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Introduction Deep RL for dynamic elicitable risk measure DRL with Static Risk Measure

RISK AVERSION IN MULTISTAGE DECISION MAKING

Consider a finite horizon MDP (S,A, r,P). Given a policy
π : S × [T] → A, we are interested in the risk related to the sum
of cumulative reward:

R̃(π) :=
T−1∑
t=0

rt(s̃t, ãt, s̃t+1)

where {s̃t}T
t=0 is the random state trajectory traversed when

drawing actions from policy πt, i.e. ãt ∼ πt(s̃t). We assume that
s0 is deterministic.
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RISK AVERSION IN MULTISTAGE DECISION MAKING
Risk aversion can be handled using two approaches:

1. Static law-invariant risk measure (SRM):
minπ ρ̄(−R̃(π)) := ϱ̄(FR̃(π))

▶ E.g. : −E[R̃], −E[u(R̃)], VaR(−R̃), CVaR(−R̃)

▶ Pros: Easy to interpret
▶ Cons: Can violate dynamic consistency
▶ Pro or Con ?: Does not distinguish between two policies

that have the same FR̃(π)

95%	VaR =		95th percentile	=7,5

Conditional VaR 95%	=	9

Cost	distribution

Mean =	2,72

Median =	2,19

Mode	=	1,42

Range	=	[0,2,	∞]
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RISK AVERSION IN MULTISTAGE DECISION MAKING

Risk aversion can be handled using two approaches:
1. Static law-invariant risk measure (SRM):

minπ ρ̄(−R̃(π)) := ϱ̄(FR̃(π))

2. Dynamic law-invariant risk measure (DRM):
maxπ ρ(−R̃(π)) :=
ρ̄0(ρ̄1(. . . ρ̄T−1(−R̃(π)|ã0:T−1, s̃1:T) · · · |ã0, s̃1))
▶ E.g.: E[−R̃], −E[u(R̃)],

VaR(VaR(. . .VaR(−R̃|ã0:T−1, s̃1:T) . . . |ã0, s̃1)),
CVaR(CVaR(. . .CVaR(−R̃|ã0:T−1, s̃1:T) . . . |ã0, s̃1))

▶ Pros: Satisfies dynamic consistency, associated to Bellman
equation

▶ Cons: Can be hard to interpret
▶ Pro or Con ?: Unclear how it handles two policies that have

the same FR̃(π)
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▶ E.g.: E[−R̃], −E[u(R̃)],
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DEEP RL FOR DYNAMIC RISK MEASURES

▶ Tamar et al. [2015] exploits risk measure supremum
representation to obtain robust MDP reformulation. Policy
gradient obtained by simulating the trajectory using
reweighted transitions.

▶ Huang et al. [2021] modifies policy gradient for on-policy
learning but requires up to 5 function approximators.

▶ Marzban et al. [2023] proposes a simple modification to
Deep Deterministic Policy Gradient (DDPG) algorithm
to handle dynamic elicitable risk measures.

▶ Coache et al. [2022] proposes an on-policy actor-critic
approach for conditionally elicitable risk measures.
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ELICITABLE RISK MEASURE [BELLINI AND BIGNOZZI, 2015]

Definition 1
A risk measure is said to be elicitable if it can be expressed as the
minimizer of a certain scoring function.

ρ̄(X̃) := argmin
q

E
[
ℓ(q − X̃)

]
.

▶ Examples:
▶ Expected value: ℓ(y) := y2

▶ Quantile value: ℓτ (y) := (1 − τ)max(y, 0) + τ max(−y, 0)

▶ Elicitability implies that if we have i.i.d. samples {xi, yi}M
i=1

then we can estimate conditional risk using regression:

ρ̄(Ỹ|X̃) := ϱ̄(FỸ|X̃) ≈ hθ∗(X̃), θ∗ = argmin
θ

1
M

M∑
i=1

ℓ(hθ(xi)−yi)
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EXPECTILE RISK MEASURE

Definition 2
The τ -expectile of a random liability X̃ is defined as:

ρ̄(X̃) := argmin
q

E
[
(1 − τ)(q − X̃)2

+ + τ(q − X̃)2
−

]
.

▶ τ = 0.5 ⇒ ρ̄(X̃) = E[X̃], i.e. risk neutral
▶ τ = 1 ⇒ ρ̄(X̃) = ess sup[X̃], i.e. worst-case scenario
▶ Expectile is the only elicitable coherent risk measure

Erick Delage http://tintin.hec.ca/pages/erick.delage 9/30

http://tintin.hec.ca/pages/erick.delage


Introduction Deep RL for dynamic elicitable risk measure DRL with Static Risk Measure

DYNAMIC EXPECTILE RISK MEASURE (DERM)
Definition 3
A dynamic recursive expectile risk measure takes the form:

ρ(−R̃) := ρ̄0(ρ̄1(. . . ρ̄T−1(−R̃|ã0:T−1, s̃1:T) . . . |ã0, s̃1)) ,

where each ρ̄t(·) is an expectile risk measure that employs the
conditional distribution given (ã1:t−1, s̃1:t). Namely,

ρ̄t(Ṽt+1|ã0:t−1, s̃1:t) :=

argmin
q

E
[
τ(q − Ṽt+1)

2
+ + (1 − τ)(q − Ṽt+1)

2
+|ã0:t−1, s̃1:t

]
where for example

Ṽt+1 := ρ̄t+1(ρ̄t+2(. . . ρ̄T−1(−R̃|ã0:T−1, s̃1:T) . . . |ã0:t+1, s̃1:t+2))

can be the random “risk-to-go” observable at t + 1.
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BELLMAN EQUATIONS FOR DRM-MDP

With dynamic recursive risk measures in an MDP,
minπ ρ̄(−R̃(π)) ≡ minπ Vπ

0 (s0) where

Vπ
t (st) := ρ̄t(−rt(st, ãt, s̃t+1) + Vπ

t+1(s̃t+1)|̃st = st)

with ãt ∼ πt(s̃t) and Vπ
T(sT) := 0.

With interchangeability property and mixture quasi-concavity
of ρ̄t, we have minπ ρ̄(−R̃(π)) ≡ mina0 Q∗

0(s0, a0) where

Q∗
t (st, at) := ρ̄t(−rt(st, at, s̃t+1) + min

at+1
Q∗

t+1(s̃t+1, at+1)|̃st = st)

and Q∗
T(sT, aT) := 0.
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DEEP RISK AVERSE RL USING DERMS

▶ We show how to extend
the popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures ?

Q∗t (st, at) := ρ̄t

(
− rt(st, at, s̃t+1)+

max
at+1

Q∗t+1 (̃st+1, at+1)
∣∣∣st

)

Algorithm Traditional DDPG (ρ̄t = E)

Initialize the main actor θπ and critic θQ networks
Initialize the target actor, θπ

′
, and critic, θQ′

, networks
Initialize replay buffers R
for j = 1 : #Episodes do

Initialize a random processN for action exploration;
Receive initial observation state s0
for t = 0 : T − 1 do

Select action at = πt(st|θπ) +Nt
Execute at and store transition (st, at, rt, st+1)
Sample a minibatch of N transitions

Set yi := −ri + Q(si+1, π(si+1|θπ
′
)|θQ′

)
Update the main critic network:

θ
Q ← θ

Q
+α

1

N

N∑
i=1

∂ℓ(Q(si, ai|θ
Q
) − yi)∇θQ Q(si, ai|θ

Q
)

where ℓ(∆) := ∆2

Update the main actor network :

θ
π ← θ

π−α
1

N

N∑
i=1

∇aQ(si
j, a|θQ

)|
a=π(si

j|θ
π)
∇θππ(si

j|θ
π
) ;

Update the target networks
end for

end for
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DEEP RISK AVERSE RL USING DYNAMIC RISK
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▶ We show how to extend
the popular deep
deterministic policy
gradient (DDPG)
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formulated based on
time-consistent dynamic
expectile risk measures ?

Q∗t (st, at) := ρ̄t
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PRIMAL-DUAL REPRESENTATIONS OF SRMS
▶ Value-at-risk [Follmer and Schied, 2016]:

VaRα

(
X̃
)
= inf

{
z ∈ R | P(X̃ > z) ≤ α

}
= sup

{
z ∈ R | P(X̃ ≥ z) > α

}
.

▶ Conditional Value-at-Risk:

CVaRα

(
X̃
)
= inf

z∈R

(
z + α−1E

[
X̃ − z

]
+

)
= sup

ξ:Ω→R

{
E[ξX̃]

∣∣∣E[ξ] = 1, P(αξ ≤ 1) = 1
}
,

▶ Entropic Value-at-Risk [Ahmadi-Javid, 2012]:

EVaRα

(
X̃
)
= inf

β>0
β−1

(
log(α−1E[exp(βX̃)])

)
= sup

ξ:Ω→R

{
E[ξX̃]

∣∣∣E[ξ] = 1, E[ξ log(ξ)] ≤ − log(α)
}
,
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DEEP RL FOR STATIC RISK MEASURES

▶ Filar et al. [1995], Wu and Lin [1999], Lin et al. [2003], Boda et al. [2004], Bäuerle

and Ott [2011], Xu and Mannor [2011], Chow and Ghavamzadeh [2014], Hau

et al. [2023b]:
exploit the infimum representation of risk measures to
define a risk neutral MDP on a lifted state-space, which
keeps track of cumulated rewards.

▶ Chow et al. [2015], Chapman et al. [2019], Stanko and Macek [2019], Rigter et al.

[2021], Ding and Feinberg [2022]:
exploit the supremum representation of risk measures to
define a robust MDP on a lifted state-space, which keeps
track of current risk-level.

▶ Hau et al. [2023a]:
▶ Robust MDP approach is inexact in general!
▶ For VaR, Li et al. [2022] needs corrections.
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PRIMAL DP DECOMPOSITION FOR SRM

With Static CVaR MDP,

min
π

ρ̄(−R̃(π)) ≡ min
z,π

z + α−1E[(−R̃(π)− z)+]

Hence,
min
π

ρ̄(−R̃(π)) ≡ min
z,a0

z + α−1Q∗
0(s0, z, a0)

where

Q∗
t (st, zt, at) := E[min

at+1
Q∗

t+1(s̃t+1, zt + rt(st, at, s̃t+1), at+1) | s̃t = st ]

and Q∗
T(sT, zt, aT) := max(0,−zt).
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DUAL DP DECOMPOSITION FOR SRM

With Static CVaR MDP, Pflug and Pichler [2016]:

ρ̄(−R̃(π)) = sup
ξ:AT×ST→R

{
E
[
−ξR̃(π)

]∣∣∣E[ξ] = 1, P(αξ ≤ 1) = 1
}

= sup
ξ:A×S→R

{
E
[
ξCVaRαξ

(
−R̃(π)

∣∣∣ã0, s̃1

)]∣∣∣E[ξ] = 1, P(αξ ≤ 1) = 1
}

Hence,
min
π

ρ̄(−R̃(π)) ≡ min
π

Vπ
0 (s0, α)

where Vπ
t (st, αt) :=

sup
ξ:A×S→R

{
E[ξ(−rt(st, ãt, s̃t+1) + Vπ

t+1(s̃t+1, αtξ))|̃st = st]

|E[ξ] = 1, P(αtξ ≤ 1) = 1}
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DUAL DP DECOMPOSITION FOR SRM II

Chow et al. [2015] claims,

min
π

ρ̄(−R̃(π)) ≡ min
a0

Q∗
0(s0, α, a0)

where Q∗
t (st, αt, at) :=

sup
ξ:S→R

{
E[ξ(−rt(st, at, s̃t+1) + min

at+1
Q∗

t+1(s̃t+1, αtξ, at+1))|̃st = st]∣∣∣E[ξ] = 1, P(αtξ ≤ 1) = 1
}
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DUAL DP DECOMPOSITION FOR SRM

In fact, Hau et al. [2023a] shows:

min
π

ρ̄(−R̃(π)) ≤ min
a0

Q∗
0(s0, α, a0)

where Q∗
t (st, αt, at) :=

sup
ξ:S→R

{
E[ξ(−rt(st, at, s̃t+1) + min

at+1
Q∗

t+1(s̃t+1, αtξ, at+1))|̃st = st]∣∣∣E[ξ] = 1, P(αtξ ≤ 1) = 1
}

Erick Delage http://tintin.hec.ca/pages/erick.delage 20/30

http://tintin.hec.ca/pages/erick.delage


Introduction Deep RL for dynamic elicitable risk measure DRL with Static Risk Measure

NEW DP DECOMPOSITION FOR STATIC VAR
Inspired by Li et al. [2022], we derive a new decomposition for
Static VaR:

ρ̄(−R̃(π))

= inf
ξ:AT×ST→R

{
ess sup

[
−R̃(π)

∣∣∣ξ < 1
]∣∣∣E[ξ] = 1, P(αξ ≤ 1) = 1

}
= inf

ξ:A×S→R

{
ess sup

[
VaRαξ

(
−R̃(π)|ã0, s̃1

)∣∣∣ξ < 1
]∣∣∣E[ξ] = 1, P(αξ ≤ 1) = 1

}

We also show that,

min
π

ρ̄(−R̃(π)) ≡ min
a0

Q∗
0(s0, α, a0)

where Q∗
t (st, αt, at) := infξ:S→R {

ess sup[−rt(st, at, s̃t+1) + min
at+1

Q∗
t+1(s̃t+1, αtξ, at+1))s̃t = st|ξ < 1]

|E[ξ] = 1, P(αtξ ≤ 1) = 1}
Erick Delage http://tintin.hec.ca/pages/erick.delage 21/30

http://tintin.hec.ca/pages/erick.delage


Introduction Deep RL for dynamic elicitable risk measure DRL with Static Risk Measure

Questions & Comments ...

... Thank you!
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