\mathbb{P}, \hat{\mathbb{P}}) \leq \epsilon \right. \right\},$$

where $\mathcal{M}(\Xi)$ is the space of all distributions supported on Ξ and $d_{\rm W}^1$ is the Wasserstein metric.

^a[Esfahani and Kuhn. 2018]

Erick Delage (HEC & GERAD)

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Special Cases of WDRSOSDCP

Proposition (Reduction to SOSDCP)

WDRSOSDCP with $\mathcal{P} := \mathcal{P}^1_{\mathcal{W}}(\hat{\mathbb{P}}, 0)$ reduces to SOSDCP with $\mathbb{P} := \hat{\mathbb{P}}$.

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Special Cases of WDRSOSDCP

Proposition (Reduction to SOSDCP)

WDRSOSDCP with $\mathcal{P} := \mathcal{P}^1_{W}(\hat{\mathbb{P}}, 0)$ reduces to SOSDCP with $\mathbb{P} := \hat{\mathbb{P}}$.

Proposition (Reduction to Robust Optimization)

WDRSOSDCP with $\mathcal{P} := \mathcal{P}^1_W(\hat{\mathbb{P}}, \infty)$ reduces to the robust optimization problem,

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
00000	000	0000	0000	0000	000

Outline

Introduction

Axiomatic Motivation

Statistical Proporties

Exact Solution Scheme

Numerical Study

Conclusion

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Outline

Introduction

Axiomatic Motivation

Statistical Proporties

Exact Solution Scheme

Numerical Study

Conclusion

000000 000 0000 0000 0000 000	Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
	000000	000	0000	0000	0000	000

What is the right extension when $\mathbb{P} \in \mathcal{P}$? [Montes et al. 2014] propose six different extensions of SOSD:

$$\begin{split} X \succeq^{(4)} Y &\Leftrightarrow F_X^{\mathbb{P}_1} \succcurlyeq_{(2)} F_Y^{\mathbb{P}_2}, \, \forall \mathbb{P}_1, \mathbb{P}_2 \in \mathcal{P} \\ X \succeq^{(5)} Y &\Leftrightarrow \exists \mathbb{P}_1 \in \mathcal{P}, \, F_X^{\mathbb{P}_1} \succcurlyeq_{(2)} F_Y^{\mathbb{P}_2}, \, \forall \mathbb{P}_2 \in \mathcal{P} \\ X \succeq^{(6)} Y &\Leftrightarrow \forall \mathbb{P}_2 \in \mathcal{P}, \, \exists \mathbb{P}_1 \in \mathcal{P}, \, F_X^{\mathbb{P}_1} \succcurlyeq_{(2)} F_Y^{\mathbb{P}_2} \\ X \succeq^{(7)} Y &\Leftrightarrow \exists \mathbb{P}_1, \mathbb{P}_2 \in \mathcal{P}, \, F_X^{\mathbb{P}_1} \succcurlyeq_{(2)} F_Y^{\mathbb{P}_2} \\ X \succeq^{(8)} Y &\Leftrightarrow \exists \mathbb{P}_2 \in \mathcal{P}, \, F_X^{\mathbb{P}_1} \succcurlyeq_{(2)} F_Y^{\mathbb{P}_2}, \, \forall \mathbb{P}_1 \in \mathcal{P} \\ X \succeq^{(9)} Y &\Leftrightarrow \forall \mathbb{P}_1 \in \mathcal{P}, \, \exists \mathbb{P}_2 \in \mathcal{P}, \, F_X^{\mathbb{P}_1} \succcurlyeq_{(2)} F_Y^{\mathbb{P}_2}. \end{split}$$

where:

$$F_1 \succcurlyeq_{(2)} F_2 \triangleq \int_{-\infty}^{\eta} F_1(t) dt \le \int_{-\infty}^{\eta} F_2(t) dt, \forall \eta \in \mathbb{R}.$$

Recall, the extension from [Dentcheva and Ruszczyński 2010]:

 $[\mathsf{DRSOSD}] \qquad X \succeq^{(*)} Y \Leftrightarrow F_X^\mathbb{P} \succcurlyeq_{(2)} F_Y^\mathbb{P}, \ \forall \mathbb{P} \in \mathcal{P}.$

Introduction Ax	kiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000 00	0•	0000	0000	0000	000

Axiomatic Motivation for DRSOSD

• Consider a non-atomic ambiguous probability space $(\Omega, \mathcal{F}, \mathcal{P})$.

• Let
$$\mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P}) = \cap_{\mathbb{P} \in \mathcal{P}} \mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathbb{P})$$

- Let $\mathcal{U} := \{ X \in \mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P}) \mid \exists F_X, F_X = F_X^{\mathbb{P}}, \forall \mathbb{P} \in \mathcal{P} \}$
- $\blacktriangleright \text{ Non-atomic} \Rightarrow \forall X, \, \forall \mathbb{P} \in \mathcal{P}, \, \exists X^{\mathbb{P}} \in \mathcal{U}, \, F_{X^{\mathbb{P}}} = F_X^{\mathbb{P}}$

Theorem

If the preference relation \succeq satisfies:

- (SOSD on \mathcal{U}) If $\{X, Y\} \subset \mathcal{U}$, then $X \succeq Y \Leftrightarrow F_X \succcurlyeq_{(2)} F_Y$.
- (Ambiguity Monotonicity) If $X^{\mathbb{P}} \succeq Y^{\mathbb{P}}$ for all $\mathbb{P} \in \mathcal{P}$, then $X \succeq Y$
- (Maximal Ambiguity Indecisiveness) If $\exists \mathbb{P} \in \mathcal{P}$ such that $X^{\mathbb{P}} \not\succeq Y^{\mathbb{P}}$, then $X \not\succeq Y$.

Then, for any random variables $X, Y \in \mathcal{L}_{\infty}(\Omega, \mathcal{F}, \mathcal{P})$, we have that $X \succeq Y$ if and only if $X \succeq^{(*)} Y$, i.e. $X \succeq^{\mathbb{P}}_{(2)} Y \quad \forall \mathbb{P} \in \mathcal{P}$.

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	●000	0000	0000	000

Outline

Introduction

Axiomatic Motivation

Statistical Proporties

Exact Solution Scheme

Numerical Study

Conclusion

INFORMS Annual Meeting October 18th, 2022 11 / 30

	otivation Statistical Pro	oporties Exact Solution S	cheme Numerical Stud	ly Conclusion
0000 000	0000	0000	0000	000

Data-Driven WDRSOSDCP

- ► Assumption 1: The feasible set X is a non-empty convex set and the outcome space Ξ is a non-empty compact convex set.
- Assumption 2: $f(x, \xi)$ and $f_0(\xi)$ are piecewise linear concave in x and ξ .
- ► Assumption 3: $\mathcal{P}^1_W(\hat{\mathbb{P}}, \epsilon)$ uses the ℓ_1 -norm or ℓ_∞ -norm as the reference metric.

Introduction A	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000 0	000	0000	0000	0000	000

Finite sample guarantee of WDRSOSDCP solutions

Proposition

Suppose that Assumption 1 holds and that each observations in $\{\hat{\xi}_i\}_{i=1}^M$ are drawn *i.i.d.* from some $\overline{\mathbb{P}}$, with $M \ge 1$ and m > 2. Given some $\beta \in (0, 1)$, let \hat{x}_M be the optimal solution of the WDRSOSDCP with ambiguity set $\mathcal{P}^1_W(\widehat{\mathbb{P}}, \epsilon_M(\beta))$ where

$$\epsilon_M(\beta) := \begin{cases} \left(\frac{\log(c_1\beta^{-1})}{c_2M}\right)^{1/\max(m,2)} & \text{if } M \ge \frac{\log(c_1\beta^{-1})}{c_2}\\ \left(\frac{\log(c_1\beta^{-1})}{c_2M}\right)^{1/a} & \text{otherwise}\,, \end{cases}$$

and where c_1 , c_2 , and a > 1 are positive constants (see [Esfahani and Kuhn. 2018] for details). One has the guarantee that, with probability larger than $1 - \beta$, \hat{x}_M satisfies the SOSD constraint under \mathbb{P} , i.e., $f(\hat{x}_M, \boldsymbol{\xi}) \succeq_{(2)}^{\mathbb{P}} f_0(\boldsymbol{\xi})$.

Introduction Axiom	atic Motivation Statis	stical Proporties Ex	xact Solution Scheme N	Jumerical Study (Conclusion
000000 000	000	• 00	0000 0	0000	000

Asymptotic consistency of WDRSOSDCP solutions

Proposition

Suppose that assumptions 1 and 2 hold, that \mathcal{X} is bounded, and that $\beta_M \in (0,1)$ satisfies $\sum_{M=1}^{\infty} \beta_M < \infty$ and $\lim_{M \to \infty} \epsilon_M(\beta_M) = 0$. Consider

$$\begin{bmatrix} \phi\text{-SOSDCP} \end{bmatrix} \quad \underset{\boldsymbol{x}\in\mathcal{X}}{\text{minimize}} \quad \boldsymbol{c}^{\top}\boldsymbol{x} \\ \text{subject to} \quad \mathbb{E}_{\bar{\mathbb{P}}}\left[(t-f(\boldsymbol{x},\boldsymbol{\xi}))^{+}\right] \leq \mathbb{E}_{\bar{\mathbb{P}}}\left[(t-f_{0}(\boldsymbol{\xi}))^{+}\right] + \phi \quad \forall t \in \mathbb{R},$$

with $\phi > 0$, and assume that Slater's condition is satisfied. Let $\{\hat{\xi}_i\}_{i=1}^M$ be i.i.d. from $\overline{\mathbb{P}}$, x_M be an optimal solution of:

$$\underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{minimize}} \ \boldsymbol{c}^{\top} \boldsymbol{x}$$
subject to $\mathbb{E}_{\mathbb{P}} \left[(t - f(\boldsymbol{x}, \boldsymbol{\xi}))^+ \right] \leq \mathbb{E}_{\mathbb{P}} \left[(t - f_0(\boldsymbol{\xi}))^+ \right] + \phi \quad \begin{cases} \forall t \in \mathbb{R} \\ \forall \mathbb{P} \in \mathcal{P}_W^1(\hat{\mathbb{P}}, \epsilon_M(\beta_M)) \end{cases}$

and \mathcal{X}^* be the set of optimal solutions to the ϕ -SOSDCP under the true distribution \mathbb{P} . Then x_M converges almost surely to \mathcal{X}^* as M goes to infinity.

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	●000	0000	000

Outline

Introduction

Axiomatic Motivation

Statistical Proporties

Exact Solution Scheme

Numerical Study

Conclusion

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Optimization with DRSOSD Constraints

- Relevant studies (continue):
 - [Guo et al. 2017]: use a discretization scheme to approximate DRSOSD constrained problem under a moment-based ambiguity set.
 - ► [Kozmík. 2019]: study a portfolio optimization problem with DRSOSD constraints under type-1 Wasserstein ball over the space of *M*-points distributions, and derive a conservative approximation.
 - [Sehgal and Mehra. 2020]: study a robust portfolio optimization problem with SOSD where scenario perturbations lie within a budgeted uncertainty set.
 - [Mei et al. 2022] study independently the WDRSOSDCP and propose a novel split-and-dual decomposition framework

16/30

00000 000 0000 0000 0000 000 000	Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
	000000	000	0000	0000	0000	000

Multistage Robust Optimization Reformulation

Proposition

WDRSOSDCP with $\epsilon \in (0, \infty)$ coincides with the optimal value of the following multistage robust optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{minimize}} \quad \boldsymbol{c}^{\top} \boldsymbol{x} \\ \text{subject to} \quad L(\boldsymbol{x}, t) \leq 0 & \forall t \in \bar{\mathcal{T}}, \\ \\ \text{where} \quad L(\boldsymbol{x}, t) := \inf_{\lambda, \boldsymbol{q}} \lambda \epsilon + \frac{1}{M} \sum_{i=1}^{M} q_i \\ \\ \text{s.t.} \quad g(\boldsymbol{x}, \boldsymbol{\xi}, t) - \lambda \| \boldsymbol{\xi} - \hat{\xi}_i \| \leq q_i & \forall i \in [M], \boldsymbol{\xi} \in \Xi \\ \quad \boldsymbol{\lambda} \geq 0, \boldsymbol{q} \in \mathbb{R}^M, \end{array}$$

where $g(\boldsymbol{x}, \boldsymbol{\xi}, t) := (t - f(\boldsymbol{x}, \boldsymbol{\xi}))^+ - (t - f_0(\boldsymbol{\xi}))^+$ and $\bar{\mathcal{T}} := [\inf_{\boldsymbol{\xi} \in \Xi} f_0(\boldsymbol{\xi}), \sup_{\boldsymbol{\xi} \in \Xi} f_0(\boldsymbol{\xi})].$

- Multistage robust optimization problem: $\min_{x} \sup_{t} \frac{1}{\lambda, q} \sum_{\epsilon}$

- Multistage robut linear optimization problem under Assumption 3 and when \mathcal{X} and Ξ are polyhedral.

Erick Delage (HEC & GERAD)

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

An Exact Solution Scheme

Inspired by [Postek and Hertog. 2016] and [Bertsimas and Dunning. 2016]

Algorithm Iterative Partition based Solution Algorithm

- 1: Initialize: $LB^0 = -\infty$, $UB^0 = +\infty$, $\ell = 1$, $\hat{\mathcal{T}}^0 := \emptyset$, ε .
- 2: Initialize: $\mathscr{P}^1 := \{\overline{\mathcal{T}}\}, \ \overline{\mathcal{T}} := [\inf_{\boldsymbol{\xi} \in \Xi} f_0(\boldsymbol{\xi}), \sup_{\boldsymbol{\xi} \in \Xi} f_0(\boldsymbol{\xi})].$

3: while
$$|(\mathsf{UB}^{\ell-1}-\mathsf{LB}^{\ell-1})/\mathsf{UB}^{\ell-1}| > arepsilon$$
 do

- 4: Solve an upper bound problem with the partition \mathscr{P}^{ℓ} and linear decision rules.
- 5: Identify the optimal solution $(x^{*\ell}, \lambda^{*\ell}, q^{*\ell}, \bar{q}^{*\ell})$ and optimal objective UB^{ℓ} .
- 6: <u>Calculate an active scenarios set $\hat{\mathcal{A}}^{\ell}$ </u>.
- 7: Construct the finite scenarios set $\hat{\mathcal{T}}^{\ell} \leftarrow \hat{\mathcal{A}}^{\ell} \bigcup \hat{\mathcal{T}}^{\ell-1}$.
- 8: Solve a lower bound problem with $\hat{\mathcal{T}}^{\ell}$ and identify the new LB^{ℓ} .
- 9: Update the partitions $\mathscr{P}^{\ell+1} \leftarrow \mathcal{V}(\mathscr{P}^{\ell}, \hat{\mathcal{A}}^{\ell})$, and $\ell := \ell + 1$.
- 10: end while
- 11: return optimal objective value z^* and optimal solution $(x^*, \lambda^*, q^*, \bar{q}^*)$.

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	●000	000

Outline

Introduction

Axiomatic Motivation

Statistical Proporties

Exact Solution Scheme

Numerical Study

Conclusion

Erick Delage (HEC & GERAD)

00000 000 0000 0000 0000 000	Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000 000 0000 0000 0000 0000	000000	000	0000	0000	0000	000

Application to Portfolio Optimization

DRSOSD constrained portfolio optimization problem with uncertain returns $\boldsymbol{\xi}$:

$$\begin{array}{ll} \underset{\boldsymbol{x}\in\mathcal{X}}{\operatorname{maximize}} & \mathbb{E}_{\hat{\mathbb{P}}}[\boldsymbol{\xi}]^{\top}\boldsymbol{x} \\ \text{subject to} & \boldsymbol{\xi}^{\top}\boldsymbol{x} \succeq_{(2)}^{\mathbb{P}} \boldsymbol{\xi}^{\top}\boldsymbol{x}_{0} & \forall \mathbb{P} \in \mathcal{P}^{1}_{\mathsf{W}}(\hat{\mathbb{P}}, \epsilon). \end{array}$$

where
$$\mathcal{X} := \left\{ \boldsymbol{x} \in \mathbb{R}^m \mid \sum_{j=1}^m x_j = 1, x_j \ge 0, \forall j \in \{1, \cdots, m\} \right\}.$$

- x_0 is a reference portfolio.
- Assume Ξ to be a box, i.e. $\Xi := \{ \boldsymbol{\xi}^- \leq \boldsymbol{\xi} \leq \boldsymbol{\xi}^+ \}.$

We experiment with both synthetic data and real stock market data.

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Real Stock Data: Calibration of M and ϵ

- In-sample data: Weekly stock returns from 335 companies from S&P 500 over Jan 1994 - Dec 2013
- Portfolio optimization over 5 randomly picked stocks with x₀ as the equally weighted portfolio
- Cross-validation of look-back period and Wasserstein ball size based on distribution of next 26 weekly returns

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Real Stock Data: Out-of-sample performance

- Out-of-sample data: Weekly stock returns from 257 companies from S&P 500 over Jan 2014 - Dec 2019
- ▶ SOSDCP uses lookback of M = 52 weeks
- \blacktriangleright WDRSOSDCP uses M=52 and $\epsilon=0.01$
- Performance is averaged over 1000 runs.

Descriptive statistics (in p.p.)	SOSDCP	WDRSOSDCP	Reference	Acc. thresh.
Average expected return	0.183	0.190	0.184	-
Average standard deviation	0.032	0.029	0.022	-
Average CVaR (conf. 90%)	0.054	0.048	0.037	-
SOSD feasibility frequency	87%	96%	100%	94%

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Outline

Introduction

Axiomatic Motivation

Statistical Proporties

Exact Solution Scheme

Numerical Study

Conclusion

Introduction	Axiomatic Motivation	Statistical Proporties	Exact Solution Scheme	Numerical Study	Conclusion
000000	000	0000	0000	0000	000

Concluding Remarks

- We provide an axiomatic motivation for distributionally robust version of the second-order stochastic dominance ordering
- We show that the data-driven WDRSOSDCP can provide finite sample guarantees and asymptotic consistency
- We develop an efficient exact solution scheme, an iterative partition-based solution algorithm.
- We show how out-of-sample SOSD feasibility can be improved by carefully adjusting the level of robustification without sacrificing much objective perfomance.

24 / 30

Questions & Comments...

Our paper is available on Optimization Online via

Erick Delage (HEC & GERAD)

Distributionally Robust Stochastic Dominance

25 / 30

Bibliography

Armbruster, B., Delage, E. Decision making under uncertainty when preference information is incomplete. *Management Science*, 2015, 61(1), 111-128.

Bertsimas D, Dunning I. Multistage robust mixed-integer optimization with adaptive partitions. *Operations Research*, 2016, 64(4): 980-998.

Chen, Z., Jiang, J. Stability analysis of optimization problems with k-th order stochastic and distributionally robust dominance constraints induced by full random recourse. *SIAM Journal on Optimization*, 2018, 28(2), 1396-1419.

Dentcheva, D., Ruszczyński, A. Optimization with stochastic dominance constraints. SIAM Journal on Optimization, 2003, 14(2), 548-566.

Dentcheva, D., Ruszczyński, A. Robust stochastic dominance and its application to risk-averse optimization. *Mathematical Programming*, 2020, 123(1), 85-100.

Esfahani, P. M., Kuhn, D. Data-driven DRO using the Wasserstein metric: Performance guarantees and tractable reformulations. *Mathematical Programming*, 2018, 171(1-2), 115-166.

Gao R, Kleywegt A J. Distributionally robust stochastic optimization with dependence structure, 2017.

Guo, S., Xu, H., Zhang, L. Probability approximation schemes for stochastic programs with DRSSD constraints. *Optimization Methods and Software*, 2017, 32(4), 770-789. INFORMS Annual Meeting October 18th, 2022 Erick Delage (HEC & GERAD) Distributionally Robust Stochastic Dominance 26/30

Hadjiyiannis M J, Goulart P J, Kuhn D. A scenario approach for estimating the suboptimality of linear decision rules in two-stage robust optimization, *50th IEEE CDC*. IEEE, 2011: 7386-7391.

Haskell, W. B., Fu, L., Dessouky, M. Ambiguity in risk preferences in robust stochastic optimization. *European Journal of Operational Research*, 2016, 254(1), 214-225.

Hu, J., Homem-de-Mello, T., Mehrotra, S. Sample average approximation of stochastic dominance constrained programs. *Mathematical Programming*, 2012, 133(1-2), 171-201.

- Kozmík, K. Robust approaches in portfolio optimization with stochastic dominance. *Master Thesis*, 2019, Charles University in Prague.
- Mei, Y., Liu, J., and Chen, Z. Distributionally Robust Second-Order Stochastic Dominance Constrained Optimization with Wasserstein Ball. *SIAM Journal on Optimization*, 2022, 32:2, 715-738.

- Montes, I., Miranda, E. and Montes, S. Stochastic dominance with imprecise information. *Computational Statistics & Data Analysis*, 2014, 71, 868-886.
- Postek K, Hertog D. Multistage adjustable robust mixed-integer optimization via iterative splitting of the uncertainty set. *INFORMS Journal on Computing*, 2016, 28(3): 553-574.

- Sehgal, R., Mehra, A. Robust portfolio optimization with Second order stochastic dominance constraints. *Computers & Industrial Engineering*, 2020, 106396.
- Xie W. Tractable reformulations of two-stage distributionally robust linear programs over the type- ∞ wasserstein ball. *Operations Research Letters*, 2020, 48(4): 513-523.

00

Synthetic Data: Optimal Allocation

- Consider 3 assets (asset #1, #2 and #3) that are independent from each other, while their respective marginal distribution of return is such that ξ₃ ≻^P₍₂₎ ξ₁ ≻^P₍₂₎ ξ₂ and <u>E_P[ξ₃]</u> > E_P[ξ₂] = E_P[ξ₁].
- $x_0 := [1, 0, 0]$, invest all the resources in project #1.
- Generate $M \in \{10, 100, 1000\}$ i.i.d. in-sample data.
- Results are averaged over 100 runs.

INFORMS Annual Meeting October 18th, 2022 28 / 30

Synthetic Data: Out-of-Sample Feasibility of SOSD

- The estimated out-of-sample feasibility frequency shows the probability of obtaining a WDRSOSDCP solution that satisfies the SOSD constraint in out-of-sample test.

Synthetic Data: Out-of-Sample Feasibility of SOSD

- The estimated out-of-sample feasibility frequency shows the probability of obtaining a WDRSOSDCP solution that satisfies the SOSD constraint in out-of-sample test.

Real Stock Data: Computational Performance

Table: The average computational performance with respect to different ϵ , number of stocks ($m \in \{10, 50, 100\}$) and in-sample sizes ($M \in \{50, 100\}$), in terms of average CPU time (Time, in seconds), proportion of unsolved instances (prop, in %), and average number of iterations (Iter) over 20 runs.

<i>m</i> 10			50			100				
M	ϵ	Time	prop	Iter	Time	prop	lter	Time	prop	Iter
50	0.0100	242	0	6.0	1997	0.05[1.9]	5.0	3979	0.25[2.2]	5.0
	0.0464	103	0	5.0	3418	0.10[1.4]	6.0	5966	0.25[3.8]	6.0
	0.0100	1528	0	6.0	6259	0.05[3.0]	6.0	6269	0.45[4.6]	5.0
	0.0464	506	0	5.0	5966	0.25[3.8]	6.0	5073	0.80[2.2]	6.0
Av	verage	595	0	5.5	4410	0.11[2.5]	5.8	5322	0.44[3.2]	5.3

[\cdot]: the average sub-optimality gap (in %) for the unsolved instances within 2 hours limit. Based on our test fom the previous experiment, the midrange values of ϵ (i.e., $\epsilon \in \{0.0100, 0.0464\}$) appeared to be the hardest to handle.

Erick Delage (HEC & GERAD)