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Stochastic Dominance

Definition (Second-Order Stochastic Dominance, SOSD)

Given any two random variables X and Y capturing some earnings, X
stochastically dominates Y in the second-order, X =2 Y, if and only if

n ]
/ Fx(t)dt < / Fy (t)dt,Vn € R,
—o0

— 00

where Fx (t) = P(X < t).

Equivalent representations:

> X =) Y & E[u(X)] > E[u(Y)] for all non-decreasing concave functions .
> X =Y & E[(n - X)] <E[(n - Y)"],Vn € R.
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Optimization with SOSD Constraints

Consider the SOSD Constrained Problem?!:

[SOSDCP] minien)}ize c'z (1a)
subject to f(z, &) =y fo(€). (1b)

» f(x,&) is the random controlled performance function, and fy(£) is the
random reference performance function: e.g., fo(&) := f(xo, &) with 2y € X.

» E.g. SOSD constrained portfolio optimization problem:

maximize Ep[¢]'x, st. & x i]&) ¢ x.
x: 1 Txz=1,2>0

1 ;o
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Distributionally Robust Stochastic Dominance?

Definition (Distributionally Robust Second-Order Stochastic
Dominance, DRSOSD)

Given two random variables X and Y, we say that X robustly stochastically
dominates Y in the second order if and only if:

Xy Y VYPeP,

where X §P2 Y refers to the fact that X stochastically dominates Y in the
second-order when the probability measure is P.

2 ;e
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Data-Driven DRSOSD using Wasserstein ambiguity

Consider DRSOSD constraint under a type-1 Wasserstein Ambiguity Set:
[WDRSOSDCP] minimize ¢’ (2a)
reX
subject to f(x,€) =(y) fo(€) ~ YPE€Py(P.e),  (2b)
where P is the empirical distribution of M i.i.d. observations.
Definition (Type-1 Wasserstein Ambiguity Set)
The type-1 Wasserstein ambiguity set? of radius € centered at PP is defined by

Piy(B,e) i= {P € M(E)

d(P) < e},

where M(Z) is the space of all distributions supported on = and djy, is the
Wasserstein metric.

2[Esfahani and Kuhn. 2018]
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Special Cases of WDRSOSDCP

WDRSOSDCP with P := PJ,(P,0) reduces to SOSDCP with P := P.
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Special Cases of WDRSOSDCP

Proposition (Reduction to SOSDCP)

WDRSOSDCP with P := P}, 0) reduces to SOSDCP with P := P.

Conclusion
[e]e]e}

Proposition (Reduction to Robust Optimization)

WDRSOSDCP with P := ’P‘}V(]f”, o0) reduces to the robust optimization problem,

minimize c¢' x
xzeX

subject to f(x,€) > fo(€) Ve € =.

(3a)
(3b)
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What is the right extension when P € P?
[Montes et al. 2014] propose six different extensions of SOSD:

X-Wy o Fglzl > (2) Fﬁz, VP, Py € P (4)
X=OY o 3P eP, Fy =@ Fy*, VPP (5)
X0y & VP,eP, I €P, FY sy FE2 (6)
X=Ny o 3P, PyeP, Fit iy Fi2 ()
X=OY o IP,eP, Fy =) Fy*, VPP (8)
X-OY & VP, eP, 3PP, Fi =) Fiz. (9)
where: " n
Fi iz 2 & /OOFl(t) dt < /Oo Fy(t)dt,¥n € R.

Recall, the extension from [Dentcheva and Ruszczyriski 2010]:

[DRSOSD] X =M Y & F§ =) Fy, VP € P.

INFORMS Annual Meeting October 18th, 2022
Erick Delage (HEC & GERAD) Distributionally Robust Stochastic Dominance 9/30



Introduction Axiomatic Motivation Statistical Proporties Exact Solution Scheme Numerical Study Conclusion
000000 ooe 0000 0000 0000 [e]e]e}

Axiomatic Motivation for DRSOSD

» Consider a non-atomic ambiguous probability space (2, F,P).
> Let Loo(Q,F,P) =NpepLoo(Q, F,P)

> Let U = {X € Loo(Q, F,P) | IFx, Fx = FE, VP € P}

» Non-atomic = VX, VP € P, 3XF e U, Fyr = F%

Theorem

If the preference relation = satisfies:
> (SOSD on Z/[) If{X,Y} CU,then X =Y & Fyx ?(2) Fy.
» (Ambiguity Monotonicity) If X" = Y for all P € P, then X =Y

» (Maximal Ambiguity Indecisiveness) If AP € P such that X" # Y, then
XH*Y.
Then, for any random variables X, Y € L, (2, F,P), we have that X = Y if and

only if X =Y, ie X =(,, Y VPeP.

INFORMS Annual Meeting October 18th, 2022
Erick Delage (HEC & GERAD) Distributionally Robust Stochastic Dominance 10/30



Outline

Introduction
Axiomatic Motivation
Statistical Proporties
Exact Solution Scheme
Numerical Study

Conclusion

INFORMS Annual Meetini October 18th, 2022



Introduction Axiomatic Motivation Statistical Proporties Exact Solution Scheme Numerical Study Conclusion
000000 [e]e]e} 0e00 0000 0000 [e]e]e}

Data-Driven WDRSOSDCP

» Assumption 1: The feasible set X’ is a non-empty convex set and the
outcome space = is a non-empty compact convex set.

» Assumption 2: f(x, &) and fo(&) are piecewise linear concave in « and €.

» Assumption 3: ’P\}V(HA”, €) uses the ¢1-norm or {,,-norm as the reference
metric.
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Finite sample guarantee of WDRSOSDCP solutions

Proposition

Suppose that Assumption 1 holds and that each observations in {éz M. are drawn
i.i.d. from some P, with M > 1 and m > 2. Given some (3 € (0,1), let &); be the
optimal solution of the WDRSOSDCP with ambiguity set Py, exr(5)) where

log(er =1\ log(e1pT)
8) M @
€ =
" fog(c1 1)\
(02]\4_) otherwise 9

and where c1, c2, and a > 1 are positive constants (see [Esfahani and Kuhn. 2018]
for details). One has the guarantee that, with probability larger than 1 — 3, &
satisfies the SOSD constraint under P, i.e., f(&r, &) 5?2) fo(6).
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Asymptotic consistency of WDRSOSDCP solutions
Proposition

Suppose that assumptions 1 and 2 hold, that X is bounded, and that By, € (0,1)
satisfies Y 3,1 B < 00 and im0 €p7(Bar) = 0. Consider

[6-SOSDCP] minir)réize c'x
xe

subject to Ep [(t — f(a:,é))"’] <Es [(t — fo(é))+] +¢ VteR,

with ¢ > 0, and assume that Slater’s condition is satisfied. Let {€;}}, be i.i.d.
from P, xp; be an optimal solution of:

minimize ¢'x
zeX

subject to Ep [(t — f(%ﬁ))ﬂ <Ep [(t - fO(S))+] +¢ { VP e P;Vt(]ﬁe’ FM(BJ\/I \

and X be the set of optimal solutions to the »-SOSDCP under the true
distribution P. Then x; converges almost surely to X* as M goes to infinity.
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Optimization with DRSOSD Constraints

- Relevant studies (continue):

» [Guo et al. 2017]: use a discretization scheme to approximate DRSOSD
constrained problem under a moment-based ambiguity set.

» [Kozmik. 2019]: study a portfolio optimization problem with DRSOSD
constraints under type-1 Wasserstein ball over the space of M-points
distributions, and derive a conservative approximation.

» [Sehgal and Mehra. 2020]: study a robust portfolio optimization problem
with SOSD where scenario perturbations lie within a budgeted uncertainty
set.

» [Mei et al. 2022] study independently the WDRSOSDCP and propose a novel
split-and-dual decomposition framework
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Multistage Robust Optimization Reformulation

Proposition

WDRSOSDCP with € € (0,00) coincides with the optimal value of the following
multistage robust optimization problem:
minimize ¢
rzeX
subject to L(z,t) <0 vteT,

M
1
where L(x,t) := i)\I!lg)\E aF i izzl%

s.t. g(ma£7t)_A”£_élH§ql VZG[MLgeE
A>0,qeRY,

where g(x, &,t) == (t — f(2,€))" — (t— fo(€))" and T := [infeez fo(€), supee= fo(€)].

- Multistage robust optimization problem: min—sup—i}\nf—sup.
x t Xa ¢

- Multistage robut linear optimization problem under Assumption 3 and when X and =

are polyhedral.
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An Exact Solution Scheme
Inspired by [Postek and Hertog. 2016] and [Bertsimas and Dunning. 2016]

Algorithm lterative Partition based Solution Algorithm

1: Initialize: LB® = —o00, UB® = 400, £ =1, 70 :=0), c.
2 Initialize: 2! .= {T}, T := [grelgfo(g),supfo(g)].
= £cE

3. while |(UB“™! — LB“™1)/UB*"!| > ¢ do
Solve an upper bound problem with the partition 22¢ and linear decision
rules.
Identify the optimal solution (z*¢, A\*, ¢*¢, §**) and optimal objective UB.
Calculate an active scenarios set A’.
Construct the finite scenarios set 7 « A’ U T

Solve a lower bound problem with 77 and identify the new LB’
Update the partitions 2/*1 < V(22¢ A%), and £ := ¢ + 1.

10: end while
11: return optimal objective value z* and optimal solution (z*, A*, ¢*, §*).

»

© o Noo
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Application to Portfolio Optimization

DRSOSD constrained portfolio optimization problem with uncertain returns &:
maximize E;[¢]"z
xeX

subject to &'z EI(F;) £ xg VP € Py (P, e),

where X := meRm‘ Naj=12; >0,Vje{l,--- ,m} .
j=1

> x( is a reference portfolio.
P> Assume = to be a box, i.e. Z:={¢” < €< €T

We experiment with both synthetic data and real stock market data.
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Real Stock Data: Calibration of M and ¢
» In-sample data: Weekly stock returns from 335 companies from S&P 500 over Jan
1994 - Dec 2013
» Portfolio optimization over 5 randomly picked stocks with ¢ as the equally
weighted portfolio
» Cross-validation of look-back period and Wasserstein ball size based on distribution
of next 26 weekly returns

0.42 1 e
—M=12 — m:‘E
—M=52
—M=52 |

Mo104 0.95 || ——M=104 1

—~ M=208
> M-208
3 — _ reference | 1 g — — acceptable threshold
< soof — ——_———— W/ __ 1
< ] g
5™ =
® 2085 b
3 1
i @
153 ©
g 2 08 T 1
&
& B T
@ T
& — £075 I B
z & i
0.7+ 4
0.26 0.65
104 10 10? 107" 10° 104 10 102 107 10°
Size of Wasserstein ball Size of Wasserstein ball
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Real Stock Data: Out-of-sample performance

» Qut-of-sample data: Weekly stock returns from 257 companies from S&P 500 over
Jan 2014 - Dec 2019

» SOSDCP uses lookback of M = 52 weeks
» WDRSOSDCP uses M = 52 and ¢ = 0.01

» Performance is averaged over 1000 runs.

Descriptive statistics (in p.p.) SOSDCP WDRSOSDCP Reference Acc. thresh.

Average expected return 0.183 0.190 0.184 -
Average standard deviation 0.032 0.029 0.022 -
Average CVaR (conf. 90%) 0.054 0.048 0.037 -
SOSD feasibility frequency 87% 96% 100% 94%
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Concluding Remarks

» We provide an axiomatic motivation for distributionally robust version of the
second-order stochastic dominance ordering

» We show that the data-driven WDRSOSDCP can provide finite sample
guarantees and asymptotic consistency

» We develop an efficient exact solution scheme, an iterative partition-based
solution algorithm.

» We show how out-of-sample SOSD feasibility can be improved by carefully

adjusting the level of robustification without sacrificing much objective
perfomance.
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Questions & Comments...

Our paper is available on Optimization Online via

... Thank you!
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Synthetic Data: Optimal Allocation

» Consider 3 assets (asset #1, #2 and #3) that are independent from each
other, while their respective marginal distribution of return is such that

&3 >‘I(P2) &1 >‘]€)2) &2 and E]F[fd] > E]F[gﬂ - EIF’[&]-
» 1, :=[1,0,0], invest all the resources in project #1.
» Generate M € {10,100,1000} i.i.d. in-sample data.
» Results are averaged over 100 runs.

c c c

<] <] <]

25 0o [l project #3 o0 oo

Qs O os O os

o o kel

=07 =07 =07

= 06 = 06 = 08

Eos project #2 Eos Eos

Qo Qo a

S ) 9]

© 03 © 03 © 03

Do projct # Do 2

0)) o1 0>) o1 g)

< o . < o . < . n .
104 10° L) 107 10° 104 10° 10 107" 10° 10 10° 10?2 10! 10°

Size of Wasserstein ball Size of Wasserstein ball Size of Wasserstein ball

10 samples 100 samples 1000 samples
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Synthetic Data: Out-of-Sample Feasibility of SOSD

o o
® © -

o
~

Estimated out-of-sample feasibility frequency
o
(2]

0.5 1
0.4 1
——M<10
0.3 ——M=100 | |
—— M=1000
0.2 . . . ;
104 1073 102 107! 10°

Size of Wasserstein ball

- The estimated out-of-sample feasibility frequency shows the probability of obtaining a
WDRSOSDCP solution that satisfies the SOSD constraint in out-of-sample test.
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Synthetic Data: Out-of-Sample Feasibility of SOSD

0.7

acceptable threshold
based hypothetical project]|
(i.i.d. project #1')

o
3
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o
o

— — acceptable threshold
N

. . .
1074 1073 102 107 10°
Size of Wasserstein ball

o
o

- The estimated out-of-sample feasibility frequency shows the probability of obtaining a
WDRSOSDCP solution that satisfies the SOSD constraint in out-of-sample test.
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Real Stock Data: Computational Performance

Table: The average computational performance with respect to different ¢, number of
stocks (m € {10,50,100}) and in-sample sizes (M € {50,100}), in terms of average
CPU time (Time, in seconds), proportion of unsolved instances (prop, in %), and
average number of iterations (Iter) over 20 runs.

m 10 50 100
M € |Time|prop|lter| Time| prop |lter|Time| prop |lter
0.0100| 242 | 0 [6.0[1997(0.05[1.9]|5.0|3979|0.25[2.2]|5.0
0.0464| 103 | 0 |5.0(3418(0.10[1.4]|6.0|5966 |0.25[3.8]|6.0
0.0100{1528| 0 |6.0(6259(0.05[3.0]|6.0|6269 |0.45[4.6]|5.0
0.0464| 506 | 0 |5.0(5966 (0.25[3.8]|6.0|5073|0.80[2.2]|6.0
Average 595 | 0 |5.5/4410|0.11[2.5]|5.8|5322|0.44[3.2]|5.3

[ - ]: the average sub-optimality gap (in %) for the unsolved instances within 2 hours limit.
Based on our test fom the previous experiment, the midrange values of ¢ (i.e., ¢ €
{0.0100, 0.0464}) appeared to be the hardest to handle.

50

100
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