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RISK AVERSION IN MULTISTAGE DECISION MAKING

Consider a finite horizon MDP (S, A, r, P). Given a policy
m: S x [T| — A, we are interested in the risk related to the sum
of cumulative reward:

T-1

R(m) := Z 7e(St, ar, Se41)

t=0

where {5;}1_ is the random state trajectory traversed when
drawing actions from policy 7, i.e. a; ~ m(s;). We assume that
S is deterministic.
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RISK AVERSION IN MULTISTAGE DECISION MAKING

Risk aversion can be handled using two approaches:
1. Static law-invariant risk measure (SRM):

ming p(—R()) := 2(Fg(s))
» E.g.: —E[R], —E[u(R)], VaR(—R), CVaR(—R)

Cost distribution

H Mean = 2,72 Range = [0,2, =]
95% VaR = 95" percentile =75 |

Probability

Conditional VaR 95% = 9 ‘
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RISK AVERSION IN MULTISTAGE DECISION MAKING

Risk aversion can be handled using two approaches:
1. Static law-invariant risk measure (SRM):
min, 5(~R(r) == a(Fg)
» E.g.: —E[R], —E[u(R)], VaR(—R), CVaR(—R)
» Pros: Easy to interpret
» Cons: Can violate dynamic consistency
» Pro or Con ?: Does not distinguish between two policies
that have the same Fy

Cost distribution

(vens2r2 |
95% VaR = 95" percentile =75 |
Conditional VaR 95% =9 |

Probability
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RISK AVERSION IN MULTISTAGE DECISION MAKING

Risk aversion can be handled using two approaches:

1. Static law-invariant risk measure (SRM):
min, p(—R(x)) := Q(FR(W))
2. Dynamic law-invariant risk measure (DRM):
max; p(—R(r)) =
po(p1(. .- pr—1(—=R(m)lao.r—1,51:1) - - - |do, 51))
» E.g.:E[-R], —E[u(R)],
VaR(VaR(. .. VaR(—R|ao1_1,517) - . - |0, 51)),
CVaR(CVaR( . CVaR(fR|ﬁ0;T_1, §1;T) e |ﬁ0, 51))
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RISK AVERSION IN MULTISTAGE DECISION MAKING

Risk aversion can be handled using two approaches:
1. Static law-invariant risk measure (SRM):
min, p(—~R(m)) == 8(Fpy)
2. Dynamic l~aw-invariant risk measure (DRM):
max, p(—R(7)) :=

po(p1(. .. pr—1(—R(m)|ao.r-1,51.1) - - - a0, 51))

> Eg.: E[-R], -E[u(R)],
VaR(VaR( . .VaR(fRVl():TN_l,gl:T) . |€~lo,§1)),
CVaR(CVaR( . CVaR(fR|ﬁ0:T_1, §1;T) e |ﬁ0, 51))

» Pros: Satisfies dynamic consistency, associated to Bellman
equation

» Cons: Can be hard to interpret

» Pro or Con ?: Unclear how it handles two policies that have
the same Fy
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DEEP RL FOR DYNAMIC RISK MEASURES

» Tamar et al. [2015] exploits risk measure supremum
representation to obtain robust MDP reformulation. Policy
gradient obtained by simulating the trajectory using
reweighted transitions.

» Huang et al. [2021] modifies policy gradient for on-policy
learning but requires up to 5 function approximators.

» Marzban et al. [2023] proposes a simple modification to
Deep Deterministic Policy Gradient (DDPG) algorithm
to handle dynamic elicitable risk measures.

» Coache et al. [2022] proposes an on-policy actor-critic
approach for conditionally elicitable risk measures.
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ELICITABLE RISK MEASURE [BeLLINI AND BIGNOZZI, 2015]

Definition 1
A risk measure is said to be elicitable if it can be expressed as the
minimizer of a certain scoring function.

p(X) = argmin E [E(q - 5()} .

» Examples:

> Expected value: £(y) := >
» Quantile value: ¢, (y) := (1 — 7) max(y, 0) + 7 max(—y,0)
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ELICITABLE RISK MEASURE [BeLLINI AND BIGNOZZI, 2015]

Definition 1
A risk measure is said to be elicitable if it can be expressed as the
minimizer of a certain scoring function.

p(X) := argmin E [E(q - 5()} .

» Examples:

> Expected value: /(y) := y?

» Quantile value: ¢, (y) := (1 — 7) max(y, 0) + 7 max(—y,0)
> Elicitability implies that if we have i.i.d. samples {x;,y;}M,
then we can estimate conditional risk using regression:

M
S _ SNk 1
pYIX) = o(Fyz) = ho-(X), 0" = argmin ;E(he(xi)—yi)
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EXPECTILE RISK MEASURE

Definition 2 )
The T-expectile of a random liability X is defined as:

p(X) = arg mqin E [(1 —7)(q — X)i +7(q — 5()2_] )

> 7 =0.5= j(X) = E[X], i.e. risk neutral

» 7 =1= p(X) = esssup[X], i.e. worst-case scenario

» Expectile is the only elicitable coherent risk measure
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DYNAMIC EXPECTILE RISK MEASURE (DERM)

Definition 3
A dynamic recursive expectile risk measure takes the form:

p(=R) := po(p1(. - . pr_1(—Rldo.r—1,51.7) - - - d0,51)) ,

where each p(-) is an expectile risk measure that employs the
conditional distribution given (ay.4—1,51.+). Namely,

pr(Vigaldoe—1,81:) :=
argmqin E|7(g — Viz1)d + (1 = 7)(q — Vis1)2 |01, 514
where for example

Vis1 = prs1(Praa( - pr—1(=Rlo.r—1,81.7) - - - |A0:421,51:442))

can be the random “risk-to-go” observable at t + 1.
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BELLMAN EQUATIONS FOR DRM-MDP

With dyne}mic recursive risk measures in an MDP,
min, p(—R(7)) = min, V{(sp) where

Vi (st) := pr(—=re(st,at,8041) + Vi (Se41) (8t = s1)

with a; ~ 7(s¢) and Vi (st) := 0.

With interchangeability property and mixture quasi-concavity
of pt, we have min, p(—R(m)) = min,, Q;(so,a0) where

Qi (st,ar) := pr(—1e(st, ar,5441) + ram? Qi1 Ge1,ae41)15: = 5¢)
b+

and Q?(ST,LZT) =0.
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DEEP RisK AVERSE RL USING DERMS

» We show how to extend
the popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures ?

QF (sty1) = pu (= re(se,an, S+

max Qf 1 (3141, 41) ’515)
41

Algorithm Traditional DDPG (p; = E)

Initialize the main actor 6™ e,md critic 69 ne/tworks
Initialize the target actor, 6™ , and critic, Y , networks
Initialize replay buffers R
forj = 1 : #Episodes do
Initialize a random process A for action exploration;
Receive initial observation state sg
fort =0:T — 1do
Select action a; = m;(s¢|07™) + N
Execute a; and store transition (s¢, a, 7t, Sy41)
Sample a minibatch of N transitions
! /
Sety; := —r; + Q(si1, w(si4110™ )[09)
Update the main critic network:

N
1
09 0% a7 BL(Qsi, w169) — ¥V 0 Qsis ail0%)
i=1
where £(A) := A?
Update the main actor network :

1Y ;
0T 07 —a ;vﬂQ@;,a\eQ)\H:W(Sj‘eﬁ)vgﬂﬂ<s]'\o”) ;
i=
Update the target networks
end for
end for
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DEEP RISK AVERSE RL USING DYNAMIC RISK
MEASURES

Algorithm Risk averse DDPG (ACRL)

Initialize the main actor 67 and critic 69 ne/tworks
7
Initialize the target actor, 6™ , and critic, Y ,networks

» We ShOW hOW to extend Initialize replay buffers R
forj = 1 : #Episodes do
the popular deep Initialize a random process A for action exploration;
L. . Receive initial observation state sy
deterministic policy fort=0:T~1do
. Select action a; = 74 (s¢|07™) + N
gradlent (DDPG) Execute a; and store transition (s, a, 7t, $4-1)

. Sample a minibatch of N transitions
algorithm to solve Setys ‘= 1, + Qorn, morpa10716¢)
dynamic problems Update the main critic network:
formulated based on 0% 6Q+a7 Z 8£(Q(si, 3i109) — ¥V o Q(sis ai169)

i=1
time-consistent dynamic where £6A )+ A2
expectile risk measures ? £(A) = (1 — ) max(0, 8)* + T max(0, —A)?

Update the main actor network :

07 0"7aszuQ(S/,tl\9 Mo ) jormy Vor (5167
Q?(st,at) = ﬁt( — rt(st7at,5t+1)+

Update the target networks

end for
max Qf1(8e41,:41) ’St) end for
t+
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DRL with Static Risk Measure
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PRIMAL-DUAL REPRESENTATIONS OF SRMS
» Value-at-risk [Follmer and Schied, 2016]:
VaRa(5(>:inf{zeR\]P’ 2) < }

:sup{zERUP’( )>a}
» Conditional Value-at-Risk:
CVaR,, (X) = inf <z +a 'E [X — z} )
z€R +
— sup {E[X)[ElE] =1, Plag <1) =1},

&R

» Entropic Value-at-Risk [Ahmadi-Javid, 2012]:

EVaR, ( ) 1nf B~ (log(ailE[exp(ﬂ}NC)]»

= sup {E[EX)[El§) = 1, Bl log(¢)] < —log(a) }
£&Q—R
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DEEP RL FOR STATIC RISK MEASURES

P Filar et al. [1995], Wu and Lin [1999], Lin et al. [2003], Boda et al. [2004], Biuerle
and Ott [2011], Xu and Mannor [2011], Chow and Ghavamzadeh [2014], Hau
et al. [2023b]:
exploit the infimum representation of risk measures to
define a risk neutral MDP on a lifted state-space, which
keeps track of cumulated rewards.
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DEEP RL FOR STATIC RISK MEASURES

P Filar et al. [1995], Wu and Lin [1999], Lin et al. [2003], Boda et al. [2004], Biuerle
and Ott [2011], Xu and Mannor [2011], Chow and Ghavamzadeh [2014], Hau
et al. [2023b]:
exploit the infimum representation of risk measures to
define a risk neutral MDP on a lifted state-space, which
keeps track of cumulated rewards.

P Chow etal. [2015], Chapman et al. [2019], Stanko and Macek [2019], Rigter et al.
[2021], Ding and Feinberg [2022]:
exploit the supremum representation of risk measures to
define a robust MDP on a lifted state-space, which keeps
track of current risk-level.
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DEEP RL FOR STATIC RISK MEASURES

P Filar et al. [1995], Wu and Lin [1999], Lin et al. [2003], Boda et al. [2004], Biuerle
and Ott [2011], Xu and Mannor [2011], Chow and Ghavamzadeh [2014], Hau
et al. [2023b]:
exploit the infimum representation of risk measures to
define a risk neutral MDP on a lifted state-space, which
keeps track of cumulated rewards.

P Chow etal. [2015], Chapman et al. [2019], Stanko and Macek [2019], Rigter et al.
[2021], Ding and Feinberg [2022]:
exploit the supremum representation of risk measures to
define a robust MDP on a lifted state-space, which keeps
track of current risk-level.

» Hau et al. [2023a]:

» Robust MDP approach is inexact in general!
» For VaR, Li et al. [2022] needs corrections.
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PRIMAL DP DECOMPOSITION FOR SRM

With Static CVaR MDP,

n}rin p(—R(7)) = minz + o 'E[(—R(7) — 2)*]

z,m
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PRIMAL DP DECOMPOSITION FOR SRM

With Static CVaR MDP,

n}rin p(—R(7)) = minz + o 'E[(—R(7) — 2)*]

z,m

Hence,

min 5(—R(x)) = min z + o~ 'Q}(s0, z,a0)
e Z,a0

where

Qi (st,z¢,a1) = E[?illﬂ Qi1 Gea1, ze + 74(5t, 88, 5¢41) A1) | 8¢ = ]
t+

and Q% (st, zt, ar) := max(0, —z¢).
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DUAL DP DECOMPOSITION FOR SRM
With Static CVaR MDP, Pflug and Pichler [2016]:

p-R(m) = sup {E[-¢R(m)|[E] =1, Plag <1) =1}

EATxST—R

= g;AS;ELR {E {5 CVaR ¢ (—R(W)‘ﬁo,ﬁ)] )E[ﬁ] =1, Pt <1) = 1}
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DUAL DP DECOMPOSITION FOR SRM
With Static CVaR MDP, Pflug and Pichler [2016]:

p-R(m) = sup {E[-¢R(m)|[E] =1, Plag <1) =1}

EATxST—R

= €:As;1§)_>R {E {5 CVaR ¢ (—R(Tr)‘ﬁo,ﬁ)] ’E[ﬁ] =1, Pt <1) = 1}

Hence,

min 5(—R(w)) = min V(sp, )

where VT (s¢, o) ==
sup  {E[E(—ri(st,at,8111) + Vg (ry1, ) [5r = st]
EAXS—R
E[] =1, P <1) =1}
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DUAL DP DECOMPOSITION FOR SRM I1

Chow et al. [2015] claims,

min p(—R(r)) = min Qo (s v, ap)

where Qf (s¢, oy, at) :==
sup {E[S(—rt(st, a,S41) +min Qf 1 (8411, &, ar11)) |8 = si]
£S—R B+
Bl =1, Pasg <1) =1}
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DUAL DP DECOMPOSITION FOR SRM

In fact, Hau et al. [2023a] shows:

min p(—R(r)) < min Qb (0, v, ap)
where Qf (s¢, oy, at) :=
sup {E[f(_rt(staatagt—&—l) + fg}gl Qf 1 (8e41, i€, ai41)) |8 = s4]

&S—R
Bl =1, Pasg <1) =1}
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NEW DP DECOMPOSITION FOR STATIC VAR
Inspired by Li et al. [2022], we derive a new decomposition for
Static VaR:

p(—R(m))

= é;ATi><r}9fT~>]R {ess sup [—R(W)‘ﬁ < 1} ‘E[f] =1, Plaf <1)

I
R,—/

— 1 — R 1 3 = < =
i {esssup [VaRag (—R(m)la0, 51 ) ‘g <1] ‘E[f] 1, P(af < 1)
We also show that,
min p(—R(r)) = min Qj(s0, . o)
™ ap
where Qj (s, ar, a¢) := infe.ssr {
ess sup[—7¢(st, ar, Sp41) + %}i? Qf1(8e41, €, a41))5 = 5¢|§ < 1]

[E[(] =1, P(ay§ <1) =1}
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Questions & Comments ...

... Thank you!
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