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Stochastic Dominance

Definition (Second-Order Stochastic Dominance, SOSD)

Given any two random variables X and Y capturing some earnings, X
stochastically dominates Y in the second-order, X ⪰(2) Y , if and only if∫ η

−∞
FX(t) dt ≤

∫ η

−∞
FY (t) dt,∀η ∈ R,

where FX(t) = P(X ≤ t).

Equivalent representations:

▶ X ⪰(2) Y ⇔ E[u(X)] ≥ E[u(Y )] for all non-decreasing concave functions u.

▶ X ⪰(2) Y ⇔ E[(η −X)+] ≤ E[(η − Y )+],∀η ∈ R.
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Optimization with SOSD Constraints

Consider the SOSD Constrained Problem1:

[SOSDCP] minimize
x∈X

c⊤x (1a)

subject to f(x, ξ) ⪰P
(2) f0(ξ). (1b)

▶ f(x, ξ) is the random controlled performance function, and f0(ξ) is the
random reference performance function: e.g., f0(ξ) := f(x0, ξ) with x0 ∈ X .

▶ E.g. SOSD constrained portfolio optimization problem:

maximize
x: 1⊤x=1,x≥0

EP[ξ]
⊤x, s.t. ξ⊤x ⪰P

(2) ξ
⊤x0.

1[Dentcheva and Ruszczyński. 2003]
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Distributionally Robust Stochastic Dominance2

Definition (Distributionally Robust Second-Order Stochastic
Dominance, DRSOSD)

Given two random variables X and Y , we say that X robustly stochastically
dominates Y in the second order if and only if:

X ⪰P
(2) Y ∀P ∈ P,

where X ⪰P
(2) Y refers to the fact that X stochastically dominates Y in the

second-order when the probability measure is P.

2[Dentcheva and Ruszczyński 2010]
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Data-Driven DRSOSD using Wasserstein ambiguity
Consider DRSOSD constraint under a type-1 Wasserstein Ambiguity Set:

[WDRSOSDCP] minimize
x∈X

c⊤x (2a)

subject to f(x, ξ) ⪰P
(2) f0(ξ) ∀P ∈ P1

W(P̂, ϵ), (2b)

where P̂ is the empirical distribution of M i.i.d. observations.

Definition (Type-1 Wasserstein Ambiguity Set)

The type-1 Wasserstein ambiguity seta of radius ϵ centered at P̂ is defined by

P1
W(P̂, ϵ) :=

{
P ∈M(Ξ)

∣∣∣d1W(P, P̂) ≤ ϵ
}
,

whereM(Ξ) is the space of all distributions supported on Ξ and d1W is the
Wasserstein metric.

a[Esfahani and Kuhn. 2018]
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Special Cases of WDRSOSDCP

Proposition (Reduction to SOSDCP)

WDRSOSDCP with P := P1
W(P̂, 0) reduces to SOSDCP with P := P̂.

Proposition (Reduction to Robust Optimization)

WDRSOSDCP with P := P1
W(P̂,∞) reduces to the robust optimization problem,

minimize
x∈X

c⊤x (3a)

subject to f(x, ξ) ≥ f0(ξ) ∀ξ ∈ Ξ. (3b)
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What is the right extension when P ∈ P?
[Montes et al. 2014] propose six different extensions of SOSD:

X ⪰(4) Y ⇔ F P1

X ≽(2) F
P2

Y , ∀P1,P2 ∈ P (4)

X ⪰(5) Y ⇔ ∃P1 ∈ P, F P1

X ≽(2) F
P2

Y , ∀P2 ∈ P (5)

X ⪰(6) Y ⇔ ∀P2 ∈ P, ∃P1 ∈ P, F P1

X ≽(2) F
P2

Y (6)

X ⪰(7) Y ⇔ ∃P1,P2 ∈ P, F P1

X ≽(2) F
P2

Y (7)

X ⪰(8) Y ⇔ ∃P2 ∈ P, F P1

X ≽(2) F
P2

Y , ∀P1 ∈ P (8)

X ⪰(9) Y ⇔ ∀P1 ∈ P, ∃P2 ∈ P, F P1

X ≽(2) F
P2

Y . (9)

where:

F1 ≽(2) F2 ≜
∫ η

−∞
F1(t) dt ≤

∫ η

−∞
F2(t) dt,∀η ∈ R.

Recall, the extension from [Dentcheva and Ruszczyński 2010]:

[DRSOSD] X ⪰(∗) Y ⇔ F P
X ≽(2) F

P
Y , ∀P ∈ P.

Erick Delage (HEC & GERAD) Distributionally Robust Stochastic Dominance
INFORMS Annual Meeting October 18th, 2022

9 / 30



Introduction Axiomatic Motivation Statistical Proporties Exact Solution Scheme Numerical Study Conclusion

Axiomatic Motivation for DRSOSD

▶ Consider a non-atomic ambiguous probability space (Ω,F ,P).
▶ Let L∞(Ω,F ,P) = ∩P∈PL∞(Ω,F ,P)
▶ Let U := {X ∈ L∞(Ω,F ,P) | ∃FX , FX = F P

X , ∀P ∈ P}
▶ Non-atomic ⇒ ∀X, ∀P ∈ P, ∃XP ∈ U , FXP = F P

X

Theorem

If the preference relation ⪰ satisfies:

▶ (SOSD on U) If {X,Y } ⊂ U , then X ⪰ Y ⇔ FX ≽(2) FY .

▶ (Ambiguity Monotonicity) If XP ⪰ Y P for all P ∈ P, then X ⪰ Y

▶ (Maximal Ambiguity Indecisiveness) If ∃P ∈ P such that XP ̸⪰ Y P, then
X ̸⪰ Y .

Then, for any random variables X,Y ∈ L∞(Ω,F ,P), we have that X ⪰ Y if and
only if X ⪰(∗) Y , i.e. X ⪰P

(2) Y ∀P ∈ P.
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Data-Driven WDRSOSDCP

▶ Assumption 1: The feasible set X is a non-empty convex set and the
outcome space Ξ is a non-empty compact convex set.

▶ Assumption 2: f(x, ξ) and f0(ξ) are piecewise linear concave in x and ξ.

▶ Assumption 3: P1
W(P̂, ϵ) uses the ℓ1-norm or ℓ∞-norm as the reference

metric.
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Finite sample guarantee of WDRSOSDCP solutions

Proposition

Suppose that Assumption 1 holds and that each observations in {ξ̂i}Mi=1 are drawn
i.i.d. from some P̄, with M ≥ 1 and m > 2. Given some β ∈ (0, 1), let x̂M be the

optimal solution of the WDRSOSDCP with ambiguity set P1
W(P̂, ϵM (β)) where

ϵM (β) :=


(
log(c1β

−1)

c2M

)1/max(m,2)

if M ≥ log(c1β
−1)

c2(
log(c1β

−1)

c2M

)1/a

otherwise ,

and where c1, c2, and a > 1 are positive constants (see [Esfahani and Kuhn. 2018]
for details). One has the guarantee that, with probability larger than 1− β, x̂M

satisfies the SOSD constraint under P̄, i.e., f(x̂M , ξ) ⪰P̄
(2) f0(ξ).
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Asymptotic consistency of WDRSOSDCP solutions

Proposition

Suppose that assumptions 1 and 2 hold, that X is bounded, and that βM ∈ (0, 1)
satisfies

∑∞
M=1 βM <∞ and limM→∞ ϵM (βM ) = 0. Consider

[ϕ-SOSDCP] minimize
x∈X

c⊤x

subject to EP̄
[
(t− f(x, ξ))+

]
≤ EP̄

[
(t− f0(ξ))

+
]
+ ϕ ∀t ∈ R,

with ϕ > 0, and assume that Slater’s condition is satisfied. Let {ξ̂i}Mi=1 be i.i.d.
from P̄, xM be an optimal solution of:

minimize
x∈X

c⊤x

subject to EP
[
(t− f(x, ξ))+

]
≤ EP

[
(t− f0(ξ))

+
]
+ ϕ

{
∀t ∈ R

∀P ∈ P1
W(P̂, ϵM (βM ))

,

and X ∗ be the set of optimal solutions to the ϕ-SOSDCP under the true
distribution P̄. Then xM converges almost surely to X ∗ as M goes to infinity.
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Optimization with DRSOSD Constraints

- Relevant studies (continue):

▶ [Guo et al. 2017]: use a discretization scheme to approximate DRSOSD
constrained problem under a moment-based ambiguity set.

▶ [Kozḿık. 2019]: study a portfolio optimization problem with DRSOSD
constraints under type-1 Wasserstein ball over the space of M -points
distributions, and derive a conservative approximation.

▶ [Sehgal and Mehra. 2020]: study a robust portfolio optimization problem
with SOSD where scenario perturbations lie within a budgeted uncertainty
set.

▶ [Mei et al. 2022] study independently the WDRSOSDCP and propose a novel
split-and-dual decomposition framework
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Multistage Robust Optimization Reformulation

Proposition

WDRSOSDCP with ϵ ∈ (0,∞) coincides with the optimal value of the following
multistage robust optimization problem:

minimize
x∈X

c⊤x

subject to L(x, t) ≤ 0 ∀t ∈ T̄ ,

where L(x, t) := inf
λ,q

λϵ+
1

M

M∑
i=1

qi

s.t. g(x, ξ, t)− λ∥ξ − ξ̂i∥ ≤ qi ∀i ∈ [M ], ξ ∈ Ξ

λ ≥ 0, q ∈ RM ,

where g(x, ξ, t) := (t− f(x, ξ))+ − (t− f0(ξ))
+ and T̄ :=

[
infξ∈Ξ f0(ξ), supξ∈Ξ f0(ξ)

]
.

- Multistage robust optimization problem: min
x

-sup
t
-inf
λ,q

-sup
ξ
.

- Multistage robut linear optimization problem under Assumption 3 and when X and Ξ
are polyhedral.
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An Exact Solution Scheme
Inspired by [Postek and Hertog. 2016] and [Bertsimas and Dunning. 2016]

Algorithm Iterative Partition based Solution Algorithm

1: Initialize: LB0 = −∞, UB0 = +∞, ℓ = 1, T̂ 0 := ∅, ε.
2: Initialize: P1 := {T̄ }, T̄ := [ inf

ξ∈Ξ
f0(ξ), sup

ξ∈Ξ
f0(ξ)].

3: while |(UBℓ−1 − LBℓ−1)/UBℓ−1| > ε do
4: Solve an upper bound problem with the partition Pℓ and linear decision

rules.
5: Identify the optimal solution (x∗ℓ,λ∗ℓ, q∗ℓ, q̄∗ℓ) and optimal objective UBℓ.
6: Calculate an active scenarios set Âℓ.
7: Construct the finite scenarios set T̂ ℓ ← Âℓ

⋃
T̂ ℓ−1.

8: Solve a lower bound problem with T̂ ℓ and identify the new LBℓ.
9: Update the partitions Pℓ+1 ← V(Pℓ, Âℓ), and ℓ := ℓ+ 1.

10: end while
11: return optimal objective value z∗ and optimal solution (x∗,λ∗, q∗, q̄∗).

Erick Delage (HEC & GERAD) Distributionally Robust Stochastic Dominance
INFORMS Annual Meeting October 18th, 2022

18 / 30



Introduction Axiomatic Motivation Statistical Proporties Exact Solution Scheme Numerical Study Conclusion

Outline

Introduction

Axiomatic Motivation

Statistical Proporties

Exact Solution Scheme

Numerical Study

Conclusion

Erick Delage (HEC & GERAD) Distributionally Robust Stochastic Dominance
INFORMS Annual Meeting October 18th, 2022

19 / 30



Introduction Axiomatic Motivation Statistical Proporties Exact Solution Scheme Numerical Study Conclusion

Application to Portfolio Optimization

DRSOSD constrained portfolio optimization problem with uncertain returns ξ:

maximize
x∈X

EP̂[ξ]
⊤x

subject to ξ⊤x ⪰P
(2) ξ

⊤x0 ∀P ∈ P1
W(P̂, ϵ),

where X :=

{
x ∈ Rm

∣∣ m∑
j=1

xj = 1, xj ≥ 0,∀j ∈ {1, · · · ,m}

}
.

▶ x0 is a reference portfolio.

▶ Assume Ξ to be a box, i.e. Ξ := {ξ− ≤ ξ ≤ ξ+}.

We experiment with both synthetic data and real stock market data.
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Real Stock Data: Calibration of M and ϵ
▶ In-sample data: Weekly stock returns from 335 companies from S&P 500 over Jan

1994 - Dec 2013

▶ Portfolio optimization over 5 randomly picked stocks with x0 as the equally
weighted portfolio

▶ Cross-validation of look-back period and Wasserstein ball size based on distribution
of next 26 weekly returns
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Real Stock Data: Out-of-sample performance

▶ Out-of-sample data: Weekly stock returns from 257 companies from S&P 500 over
Jan 2014 - Dec 2019

▶ SOSDCP uses lookback of M = 52 weeks

▶ WDRSOSDCP uses M = 52 and ϵ = 0.01

▶ Performance is averaged over 1000 runs.

Descriptive statistics (in p.p.) SOSDCP WDRSOSDCP Reference Acc. thresh.

Average expected return 0.183 0.190 0.184 -

Average standard deviation 0.032 0.029 0.022 -

Average CVaR (conf. 90%) 0.054 0.048 0.037 -

SOSD feasibility frequency 87% 96% 100% 94%
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Concluding Remarks

▶ We provide an axiomatic motivation for distributionally robust version of the
second-order stochastic dominance ordering

▶ We show that the data-driven WDRSOSDCP can provide finite sample
guarantees and asymptotic consistency

▶ We develop an efficient exact solution scheme, an iterative partition-based
solution algorithm.

▶ We show how out-of-sample SOSD feasibility can be improved by carefully
adjusting the level of robustification without sacrificing much objective
perfomance.
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Questions & Comments...

Our paper is available on Optimization Online via

...Thank you!
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Synthetic Data: Optimal Allocation

▶ Consider 3 assets (asset #1, #2 and #3) that are independent from each
other, while their respective marginal distribution of return is such that
ξ3 ≻P̄

(2) ξ1 ≻
P̄
(2) ξ2 and EP̄[ξ3] > EP̄[ξ2] = EP̄[ξ1].

▶ x0 := [1, 0, 0], invest all the resources in project #1.

▶ Generate M ∈ {10, 100, 1000} i.i.d. in-sample data.

▶ Results are averaged over 100 runs.

10-4 10-3 10-2 10-1 100

Size of Wasserstein ball

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 o

p
ti
m

a
l 
a
llo

c
a
ti
o
n

project #2

project #1

project #3

10 samples

10-4 10-3 10-2 10-1 100

Size of Wasserstein ball

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 o

p
ti
m

a
l 
a
llo

c
a
ti
o
n

100 samples

10-4 10-3 10-2 10-1 100

Size of Wasserstein ball

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 o

p
ti
m

a
l 
a
llo

c
a
ti
o
n

1000 samples

Erick Delage (HEC & GERAD) Distributionally Robust Stochastic Dominance
INFORMS Annual Meeting October 18th, 2022

28 / 30



Synthetic Data: Out-of-Sample Feasibility of SOSD
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- The estimated out-of-sample feasibility frequency shows the probability of obtaining a
WDRSOSDCP solution that satisfies the SOSD constraint in out-of-sample test.
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Synthetic Data: Out-of-Sample Feasibility of SOSD
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- The estimated out-of-sample feasibility frequency shows the probability of obtaining a
WDRSOSDCP solution that satisfies the SOSD constraint in out-of-sample test.
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Real Stock Data: Computational Performance

Table: The average computational performance with respect to different ϵ, number of
stocks (m ∈ {10, 50, 100}) and in-sample sizes (M ∈ {50, 100}), in terms of average
CPU time (Time, in seconds), proportion of unsolved instances (prop, in %), and
average number of iterations (Iter) over 20 runs.

m 10 50 100

M ϵ Time prop Iter Time prop Iter Time prop Iter

50
0.0100 242 0 6.0 1997 0.05[1.9] 5.0 3979 0.25[2.2] 5.0

0.0464 103 0 5.0 3418 0.10[1.4] 6.0 5966 0.25[3.8] 6.0

100
0.0100 1528 0 6.0 6259 0.05[3.0] 6.0 6269 0.45[4.6] 5.0

0.0464 506 0 5.0 5966 0.25[3.8] 6.0 5073 0.80[2.2] 6.0

Average 595 0 5.5 4410 0.11[2.5] 5.8 5322 0.44[3.2] 5.3

[ · ]: the average sub-optimality gap (in %) for the unsolved instances within 2 hours limit.
Based on our test fom the previous experiment, the midrange values of ϵ (i.e., ϵ ∈
{0.0100, 0.0464}) appeared to be the hardest to handle.
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