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This article studies a multi-period capacitated fixed-charge location-transportation problem in which, while

the location and capacity of each facility need to be determined immediately, the determination of final

production and distribution of products can be delayed until actual orders are received in each period.

In contexts where little is known about future demand, robust optimization, namely using a budgeted

uncertainty set, becomes a natural method to employ in order to identify meaningful decisions. Unfortunately,

it is well known that these types of multi-period robust decision problems are computationally intractable.

To overcome this difficulty, we propose a set of tractable conservative approximations to the problem that

each exploits to a different extent the idea of reducing the flexibility of the delayed decisions. While all of

these approximation models outperform previous approximation models that have been proposed for this

problem, each of them also has the potential to reach a different level of compromise between efficiency

of resolution and quality of the solution. A row generation algorithm is also presented in order to address

problem instances of realistic size. We also demonstrate that full flexibility is often unnecessary to reach

nearly, or even exact, optimal robust locations and capacities for the facilities. Finally, we illustrate our

findings with an extensive numerical study where we evaluate the effect of the amount of uncertainty on the

performance and structure of each approximate solutions that can be obtained.

Key words : transportation, facility location, robust optimization, flexibility, conservative approximation,

demand uncertainty
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1. Introduction

Transportation planning can be decomposed in three different levels (Crainic and Laporte 1997):

strategic transportation planning, tactical transportation planning, and operational transportation

planning. At the highest level of management, an important decision consists in determining the

geographical locations of factories, suppliers and warehouses. Determination of facility location,

such as hub locations, supplier locations, air freight hub locations, railway station locations, etc.,

can significantly impact the design of the strategic networks. Recognizing this fact, researchers

(e.g., Christensen et al. (2013) and Abouee-Mehrizi et al. (2014)) have been developing integrated
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models in order to have better control on the interactions between facility location decisions and

transportation strategies.

The traditional way of describing the location-transportation problem (LTP) has been to assume

a deterministic environment. In a deterministic setting, i.e., when there is no uncertainty about

problem data, a multi-period capacitated fixed-charge LTP, with L facility locations, N customer

locations, and T periods, can take the form of the following mixed integer linear program (MILP):

(Deterministic) maximize
I,Z,Y,P

T∑
t=1

L∑
i=1

N∑
j=1

(η− dij)Y t
ij − cTP t− (CTZ +KT I) (1a)

subject to
∑
i

Y t
ij ≤Dt

j , ∀ j ∈ {1,2, . . . ,N} , ∀ t∈ {1,2, . . . , T} (1b)∑
j

Y t
ij ≤ P t

i , ∀ i∈ {1,2, . . . ,L} , ∀ t∈ {1,2, . . . , T} (1c)

P t ≤Z , ∀ t∈ {1,2, . . . , T} (1d)

Y t ≥ 0 , ∀ t∈ {1,2, . . . , T} (1e)

Z ≤MI , I ∈ {0,1}L , (1f)

where Z ∈RL, Y ∈RL×N×T , P ∈RL×T , and with M as a constant chosen large enough. This MILP

integrates the optimization of both “strategic” and “operational” decisions. At the strategic level,

it includes for each candidate location i = 1,2, . . . ,L, the binary decision Ii denoting whether a

facility should be opened or not, and the continuous decision Zi denoting the production capacity

of the facility. Once these are decided, operational decisions over a horizon of t= 1,2, . . . , T include

for each period t, P t
i denoting how many goods are produced at each i-th facility and Y t

ij denoting

how many goods are shipped from facility i to customers at location j. The demand during period

t for location j = 1,2, . . . ,N is characterized by Dt
j. The total profit generated by the company

is computed based on sales revenue, with η > 0 the unit price of goods, on construction costs,

composed for a given facility i with size Zi of a fixed cost Ki and variable costs CiZi, on production

costs ci for each facility i, and finally on transportation costs, with dij being the unit cost for

any shipment from location i to j. Note that each parameter η, dij, and ci could alternatively be

considered time dependant.

In model (1), all parameters are considered to be known exactly at the time of making the

strategic decision. In practice however, some parameters, in particular the exact size of each demand

Dt
j,

1 is rarely known at the moment of building the facilities. In recent years, studies made in a

number of field of applications (Bertsimas et al. (2011), Gabrel et al. (2014b)) have demonstrated

the effectiveness of robust optimization (RO) for handling uncertainty especially in cases where

there is no valid argument to justify the choice of a distribution model. A näıve application of robust
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optimization to LTP under demand uncertainty might lead to the following robust counterpart

(RC):

(RC) maximize
I,Z,Y,P

∑
t

∑
i

∑
j

(η− dij)Y t
ij − cTP t− (CTZ +KT I) (2a)

subject to
∑
i

Y t
ij ≤Dt

j , ∀D ∈D, ∀ j , ∀ t (2b)

(1c)− (1f) ,

where D is the uncertainty set for the vector composed of all the demands (D1,D2, . . . ,DT ).

Although it can be shown that the RC model can be reformulated as a MILP if D is polyhedral,

the solution that it provides will often appear to be overly conservative, i.e., it might suggest

to open only a few facilities (if any at all) with very limited capacity. This is actually due to

the fact that the RC model completely disregards how operational decisions, namely size of pro-

duction and deliveries, are delayed and can exploit the information that becomes available about

the demand. This motivates the use of the following multi-period robust location-transportation

problem (MRLTP) model:

(MRLTP) maximize
I,Z

min
D∈D

∑
t

ht(I,Z,D
t)− (CTZ +KT I) (3a)

subject to Z ≤MI , I ∈ {0,1}L , (3b)

where ht(I,Z,D
t) is the profit generated during period t, once the demand is revealed for this

period, and is defined as

ht(I,Z,D
t) = max

Y t,P t

∑
i

∑
j

(η− dij)Y t
ij − cTP t (4a)

subject to
∑
i

Y t
ij ≤Dt

j , ∀ j (4b)∑
j

Y t
ij ≤ P t

i , ∀ i (4c)

P t ≤Z (4d)

Y t ≥ 0 , (4e)

which in particular captures the fact that since it is assumed that goods cannot be stored (or

demand backlogged) from one period to the other, neither at the facility nor at the demand

locations, it is always possible to design an optimal transportation and production plan that depend

only on the currently realized demand.

Finally, we make the common assumption that the demand vector D is known to lie in a budgeted

uncertainty set (see Bertsimas and Sim (2004)), i.e., that each Di lies in an interval and that at

most Γ of the terms across all locations and time periods can take extreme values.
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While it appears that the MRLTP does implement as much flexibility as is needed in this problem,

Atamtürk and Zhang (2007) established that evaluating the objective is already computationally

intractable when T = 1. In this paper, we present a set of six conservative approximation models

to the problem that each exploits to a different extent the idea of reducing the flexibility of the

delayed decisions. These models will allow us to explore empirically the compromises that need to

be made between flexibility/conservatism and “tractability”2. Overall, we consider this article to

make the following contributions:

1. We present a set of tractable conservative approximations of the MRLTP that each employ

different form of application of affine adjustments proposed in Ben-Tal et al. (2004) and Chen

and Zhang (2009). While we do demonstrate empirically for the first time how significant the

improvements can be in terms of the quality of the approximate solutions for the MRLTP, especially

when comparing to Baron et al. (2011)’s robust model, we also establish conditions under which

some of the simplest approximation schemes already provide optimal solutions. These theoretical

results rely on carefully adapting the arguments presented in Ben-Tal et al. (2004) and Bertsimas

and Goyal (2012) to our multi-period setting.

2. Two of our formulations, namely what will be referred as ELAARC and HD-ELAARC, also

provide valuable insights about how better conservative approximation models can be obtained in

robust multi-stage optimization problems. With ELAARC, this is done by creating affine adjust-

ment only after replacing the recourse problem by an equivalent penalized formulation. With HD-

ELAARC, this is done by letting the affine adjustments depend on the whole history even though

an optimal recourse policy is known to be independent of the history. These two ideas might serve

many other instances of robust multi-stage decision problems.

3. We propose a row generation algorithm that employs a parsimonious choice of valid inequal-

ities in order to accelerate the resolution of one of our most complex approximation model, while

being easily adaptable to any of our other formulations. Our implementation of this algorithm

allows us to reduce by a factor between 16 and 260 the solution time of larger instances and to

solve instances with 20 periods, 15 facility locations, and 30 demand locations in less than 3 hours

while an exact method could not converge after running for more than 48 hours.

4. We perform an extensive numerical study in order to analyse the value of flexibility and the

robustness-performance trade-off that can be achieved by each approximation model. Furthermore,

we provide some insights about the general structure of the decisions that are proposed by each

approximation model on a large set of problem instances.

The remainder of the paper is organized as follows. In Section 2, we review prior work about

the robust location transportation problem under demand uncertainty. In Section 3, we present

six new tractable approximation models for the MRLTP. In Section 4, we establish the relation
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between the bounds that are obtained using each approximation model and identify conditions

under which some of the models return exact solutions. Next, we present in Section 5 the details

of a decomposition scheme that can be used to accelerate the resolution of larger size models. In

Section 6, we provide numerical results and finally, the conclusions and possible future research

directions are presented in Section 7.

2. Prior work

To the best of our knowledge, Atamtürk and Zhang (2007) were the first to study a model related

to the two-stage robust location-transportation problem (TRLTP), a special case of MRLTP with

a single-period T = 1, for an application of network flow and design problem where their objective

was to minimize worst-case cost over a budgeted uncertainty set. They compared a two-stage robust

optimization model with a stochastic program where the objective of the stochastic program was

to minimize the sum of the first-stage cost and expected value of the second-stage cost. When

distribution was captured by 200 demand scenarios, they showed that while the solution of the

two-stage robust optimization model increased the expected cost by 1.1% it actually decreased by

29.1% the cost incurred under the worst-case scenario. They identified the TRLTP as a special

case of the modelling framework and after recognizing that their problem was NP-hard, proposed

to use a cutting plane algorithm to reach a global optimum.

Recently Gabrel et al. (2014a) and Zeng and Zhao (2013) proposed two cutting plane methods

to solve a TRLTP exactly under the budgeted uncertainty set with an integer budget. Gabrel et al.

(2014a) showed that the adversarial problem in the TRLTP could be reformulated as a MILP. The

master problem of TRLTP could then be tackled using Kelley’s cutting plane algorithm given that

optimality cuts are provided using a MILP solver. Zeng and Zhao (2013) seem to have improved

on the solution time by employing a column-and-constraint generation (C&CG) algorithm instead

of Kelley’s cutting plane algorithm. Finally, in a similar transportation problem, Lei et al. (2015)

proposed a two-level cutting plane method for a two-stage mobile facility fleet sizing and routing

problem wherein fleet sizing and routing plan are determined in the first stage and allocation

of demands to the mobile facilities are determined in second stage. Although there is empirical

evidence that these exact resolution methods are efficient, the adversarial problem that is solved in

each case takes the form of a MILP that is inherently NP-hard. There is therefore always a risk of

having to endure unbearable computation times before obtaining solutions to any specific problem

instance.

In Baron et al. (2011), the authors can be considered to have proposed the first tractable con-

servative approximation of the MRLTP model. In their paper, the authors proposed a robust

optimization model in which static (i.e., inflexible) production and fractional transportation poli-

cies are optimized. Indeed, they replaced the Y t
ij variables with Xt

ijD
t
j which reflects the notion
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that Xt
ij is the proportion of demand at location j and time t that is satisfied by the facility at

location i. Specifically, their proposed fractional variable-based (FVB) model takes the form:

(FVB) maximize
I,Z,X,P

min
D∈D

∑
t

∑
i

∑
j

(η− dij)Xt
ijD

t
j − cTP t− (CTZ +KT I) (5a)

subject to
∑
j

Xt
ijD

t
j ≤ P t

i , ∀D ∈D , ∀ i , ∀ t (5b)

P t ≤Z , ∀ t (5c)∑
i

Xt
ij ≤ 1 , ∀ j , ∀ t (5d)

Xt ≥ 0 , ∀ t (5e)

Z ≤MI , I ∈ {0,1}L. (5f)

They next studied the impact of two types of uncertainty set, box and ellipsoidal sets, on the struc-

ture of the robust solution and compared it to the nominal one. In particular, they paid special

attention to the number of opened facilities, the total capacity of facilities, the number of deliveries

made from each facility to the customer locations under different scenarios. Surprisingly, the follow-

ing example highlights the fact that the solution of the FVB model might abandon opportunities of

making profits that are arbitrarily large even with respect to the worst-case scenario. In contrast,

the simpler RC model actually does not suggest as much of a conservative solution for the same

instances. On the other hand, some might argue that the FVB model provides a transportation

policy that can easily be interpreted.

Example 1. Consider an example of MRLTP with T = 1 and two customers such that D ∈
[D̄± D̂] where D̄= 10000 and D̂= 5000. The location of customers is considered as the candidate

location of facilities, L= 2. The open facility will cover demand, if possible, with η = 1, ci = 0.1,

Ci = 0.1 and Ki = 3000 for all i and the transportation cost between locations is equal to 1. We

assume that the budget is Γ = 2 which leads to a box uncertainty set. As it is shown in Appendix

A, the optimal value of RC model (2) is equal to 1000 but the optimal value of the FVB model is

zero in this example. This indicates that while the RC model suggests opening the two facilities

which leads to a worst-case profit of 1000, the FVB model closes everything down. When scaling

every parameters in the objective function by some α > 0, FVB will let go of an arbitrarily large

opportunity to make profit. Intuitively, the over-conservatism of the FVB model is due to the fact

that any feasible candidate for production must satisfy the largest possible demand, because of

(5b), while the worst-case profits that end up being measured in (5a) actually account for the

lowest demand. This necessarily leads the FVB model to imply that a lot of the production will

be wasted once one attempts to satisfy even a small amount of demand.
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Recently, Bertsimas and de Ruiter (2015) proposed applying affine adjustments on a dual refor-

mulation of the TRLTP and show improved computation time when compared to applying the

same type of adjustment on the original TRLTP. Given that the two types of applications of these

adjustments are shown to be equivalent, it is likely that their methods could be used to improve

resolutions time of the models that are proposed in this work if one wishes to avoid using dedicated

decomposition schemes. Yet, we are still convinced at the time of writing this article that it is

necessary to employ row generation algorithms of the type presented here to obtain solutions to

the larger size instances of MRLTP problem in a reasonable amount of time.

3. Six conservative tractable approximations

In what follows, we provide six progressive ways of improving the quality of the solution obtained

from the RC and FVB model. Each of them will employ the idea of affine adjustments from Ben-

Tal et al. (2004) and a version of the splitting based uncertainty set extensions from Chen and

Zhang (2009) to exploit to a different extent the fact that the operational decisions P and Y can

be adjusted to the realization of the demand. The type of flexibility added by our models can be

divided in three classes. Similarly to what is done in the FVB model, the first class of approximation

models, called “customer-driven”, will adjust the size of a delivery to a customer simply based on

information about that customer’s demand, i.e., that Y t
ij := πtij(Dj) with πtij :R→R. In opposition,

the second class of approximation models, called “market-driven” will be more flexible and attempt

to optimize delivery policies that take into account the state of the market as a whole, i.e., that

Y t
ij := πtij(D

t) with πtij : RN → R. This second class will necessarily lead to models that are more

computationally demanding yet have the potential of identifying better performing strategies. We

will finally introduce a final class of approximation models, referred as “history-driven”, that will

attempt to exploit the full history of demand although we did not yet identify an improvement there

that motivates the added computational burden. Note that in presenting each of the approximation

models we omit to derive and spell out the finite dimensional MILP reformulation that would be

obtained by applying duality theory to each robust constraint and objective function for the sake

of keeping the presentation compact.

3.1. Customer-driven affine adjustments

Our first approximation model will stem from the realization that in the recourse problem of

the MRLTP, namely Problem (4), the inequality constraint (4c) will be active at optimum and

can therefore be replaced with an equality constraint. This argument motivates replacing P t
i with∑

jX
t
ijD

t
j for all i and t in the FVB model (5). Using this replacement, our model effectively fully

adapts variable P t
i to the revealed demand, which was an important issue with the FVB model. In

order to ensure that we obtain a tighter approximation than with the RC model, we also propose
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replacing the fractional adjustment, Y t
ij :=Xt

ijD
t
j with Y t

ij :=Xt
ijD

t
j +W t

ij for all i, j, and t. The

motivation for using W t
ij is that there are some cases as shown in Example 1, wherein RC provides

a tighter solution than FVB. Introducing the variable W t
ij, namely the “static” component of the

transportation policy, enables us to guarantee that this revised model always provides a solution

that is at most as conservative as the solution of the RC model (see Proposition 2 for more details).

Overall, these modifications lead to our revised fractional-variable based (RFVB1) model:

(RFVB1) maximize
I,Z,X,W

min
D∈D

∑
t

∑
i

∑
j

(η− dij − ci)(Xt
ijD

t
j +W t

ij)− (CTZ +KT I) (6a)

subject to
∑
i

Xt
ijD

t
j +W t

ij ≤Dj , ∀D ∈D , ∀ j , ∀ t (6b)∑
j

Xt
ijD

t
j +W t

ij ≤Zi , ∀D ∈D , ∀ i , ∀ t (6c)

Xt
ijD

t
j +W t

ij ≥ 0 , ∀D ∈D , ∀ i , ∀ j , ∀ t (6d)

Z ≤MI , I ∈ {0,1}L . (6e)

We next exploit an extended description of the budgeted uncertainty set proposed in Chen and

Zhang (2009) in order to optimize customer-driven transportation policies that have piecewise-

linear structure (we also refer the reader to Georghiou et al. (2015) for details about techniques

involving non-linear decision structures). Specifically, we employ a lifting of the demand uncertainty

space

D=

{
D ∈RN×T

∣∣∣∣∃(D+,D−)∈D2, D= D̄+D+−D−
}

where

D2 =

{
(D+,D−)∈RN×T ×RN×T

∣∣∣∣∃(δ+, δ−)∈RN×T ×RN×T , δ+ ≥ 0, δ− ≥ 0,‖δ+ + δ−‖∞ ≤ 1,

‖δ+ + δ−‖1 ≤ Γ, Dt+
j = D̂t+

j δ
t+
j , D

t−
j = D̂t−

j δ
t−
j ∀ j ∀ t

}
.

As illustrated in Figure 1, this lifting allows one to define different affine policies for positive

perturbations than those defined for negative perturbations thus giving rise to the possibility

of a better performing non-linear adjustment. For example, by letting Wij = αD̄t
j, X

t+
ij = 0 and

Xt+
ij =−α for some 0≤ α ≤ 1, the lifting implements the policy Y t

ij := αmin(Dt
j; D̄

t
j) (see Figure

1(c)) which can make better use of the capacity Zi that is made available.
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(a) (b) (c)

W t
ij

Dt+
jDt−

j

Xt
ij

Zi

Y t
ij Y t

ij

Xt−
ij

W t
ij

Xt+
ij

Dt+
jDt−

jD̄t
j D̄t

j

Zi

−α

Zi

αD̄t
j

D̄t
jDt−

j

Y t
ij

Dt+
j

Figure 1 Illustrative comparison of an affine adjustment in (a) and an affine adjustment on the lifted space

(Dt+
j ,Dt−

j ) in (b). Finally, (c) presents an example of lifted adjustment that implements Y tij :=

αmin(Dt
j ; D̄

t
j) in order to make better use of available capacity.

This manipulation of the model leads to our second revision of the fractional-variable based

(RFVB2) model:

(RFVB2) maximize
I,Z,X+,X−,W

min
(D+,D−)∈D2

∑
t

∑
i

∑
j

(η− dij − ci)(Xt+
ij D

t+
j +Xt−

ij D
t−
j +W t

ij)

−(CTZ +KT I) (7a)

subject to
∑
i

Xt+
ij D

t+
j +Xt−

ij D
t−
j +W t

ij ≤Dt
j , ∀ (D+,D−)∈D2 , ∀ j , ∀ t (7b)∑

j

Xt+
ij D

t+
j +Xt−

ij D
t−
j +W t

ij ≤Zi , ∀ (D+,D−)∈D2 , ∀ i , ∀ t (7c)

Xt+
ij D

t+
j +Xt−

ij D
t−
j +W t

ij ≥ 0 , ∀ (D+,D−)∈D2 ∀ i ,∀ j , ∀t (7d)

Z ≤MI , I ∈ {0,1}L . (7e)

3.2. Market-driven affine adjustments

We now provide three approximation models that will attempt to exploit full market information

in making deliveries. The first of these attempts can be considered as a direct application of the

AARC framework for the MRLTP as it was initially introduced by Ben-Tal et al. (2004). In such

a framework, the adaptive policies for later stage decisions are considered to be restricted to the

set of affine functions of the uncertain parameters. In the context of this problem, this means

that each adaptive policy of the MRLTP model (3) should take the form Y t
ij := (Xt

ij)
TDt +W t

ij

with Xt
ij ∈ RN and W t

ij ∈ R. In other words, this means that the delivery for a customer j can

depend on all the orders that are made in this market. Intuitively, this added flexibility might be

beneficial considering that the amount of production of each facility is constrained by its capacity

Zi, therefore an increase in demand from a nearby customer might justify reducing the amount of
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goods to transport to a further customer in order to improve profitability. We note that similarly

as before the variable P t
i of the MRLTP model (3) will be replaced by

∑
j Y

t
ij in all of our proposed

approximations. When restricting our search to affine policies of the Dt vector, the approximation

model takes the following form:

(AARC) maximize
I,Z,X,W

min
D∈D

∑
t

∑
i

∑
j

(η− dij − ci)
(
(Xt

ij)
TDt +W t

ij

)
− (CTZ +KT I) (8a)

subject to
∑
i

(Xt
ij)

TDt +W t
ij ≤Dt

j , ∀D ∈D , ∀ j , ∀ t (8b)∑
j

(Xt
ij)

TDt +W t
ij ≤Zi , ∀D ∈D , ∀ i , ∀ t (8c)

(Xt
ij)

TDt +W t
ij ≥ 0 , ∀D ∈D , ∀ i ,∀ j , ∀ t (8d)

Z ≤MI,I ∈ {0,1}L . (8e)

Similar to what was done to obtain the RFVB2 model, AARC can be improved by lifting the

uncertainty set. LAARC of MRLTP (3) can be obtained by considering policies that are affine

in the pair of perturbations (D+,D−) ∈ D2, namely Y t
ij := (Xt+

ij )TDt+ + (Xt−
ij )TDt− + W t

ij with

Xt+
ij ∈RN , Xt−

ij ∈RN , and W t
ij ∈R . This new approximation model takes the more sophisticated

form:

(LAARC)

maximize
I,Z,X+,X−,W

min
(D+,D−)∈D2

∑
t

∑
i

∑
j

(η− dij − ci)
(
(Xt+

ij )TDt+ + (Xt−
ij )TDt−+W t

ij

)
−(CTZ +KT I) (9a)

subject to
∑
i

(Xt+
ij )TDt+ + (Xt−

ij )TDt−+W t
ij ≤Dj , ∀ (D+,D−)∈D2, ∀ j, ∀t (9b)∑

j

(Xt+
ij )TDt+ + (Xt−

ij )TDt−+W t
ij ≤Zi , ∀ (D+,D−)∈D2, ∀ i, ∀t (9c)

(Xt+
ij )TDt+ + (Xt−

ij )TDt−+W t
ij ≥ 0 ,∀ (D+,D−)∈D2, ∀ i,∀ j, ∀t (9d)

Z ≤MI, I ∈ {0,1}L . (9e)

Now, we propose an extension to the LAARC, referred as the ELAARC model, which will

benefit from a manipulation of a multi-period robust optimization model which to the best of our

knowledge is presented for the first time. The key idea is to reformulate the recourse problem (4)

in a way that relaxes the constraint that is plagued by uncertainty without compromising the

authenticity of the model. Namely, let us consider the following equivalent reformulation

ht(I,Z,D
t) = max

Y t,P t

∑
i

∑
j

(η− dij − ci)Y t
ij −

∑
j

Bjθ
t
j (10a)
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subject to
∑
i

Y t
ij ≤Dt

j + θtj , ∀ j (10b)∑
j

Y t
ij ≤Zi , ∀ i (10c)

Y t ≥ 0 , θt ≥ 0 , (10d)

where Y t ∈ RL×N , θt ∈ RN and where each Bj is a marginal penalty for violating constraint (4b)

that is chosen large enough for the optimal value of the optimization problem to remain the same.

We refer the reader to Appendix B for a proof that the assignment Bj = maxi(η − ci − dij) ∀ j
meets this criterion.

Similarly as for the LAARC model, we adjust the deliveries based on the lifted uncertainty

space, Y t
ij := (Xt+

ij )TDt+ + (Xt−
ij )TDt−+W t

ij, furthermore we adjust each new auxiliary variable θj

according to θtj := St+j Dt+
j +St−j Dt−

j in order to obtain the ELAARC approximation model

(ELAARC)

maximize
I,Z,X+,X−,
W,S+,S−

min
(D+,D−)∈D2

∑
t

∑
i

∑
j

(
(Xt+

ij )TDt+ + (Xt−
ij )TDt−+W t

ij

)
−(CTZ +KT I)−

∑
t

∑
j

Bj(S
+
j D

t+
j +S−j D

t−
j ) (11a)

subject to
∑
i

(Xt+
ij )TDt+ + (Xt−

ij )TDt−+W t
ij ≤Dt

j

+St+j Dt+
j +St−j Dt−

j , ∀ (D+,D−)∈D2 , ∀ j , ∀ t (11b)

St+j Dt+
j +St−j Dt−

j ≥ 0 , ∀ (D+,D−)∈D2 ,∀ j , ∀ t (11c)

(9c)− (9e) , (11d)

where S+ ∈RN×T and S− ∈RN×T . Finally, one might realize that when using this lifted uncer-

tainty space, the worst-case analysis of this optimization model really only depends on negative

adversarial perturbations. This will be an interesting feature to exploit when the time comes to

implement and solve the model.

Proposition 1. The LAARC and ELAARC approximation models can respectively be reduced

to the following two optimization problems:

(LAARC2) maximize
I,Z,X−,W

min
D−∈D3

∑
t

∑
i

∑
j

(η− dij − ci)
(
(Xt−

ij )TDt−+W t
ij

)
− (CTZ +KT I)

subject to
∑
i

(Xt−
ij )TDt−+W t

ij ≤ D̄t
j −Dt−

j , ∀D− ∈D3 ,∀ j , ∀ t∑
j

(Xt−
ij )TDt−+W t

ij ≤Zi , ∀D− ∈D3 ,∀ i , ∀ t

(Xt−
ij )TDt−+W t

ij ≥ 0 , ∀D− ∈D3 ,∀ i ,∀ j , ∀ t

Z ≤MI, I ∈ {0,1}L ,
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and

(ELAARC2)

maximize
I,Z,X−,W,S−

min
D−∈D3

∑
t

∑
i

∑
j

(η− dij − ci)
(
(Xt−

ij )TD−+Wij

)
−(CTZ +KT I)−

∑
t

∑
j

Bj(S
t−
j Dt−

j ) (12a)

subject to
∑
i

(Xt−
ij )TD−+Wij ≤ D̄t

j −Dt−
j +St−j Dt−

j , ∀D− ∈D3 , ∀ j , ∀ t (12b)∑
j

(Xt−
ij )TD−+Wij ≤Zi , ∀D− ∈D3 ,∀ i , ∀ t (12c)

(Xt−
ij )TD−+Wij ≥ 0 , ∀D− ∈D3 , ∀ i ,∀ j , ∀ t (12d)

St−j Dt−
j ≥ 0 , ∀D− ∈D3 , ∀j , ∀ t (12e)

Z ≤MI , I ∈ {0,1}L , (12f)

where

D3 =

{
D− ∈RN×T

∣∣∣∣∃δ− ∈RN×T , 0≤ δ− ≤ 1,
T∑
t=1

N∑
j=1

δt−j ≤ Γ, Dt−
j = D̂t

jδ
t−
j ∀ j ∀ t

}
.

Proof: First, one can easily confirm that both LAARC and ELAARC reduce respectively to

LAARC2 and ELAARC2 when the uncertainty set D is replaced with the following uncertainty

set

D′2 :=D2 ∩{(D+,D−)∈RN×T ×RN×T |D+ = 0} .

Since D′2 ⊂ D2, it is clear that the optimal values of LAARC2 and ELAARC2 are respectively

at least as large as the optimal value of LAARC and ELAARC. Looking more specifically at

the LAARC2 model, given any optimal solution (I∗,Z∗,X−∗,W ∗), it is possible to reconstruct

a feasible solution for LAARC, simply considering X+∗ =X−∗, that achieves the same objective

value as the optimal value identified by LAARC2. Hence, this reconstructed solution is optimal for

LAARC. Note that in confirming feasibility of this reconstructed solution the difficulty resides in

establishing whether the robust demand constraint is satisfied. Namely, that for all j = 1,2, . . . ,N

and for all t on can confirm that

max
(D+,D−)∈D2

∑
i

((Xt+∗
ij )TDt+ + (X−∗tij )TDt−+W t∗

ij )− D̄t
j −Dt+

j +Dt−
j

= max
(D+,D−)∈D2

∑
i

((Xt−∗
ij )T (Dt+ +Dt−) +W t∗

ij )− D̄t
j −Dt+

j +Dt−
j

≤ max
(D+,D−)∈D2

∑
i

((Xt−∗
ij )T (Dt+ +Dt−) +W t∗

ij )− D̄t
j + (Dt+

j +Dt−
j )

= max
(0,D−)∈D2

∑
i

((Xt−∗
ij )TDt−+W t∗

ij )− D̄t
j +Dt−

j

= max
D−∈D3

∑
i

((Xt−∗
ij )TDt−+W t∗

ij )− D̄t
j +Dt−

j ≤ 0 ,



13

where we exploited the fact that, for all (D+,D−) ∈ D2, D+ is non-negative. Finally an exactly

similar argument can be made to confirm that the optimal solution of ELAARC2 can be used to

obtain an optimal solution to ELAARC, simply by letting X+∗ =X−∗ and S+∗ = S−∗. �

3.3. History driven affine adjustments

For completeness, we finally highlight the fact that, in a multi-period setting, one can suppose that

an even more flexible transportation strategy can be obtained by employing affine adjustments

that depend jointly on all previous realization of the demand until the implementation of the

transportation decision. Mathematically speaking, the injection of such additional flexibility leads

to the following structures. For all t and j, in the case of the direct AARC approach one gets

Y t
ij :=

∑t

t′=1(Xtt′
ij )TDt′ + W t

ij, while the history driven version of LAARC would employ Y t
ij :=∑t

t′=1(Xtt′+
ij )TDt′+ + (Xtt′−

ij )TDt′−+W t
ij. Finally, the ELAARC model could additionally employ

θtj :=
∑t

t′=1S
tt′
j D

t+
j + Stt

′
j D

t+
j . We present below the history-driven version of ELAARC in its

reduced form.

(HD-ELAARC)

maximize
I,Z,X−,W,S−

min
D−∈D3

∑
t

∑
i

∑
j

(η− dij − ci)(
t∑

t′=1

(Xtt′−
ij )TDt′−+W t

ij)− (CTZ +KT I)

−
∑
t

∑
j

Bj(
t∑

t′=1

Stt
′−

j Dt′−
j ) (13a)

subject to
∑
i

t∑
t′=1

(Xtt′−
ij )TDt′−+W t

ij ≤ D̄t
j −Dt−

j +
t∑

t′=1

Stt
′−

j Dt′−
j , ∀D− ∈D3 , ∀ j , ∀ t (13b)

∑
j

t∑
t′=1

(Xtt′−
ij )TDt′−+W t

ij ≤Zi , ∀D− ∈D3 , ∀ i , ∀ t (13c)

t∑
t′=1

(Xtt′−
ij )TDt′−+W t

ij ≥ 0 , ∀D− ∈D3 , ∀ i ,∀ j , ∀ t (13d)

t∑
t′=1

Stt
′−

j Dt′−
j ≥ 0 , ∀D− ∈D3 ,∀ j , ∀ t (13e)

Z ≤MI , I ∈ {0,1}L , (13f)

where for each i, j, t, and t′ ≤ t, we have that Xtt′−
ij ∈RN and Stt

′−
j ∈R.

While we will show in our numerical experiments that such history driven models can be used to

obtain even tighter bounds than their non-history driven version, we note two important drawbacks.

First, from a computational perspective the number of parameters that need to be optimized using

this type of adjustment scales in the order of O(LN 2T 2). Perhaps as importantly, the decision

rules that are obtained with this model will suggest strategies which structure is incoherent with

the most natural structure that would be used by optimal fully flexible strategies, namely the fact
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that the transportation policy for time t only depend on the realized demand for time t. For these

two reasons, we will later omit to present a complete numerical analysis of this model.

4. Theoretical analysis of robust approximation models

In this section, we are interested in demonstrating theoretically how solutions of better quality

can be obtained by using an approximation model that offers more flexibility for the delayed

decisions. In particular, we start by establishing what are the respective qualities of the bounds that

are obtained from each model regarding the worst-case profit of a candidate solution for facility

locations and capacities.

Proposition 2. Given some fixed values for the strategic decision vectors I ∈ {0,1}L and Z ∈
RL, let fRC(I,Z), fMRLTP(I,Z), fFVB(I,Z), fRFVB1(I,Z), fRFVB2(I,Z), fAARC(I,Z), fLAARC(I,Z),

fELAARC(I,Z) and fHD-ELAARC(I,Z) respectively be the value of the objective functions of approxima-

tion models (2), (3), (5), (6), (7), (8), (9), (11), and (13) when the rest their respective decision

variables are optimized. The following partial ordering is satisfied for any values of I and Z:

fRC(I,Z)≤ fRFVB1(I,Z)≤ fRFVB2(I,Z)≤ fLAARC(I,Z)≤ fELAARC(I,Z)≤ fMRLTP(I,Z),

fFVB(I,Z)≤ fRFVB1(I,Z)≤ fAARC(I,Z)≤ fLAARC(I,Z)

fELAARC(I,Z)≤ fHD-ELAARC(I,Z)≤ fMRLTP(I,Z), .

Proof: The function fELAARC(I,Z) provides a lower bound on true worst-case profit

fMRLTP(I,Z) since the adjustable variables that appear in problem (10) are limited to affine func-

tion of uncertain parameter. The ELAARC model reduces to the LAARC model when the value

of variables St+j and St−j are forced to take the value zero for all j and t. One can also show that

the LAARC model reduces to the AARC model when the constraint Xt+
ij =−Xt−

ij ∀ i, j, t, is added,

thus leading to a lower evaluation of the worst-case multi-period profit. The LAARC model also

reduces to the RFVB2 model when adding the constraints that each terms of Xt
ij ∈RN equals zero

except for the j-th term. A similar set of constraints make the AARC model reduce to RFVB1

model. The RFVB2 model reduces to the RFVB1 model under similar conditions than those that

make LAARC reduce to AARC. Lastly, one can show that RFVB1 upper bounds RC since the

optimization model becomes equivalent to RC when we force X = 0.

Next, assuming that W is fixed to zero, one can show that the evaluation of worst-case profit

obtained from the RFVB1 model is larger than the evaluation from the FVB model since one can

replace constraint (6c) with∑
j

Dt
jX

t
ij ≤ P t

i , ∀D ∈D , ∀ i , ∀ t & P t
i ≤Zi , ∀ i , ∀ t ,
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after letting P ∈RL×T be a set of additional decision variables of the model and since the objective

function of the RFVB1 model has the following property:

min
D∈D

∑
t

∑
i

∑
j

(η− dij − ci)Dt
jX

t
ij − (CTZ +KT I)

= min
D∈D

∑
t

∑
i

∑
j

(η− dij − ci)Dt
jX

t
ij − (CTZ +KT I) +

∑
t

cTP t− cTP t

= min
D∈D

∑
t

∑
i

∑
j

(η− dij)Dt
jX

t
ij − (CTZ +KT I) +

∑
t

∑
i

ci(P
t
i −
∑
j

Dt
jX

t
ij)− cTP t

≥ min
D∈D

∑
t

∑
i

∑
j

(η− dij)Dt
jX

t
ij − (CTZ +KT I)−

∑
t

cTP t .

In this derivation, the last inequality comes from the robust constraint
∑

jD
t
jX

t
ij ≤ P t

i ∀D ∈D for

all i and t. Since this last expression is the objective function of the FVB model, it is clear that

the optimal value of this problem will be lower than the value of the RFVB1 model. Now, given

that in fact the RFVB1 optimizes the objective function over all W instead of forcing this decision

variable to zero as assumed earlier, it necessarily will increase even further the difference between

the two bounds.

Finally, while it is clear that fELAARC(I,Z)≤ fHD-ELAARC(I,Z) since the ELAARC model is equiv-

alent to the HD-ELAARC after we introduce the constraint that Xtt′
ij = 0 for all t 6= t′, the case for

fHD-ELAARC(I,Z)≤ fMRLTP(I,Z) needs a little more explanations. To clarify this relation, one needs

to remember that for all D ∈RN×T ,∑
t

ht(I,Z,D
t) = max

{Y t,P t}Tt=1

∑
t

∑
i

∑
j

(η− dij)Y t
ij − cTP t (14a)

subject to
∑
i

Y t
ij ≤Dt

j , ∀ j , ∀ t (14b)∑
j

Y t
ij ≤ P t

i , ∀ i , ∀ t (14c)

P t ≤Z , ∀ t (14d)

Y t ≥ 0 , ∀ t , (14e)

where all temporal decision variables are optimized jointly in a way that can exploit the full infor-

mation aboutD, although it is unnecessary to do so because the problem decomposes. Yet, from this

perspective, if we replace each Yt with a history-driven affine function Y t
ij :=

∑t

t′=1(Xtt′
ij )TDt′+W t

ij,

we necessarily obtain an under evaluation of
∑

t ht(I,Z,D
t). Note that this argument further indi-

cates that the affine adjustment for each Y t does not need to be non-anticipative in order to

generate a valid lower bound on worst-case profits. �

The result presented in proposition (2) can easily be used to establish guarantees with respect

to the optimized bound on worst-case profit that are evaluated by each model.
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Corollary 1. Let f∗RC, f∗MRLTP, f
∗
FVB, f

∗
RFVB1, f

∗
RFVB1, f

∗
AARC, f

∗
LAARC, f

∗
ELAARC and f∗HD-ELAARC respec-

tively be the optimal value of (2), (3), (5), (6), (7), (8), (9), (11), and (13). The following partial

ordering is always satisfied:

f∗FVB ≤ f∗RFVB1 ≤ f∗RFVB2 ≤ f∗LAARC ≤ f∗ELAARC ≤ f∗HD-ELAARC ≤ f∗MRLTP

f∗RC ≤ f∗RFVB1 ≤ f∗AARC ≤ f∗LAARC .

Together, these results show that more sophisticated models of this list always provide better

conservative approximation of the optimal value MRLTP model (See Figure 2). In fact, anytime

one approximation model in this list returns exactly the optimal value of the MRLTP, all models

that are higher or equal to it in this ordering are guaranteed to return an exact optimal solution

and exact optimal worst-case bound.

Figure 2 Partial ordering of the quality of bounds obtained from the different approximation models. Each arrow

connects an approximation model to an approximation model that returns a tighter optimized bound

for the optimal worst-case profit of the MRLTP model.

In the following theorem, we present conditions under which some of the proposed approximation

models are exact and refer the reader to Appendix C for a detailed proof.

Theorem 1. The MRLTP model (3) is equivalent to:

• RFVB1, RFVB2, AARC, LAARC, ELAARC, and HD-ELAARC when C = 0,

• RC, RFVB1, RFVB2, AARC, LAARC, ELAARC, and HD-ELAARC when Γ =NT ,

• LAARC, ELAARC, and HD-ELAARC when Γ = 1.

Intuitively, for the cases of C = 0 and Γ =NT , the proof relies on exploiting the fact that the

optimization model used to evaluate fMRLTP(Z, I) can be shown to reduce to a problem in which

the uncertainty decomposes over a number of constraints so that an equivalence between static

and adjustable decisions identified in Ben-Tal et al. (2004) can be exploited. Otherwise, in the case

of Γ = 1, our proof follows in spirit the arguments used to support Theorem 1 of Bertsimas and

Goyal (2012) yet must address differently the fact that none of the delayed decision variables is a
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mapping of the whole multi-temporal demand vector. We believe this proof contains elements that

might pave the way to a possible extension of the result in Bertsimas and Goyal (2012).

Overall, Corollary 1 and Theorem 1 imply that LAARC, ELAARC, and HD-ELAARC not only

provide tighter bounds than all other proposed approximation models but also are optimal for

MRLTP for a number of interesting situations.

5. Improving numerical efficiency using row generation algorithm

In this section, we propose a row generation algorithm as a solution method for ELAARC2 which

we expect will be more computationally efficient than feeding the MILP reformulation of the

model directly to an off the shelf MILP solver. Therefore, we reformulated ELAARC based on the

following theorem which proof can be found in Appendix D.

Theorem 2. The reduced ELAARC model is equivalent to

maximize
I,Z,ρ

ρ− (CTZ +KT I) (15a)

subject to ρ≤ g(Z) (15b)

Z ≤MI , I ∈ {0,1}L , (15c)

where g(Z) is defined as

min
δ−,θ,λ,ψ

Θ,Λ,Ψ

−(CTZ +KT I) +
∑
t

∑
i

Ziθ
t
i +
∑
t

∑
j

λtjD̄
t
j −
∑
t

∑
j

Λt
jjD̂

t
j (16a)

subject to θti +λtj ≥ η− ci− dij , ∀ i ,∀ j ,∀ t (16b)

Θt
ik + Λt

jk ≥ (η− ci− dij)δt−k , ∀ i , ∀ j ,∀k ,∀ t (16c)∑
k

Θt
ik ≤ Γθti ,Θ

t
ik ≤ θti , ∀i,∀k,∀t (16d)∑

k

Λt
jk ≤ Γλtj,Λ

t
jk ≤ λtj, Λt

jk ≤Bjδt−j , ∀ j , ∀k , ∀ t (16e)∑
k

Θt
ik +λtjk− (η− ci− dij)δt−k ≤ Γ

(
θti +λtj −ψtij − (η− ci− dij)

)
, ∀ i ,∀ j ∀ t (16f)

Θt
ik +λtjk− (η− ci− dij)δt−k ≤ θti +λtj −ψtij − (η− ci− dij) , ∀ i , ∀ j , ∀k , ∀ t (16g)

0≤ δ− ≤ 1 ,
∑
t

∑
j

δt−j ≤ Γ (16h)

λ≥ 0 , Λ≥ 0 , θ≥ 0 , Θ≥ 0 , ψ≥ 0 , Ψ≥ 0 , (16i)

with δ− ∈ RN×T , θ ∈ RL×T , λ ∈ RN×T , ψ ∈ RL×N×T , Θ ∈ RL×N×T , Λ ∈ RN×N×T , and Ψ ∈
RL×N×N×T .

Based on Theorem 2, we propose employing a row generation algorithm to solve ELAARC2

wherein one goes through the following steps:
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Row generation algorithm

Step #1: Set UB =∞ and LB =−∞. Solve the deterministic model with D= D̄ to obtain an

initial set of facility location İ(1) and capacities Ż(1). Let κ= 1.

Step #2: Solve the following sub-problem

(SP) minimize
δ−,θ,λ,ψ,Θ,Λ,Ψ

∑
t

∑
i

Ż(κ)θti +
∑
t

∑
j

λtjD̄
t
j −
∑
t

∑
j

Λt
jjD̂

t
j

subject to (16b)− (16i).

Set θ̇(κ), λ̇(κ), Λ̇(κ), and (δ̇−)(κ) to their respective value based on optimal solution of the above

SP model. Let ρ∗ be the optimal value of the above SP model. Set LB = max(LB,ρ∗− (CT Ż(κ) +

KT İ(κ))).

Step #3: Let κ := κ+ 1 and solve the following master problem:

(MP) maximize
I,Z,ρ

ρ− (CTZ +KT I) (17a)

subject to ρ≤
∑
t

∑
i

(θ̇ti)
(l)Zi +

∑
t

∑
j

(λ̇tj)
(l)D̄jt−

∑
t

∑
j

(Λ̇t
jj)

(l)D̂jt

∀ l ∈ {1,2, . . . , κ− 1} (17b)

Z ≤MI, I ∈ {0,1}L. (17c)

Let İ(κ), Ż(κ), and ρ(κ) take on the values of any optimal solution of the master problem (MP). Let

UB = ρ(κ)− (CT Ż(κ) +KT İ(κ)).

Step #4: If UB−LB ≤ ε then terminate and return Ż(κ), İ(κ) and ρ(κ) as the optimal solution,

otherwise repeat from Step #2. (Note that the termination condition can also be verified at the

end of Step #2.)

One can actually improve the convergence speed of the algorithm by exploiting a specific type

of valid inequalities for the ELAARC problem. Consider that in order for a triplet (I,Z, ρ) to be

feasible in problem (15), for any {(D−)(l)}l∈Ω ⊂ D3, there must exist an assignment for X−, W ,

and S− such that the following constraint is satisfied:

ρ≤
∑
t

∑
i

∑
j

(η− dij − ci)
(
(Xt−

ij )T (Dt−)(l) +W t
ij

)
−
∑
t

∑
j

Bj(S
t−
j (Dt−

j )(l)) , ∀l ∈Ω∑
i

(Xt−
ij )T (Dt−)(l) +W t

ij ≤ (Dt−
j )(l) , ∀l ∈Ω , ∀ j ,∀ t∑

j

(Xt−
ij )T (Dt−)(l) +W t

ij ≤Zi , ∀l ∈Ω , ∀ i ,∀ t

(Xt−
ij )T (Dt−)(l) +W t

ij ≥ 0 , ∀l ∈Ω , ∀ i , ∀ j ,∀ t .
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This gives rise to the idea of replacing the master problem with

(MP’) maximize
I,Z,ρ,X−,W,S−

ρ− (CTZ +KT I)

subject to ρ≤
∑
t

∑
i

∑
j

(η− dij − ci)
(
(Xt−

ij )TDt−+W t
ij

)
−
∑
t

∑
j

BjS
t−
j Dt−, ∀D− ∈Dκ4∑

i

(Xt−
ij )TDt−+W t

ij ≤Dt−
j , ∀D− ∈Dκ4 , ∀ j ,∀ t∑

j

(Xt−
ij )TDt−+W t

ij ≤Zi , ∀D− ∈Dκ4 , ∀ i ,∀ t

(Xt−
ij )TDt−+W t

ij ≥ 0 , ∀D− ∈Dκ4 , ∀ i , ∀ j ,∀ t

(17b)− (17c) ,

for some well chosen finite set of feasible demand realization Dκ4 . In particular, our implementation

uses Dκ4 as the set that simply contains the most recently identified worst-case demand D−j :=

D̄j − D̂j(δ
−
j )(κ).

One can observe in Table 1, the effect of including such valid inequalities in the decomposition

scheme on a set of four problem instances of different sizes. In particular, it might come as a

surprise to realize how much the number of iterations is reduced with this simple improvement.

Remark 1. One might alternatively consider the following classical decomposition scheme for

robust optimization problem. Start by obtaining the solution of ELAARC for the nominal demand.

Then, identify the worst-case realization for the objective and each constraint. Finally, iterate until

convergence including in each new iteration the worst-case demand that was generated for each

constraint in the previous rounds. Unfortunately, this procedure is somewhat inefficient because of

the large difference between the large size of the scenario-based version of ELAARC, which also

holds binary variables, and the small size of the linear programming problems that provide the

next worst-case demand.

6. Numerical results

In this section, we evaluate the proposed approximation models on a set of randomly generated

problem instances. The questions we seek to address are:

• What are the computational requirements of each approximation models and of the proposed

row generation algorithm? (Section 6.1),

• What is the impact of varying the amount of uncertainty on the quality of the robust strategy

and of the optimized bound proposed by each approximation model? (Section 6.2),

• What is the potential of each model with respect to trading-off average performance and

robustness? (Section 6.3),
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Table 1 Impact of valid inequalities on row generation algorithm

T L N Γ%
# of iteration Time (sec)

Without VI With VI Imp. % Without VI With VI Imp. %

1 10 20

10 34 16 53 6 3 50
30 46 37 20 11 8 27
50 30 27 10 7 6 14
70 27 18 33 5 2 60
90 23 4 83 5 <1 >80
100 24 2 92 4 <1 >75
Avg. 31 17 48 6 <3.5 >42

1 20 40

10 257 163 37 88 46 48
30 193 177 8 65 52 20
50 164 135 18 70 49 30
70 141 93 34 72 57 21
90 105 20 81 60 22 63
100 95 2 98 26 <1 >96
Avg. 159 93 46 64 <37.8 >41

10 10 10

10 162 58 64 25 6 76
30 174 89 49 28 15 46
50 181 91 50 29 18 38
70 159 34 79 25 5 80
90 159 3 98 26 <1 >96
100 147 2 99 23 <1 >96
Avg. 164 46 73 26 <7.6 >71

10 15 15

100 368 63 83 534 88 84
30 392 109 72 647 143 78
50 476 121 75 707 173 76
70 521 99 81 783 134 83
90 542 15 97 800 20 98
100 514 2 100 760 2 100
Avg. 469 68 85 705 93 86

• Are there interesting insights about the structure of the robust decisions that are proposed by

each approximation model, namely in terms of number open facilities and total capacity of open

facilities, and of statistics about the amount of demand that is covered and the amount of unused

capacity under different scenarios? (Section 6.4).

Each of these experiments will employ different sets of problem instances generated randomly

according to the following procedure. We randomly generate N nodes on a unit square, representing

the demand points and choose randomly L nodes of this N nodes as candidate facility locations.

The respective unit transportation cost between a facility and a customer location, dij, is simply

considered equal to the Euclidean distance between the two. For each facility i we draw a value for

each parameters η, Ci, and Ki at random uniformly and independently from the intervals [1.5,2],

[0.5,0.1], [0,50000] respectively, while the production cost parameter is simply set as ci = 0.5. The

specific characterization of demand uncertainty is also randomly generated as follows: for each

demand location j and period of time t, the nominal demand D̄t
j is generated uniformly from the
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interval [0,20000] and the maximum demand perturbation is set to D̂t
j = εtjD̄

t
j where εtj is drawn

randomly between 0.15 and 1.

6.1. Computational Analysis

In this subsection, we compare the computational time associated to the resolution of each approx-

imation model when implemented directly using Optimization Programming Language (OPL)

within IBM ILOG CPLEX Optimization Studio 12.6.1, while for ELAARC we also evaluated the

performance of our novel row generation algorithm. We are especially interested in comparing

these computational times to the computational requirements associated with the exact column

and constraint (C&CG) algorithm3 presented in Zeng and Zhao (2013) for varying size of problem

instances and budget of uncertainty Γ.

Table 2 focuses on single-period problems and presents the computation times of three problem

instances of different size: the “small” size instance had 10 facility and 10 demand locations, the

“medium” size instance had 10 facility and 20 demand locations, and finally the large size instance

had 50 facility and 100 demand locations. For each instance, we measured the impact of varying the

budget of uncertainty among different proportions of the total number of locations. A second set

of computational experiments involved three multi-period instances of different size: the “small”

instance had 10 periods, 10 facility and 10 demand locations, while the largest instance had 20

periods, 15 facility and 30 demand locations. Again, we attempted to measure the impact of varying

the budget of uncertainty but this time among different proportions of T ×N , which is namely the

size of the uncertain vector D in each problem instance.

Our first observation is that the customer-driven models (i.e., FVB, RFVB1 and RFVB2) ben-

efit from strong computationally efficiency and can actually be solved even in the case of large

problem instances in at most a few seconds. While the market-driven models are more computa-

tionally demanding, we observe a significant reduction of computational efforts for the LAARC2

and ELAARC2 models when compared to AARC due to the use of the reduced form identified

in Proposition 1. It also appears that for medium size instances the ELAARC2 model becomes

slightly easier to solve than LAARC2 even though it involves a larger set of decision variables and

constraints. Otherwise, although these two market-driven models can be solved in less than an

hour for the medium single-period and multi-period instances, it becomes impossible to obtain a

solution during our 48 hours time frame for the largest single-period and multi-period instances.

One can obviously explain the difficulty of resolving market-driven models by the fact that the

number of degrees of freedom for the affine adjustment grow at the rate of O(LN 2T ) instead of

O(LNT ) for customer-driven models. Comparatively, we observe perhaps with surprise that the

C&CG algorithm requires much less efforts than any of these direct implementations. This seems
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to indicate that the efficiency of the decomposition scheme that is used by C&CG compensates for

the fact that C&CG requires the solution of a number of outer and inner mixed integer linear pro-

grams. This leaves us with the question of whether our conservative approximation models could

also benefit from some well-designed decomposition scheme.

Indeed, looking at the “Row gen.” column of both table, we remark that the time needed to

solve the ELAARC2 model can be significantly improved using our proposed row generation algo-

rithm. To be precise, we estimate that this algorithm is responsible for reducing the computation

requirements by a factor at least between 16 and 260 (see multi-period instance with Γ = 90%

where we have 48× 3600/663 = 260) depending on the size of Γ. Practically speaking, we see that

this algorithm allows us to identify robust approximate solutions for the largest single-period and

multi-period instances in less than three hours (with an average of less than an hour and a half).

In comparison, there is also evidence that the C&CG algorithm is unable to converge in less than

48 hours for the single-period instance when Γ equals 30% and 50% of the number of locations,

while it is unable to do so for the large multi-period instance when Γ is greater than 30% of the

total number of uncertain parameters (except for the trivial case of box uncertainty). One might

finally observe that except for AARC the computational time of all models initially increased as the

budget was increased but later decreases back to a lower delay. The reason of this trend might be

related to number of extreme points of uncertainty set D3 which is known to contain the worst-case

realizations for at least most of these models.

Regarding the resolution of HD-ELAARC, our experiments indicated that solving this model

directly with a MILP solver typically takes about 30 minutes (80× more difficult than solving

ELAARC2) for small size multi-period problem (i.e., T = 10, L = 15, and N = 15)). Because of

time limitation, we were unable to experiment with larger problem instances.

Conclusions: While both RFVB1 and RFVB2 models can be solved almost as efficiently as the

FVB model, market-driven models should only be solved using standard optimization software

when the problem instance is of medium size. For larger sized problem, the use of a row generation

algorithm is needed and highly effective for these models. This allows us to provide nearly-exact

robust solutions (as shown in the next subsection) for problems where exact solutions are unob-

tainable. It appears however that much more algorithmic efforts are needed to provide solutions

to HD-ELAARC for problems of such large size.

6.2. Optimality gap analysis

In this subsection, we attempt to compare empirically the increasing quality of the approximate

robust solutions that are obtained from the different conservative approximation models. Our hope
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Table 2 Computational time (in seconds) needed for indentifying approximate and exact robust solutions for

three single-period instances of increasing sizes and varying level of budgets (in % of total number of uncertain

parameters). The dash “-” denotes situations where the method did not converge in less than 48 hours.

L N Γ% FVB RFVB1 RFVB2 AARC LAARC2 ELAARC2 Row gen. C&CG

10 20

10 <1 <1 <1 4 3 9 3 <1
30 <1 <1 <1 2 6 10 8 1
50 <1 <1 <1 11 7 7 6 1
70 <1 <1 <1 6 13 13 2 1
90 <1 <1 <1 24 18 28 <1 <1
100 <1 <1 <1 219 2.6 9 <1 <1
Avg. <1 <1 <1 44 8 13 <3.7 <1

20 40

10 <1 <1 <1 521 415 303 46 8
30 <1 <1 <1 272 264 166 52 11
50 <1 <1 <1 283 275 191 49 50
70 <1 <1 <1 581 523 398 57 19
90 <1 <1 <1 1,747 1,308 1,287 22 3
100 <1 <1 <1 69,394 2,326 1,011 <1 <1
Avg. <1 <1 <1 12,050 852 559 <44 <15

50 100

10 <1 2 6 - - - 3,241 8,465
30 <1 4 11 - - - 4,563 -
50 <1 4 9 - - - 8,460 -
70 <1 5 4 - - - 3,781 7,682
90 <1 4 6 - - - 1,382 7
100 <1 2 2 - - - <1 2
Avg. <1 3.5 6.3 - - - <3,572 -

is to quantify, from the perspective of worst-case analysis, what is the actual value in employing a

more flexible model. The subsection’s development is threefold. We first investigate in single-period

problem instances the impact of changing the size of the potential demand perturbations ε and of

the uncertainty budget Γ on the quality of these solutions. We then perform a similar analysis for

the multi-period setting. Finally, we confirm that there exists multi-period problem instances for

which the history-driven model HD-ELAARC can indeed be used to obtain better approximate

robust solution than the non-history-driven alternatives.

It is worth clarifying that in what follows, every problem instance was generated using the

procedure presented earlier in the introduction of this section with a single exception concerning

the size of the potential demand perturbations ε which was fixed to specific values in order to

monitor the effect of this parameter. Furthermore, in discussing our finding we will refer to the

following values which are worth defining precisely.

• The “optimized worst-case bound” of a conservative approximation model refers to the best

lower bound on worst-case profit that can be achieved according to this model. Mathematically,

for some model M 6= MRLTP, this is measured using f∗M
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Table 3 Computational time (in seconds) needed for identifying approximate and exact robust solutions for

three multi-period instances of increasing sizes and varying level of budgets (in % of total number of uncertain

parameters). The dash “-” denotes situations where the method did not converge in less than 48 hours.

T L N Γ% FVB RFVB1 RFVB2 AARC LAARC2 ELAARC2 Row gen. C&CG

10 10 10

10 <1 <1 <1 25 11 10 6 3
30 <1 <1 <1 32 25 19 15 1
50 <1 <1 <1 41 38 21 18 1
70 <1 <1 <1 115 19 29 5 1
90 <1 <1 <1 103 23 31 <1 <1
100 <1 <1 <1 61 32 27 <1 <1
Avg. <1 <1 <1 63 25 23 <8.8 <1.5

10 15 15

10 <1 <1 <1 500 342 428 88 1
30 <1 <1 <1 3,497 1,813 1,916 143 12
50 <1 <1 <1 4,749 2,770 2,662 173 9
70 <1 <1 <1 4,815 3,360 3,048 134 36
90 <1 <1 <1 5,140 3,933 3,681 20 8
100 <1 <1 <1 6,316 4,431 4,120 2 2
Avg. <1 <1 <1 4,170 2,775 2,643 63 11

20 15 30

10 <1 <1 <1 - - - 3,781 184
30 <1 <1 <1 - - - 5,646 -
50 <1 <1 <1 - - - 10,567 -
70 <1 <1 <1 - - - 4,445 -
90 <1 <1 <1 - - - 663 -
100 <1 <1 <1 - - - 1 <1
Avg. <1 <1 <1 - - - 4184 -

• The “achieved worst-case profit” of a strategic decision refers to the actual worst-case profit

achieved if this strategic decision is applied. Mathematically for a strategic decision (I∗M,Z
∗
M)

obtained using model M, this is measured using fMRLTP(I∗M,Z
∗
M).

• The “optimal worst-case profit” of a problem instance refers to the best worst-case profit that

can be achieved for this instance. Mathematically, it is measured using f∗MRLTP and obtained in our

experiments by solving the C&CG algorithm (see Endnote 3).

• The “relative optimized bound gap” of a conservative approximation model refers to the

relative difference between the optimal worst-case profit for this problem instance and the optimized

worst-case bound of this model. Mathematically, for some model M 6= MRLTP, it is measured

using (f∗MRLTP− f∗M)/f∗MRLTP.

• The “relative sub-optimality” of a strategic decision refers to the relative difference between

the optimal worst-case profit for this problem instance and the achieved worst-case profit of this

decision. Mathematically, for a strategic decision (I∗M,Z
∗
M) obtained using modelM, it is measured

using (f∗MRLTP− fMRLTP(I∗M,Z
∗
M))/f∗MRLTP.

6.2.1. Impact of size of potential perturbation on optimality gap

We consider 100 randomly generated problem instances with L= 10,N = 10, and T = 1. Table 4
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presents the average (taken over the set of 100 instances) relative optimized bound gap and the

average relative sub-optimality gap for the solutions (i.e., identified strategies for I and Z) of both

customer-driven and market-driven type models under different budgets of uncertainty Γ when

the demand intervals are forced to a relatively small size, i.e., ε= 0.15. Similarly, Tables 5 and 6

present the same statistics, on the same set of instances, but with medium size ε= 0.30, and large

size ε= 0.45 demand intervals.

Regarding the quality of the optimized worst-case bound, one might first observe in these tables

that as indicated by Corollary 1, the optimized bounds always improve when one uses a more

flexible approximation model. One might further remark that the most significant improvements

appear to occur exactly when passing to models that implement the most significant changes in

terms of added flexibility and resulting computational needs, namely from the FVB model to the

RFVB1 model and later by passing to a market-driven model. When we look at the results for

the FVB model and other customer-driven models, we observe that RFVB1 and RFVB2 models

reduce by factors of 8 and 13 respectively the quality of the optimized worst-case bound offered by

the FVB model. In particular, one might notice that when ε= 0.30, the company always identifies

profitability in servicing its customers under the RFVB1 and RFVB2 models while the FVB model

suggests shutting down all facilities at Γ = 4. This is serious evidence that the FVB model is overly

conservative. Furthermore, it appears that a significant gain is achieved with the introduction of

market-driven policies such that the proposed optimized worst-case bounds are on average always

less than 0.59% from being exact. Although the added value of using the LAARC and ELAARC

models is not very pronounced (refer to underlined and bold entries respectively), the difference

becomes more remarkable as the size of demand intervals is increased. Regarding sensitivity to the

size of Γ and ε, one might notice that the quality of the optimized worst-case bounds for FVB

decreases when the budget of uncertainty increases unlike the other models. We also estimate the

quality of the other model’s optimized bound to be less affected by the growth of the size of demand

intervals.

Regarding the quality of the approximate robust solution itself, we can confirm that employing

more flexible adjustments clearly improves the chances of identifying good strategic decisions. For

instance, in Table 6 where there is large demand intervals, for Γ = 5, the FVB model always

suggests to construct no facilities foregoing all chances of making any profit (i.e., a 100% worst-case

profit loss) while ELAARC provides strategic decisions that on average achieve a worst-case profit

that is only 0.28% from being the optimal worst-case profit achievable. ELAARC also provides a

guaranteed lower bound on worst-case profits that is on average only 0.50% lower than the optimal

worst-case profit. It can also be observed that all of our proposed methods provide optimal robust
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solutions for the case with Γ =N as predicted by Theorem 1, moreover the LAARC and ELAARC

models’ solutions are also optimal when Γ = 1.

Table 7 provides additional statistics about the relative sub-optimality of the different solutions

proposed by each approximation model in the 3000 problem instances that are surveyed in Tables 4,

5, and 6. Specifically, the table indicates for a number of different percentage gaps, the proportion of

instances for which each model was able to identify an approximate robust solution which relative

sub-optimality was within that given gap. Each proportion can be interpreted as the likelihood

that the solution obtained from a model achieves a worst-case profit that is within some percentage

away from being optimal. The table also presents what was the average and maximum relative sub-

optimality gap for each model. In particular, one can observe that the flexibility of ELAARC gives

it the best chances of providing a solution that achieves a certain level of relative sub-optimality.

Yet, one can also remark that in terms of maximum relative sub-optimality gap, LAARC was able

to perform slightly better. This serves us as a reminder that optimizing a tighter lower bound on

an objective value does not guarantee that a solution of better quality will be obtained, however

in most cases one can certainly say that it serves as a great proxy. It is worth also noting that

the limited additional flexibility of RFVB1 and RFVB2, compared to FVB, has a significant pay

off in terms of relative sub-optimality. For instance, the proportion of problem instances where

a guaranteed profit is wasted decreases from 75.0% to almost 1% with the RFVB1 and RFVB2

models. Finally, LAARC and ELAARC never forego on the potential of making positive profit in

any of these instances.

6.2.2. Optimality gap analysis in multi-period problems

We consider 100 randomly generated problem instances with L= 10,N = 10, and either three or

five periods. Table 8 presents the same statistics as in Table 4 but for a set of 100 problem instances

with three periods T = 3 while the demand perturbation size is forced to ε = 0.3. Alternatively,

Table 9 presents the same statistics for T = 5. In these tables we observe a similar trend as before

except for the perhaps unexpected fact that the RFVB2 model seems to provide on average better

quality solutions and bounds than AARC. In particular, as underlined in both tables the average

relative optimized bound gap is always very close to 1 or 2% (see the underlined entries) while

this same statistic rises to values that are close to 4 or 7% with AARC. This seems to indicate

that the flexibility provided by AARC, namely adapting to market information, is less useful

than the flexibility provided by RFVB2, namely reacting differently for positive than for negative

perturbations. The same observation can be made when comparing the two models’ average relative

sub-optimality gap. One can additionally confirm that LAARC and ELAARC both provide the

best quality solutions and optimized worst-case bound. Furthermore, ELAARC is able to slightly
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Table 4 Average relative optimized bound gap (Bound gap) and average relative sub-optimality gap (Opt. gap)

for the solutions obtained from each approximation model under different values of budget when ε=0.15

Γ
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

1 31.0 11.9 11.3 4.88 5.47 2.78 0.00 0.00 0 0 0 0
2 52.7 25.5 11.4 4.3 7.32 3.49 0.04 0.03 0.02 0.01 0.02 0.01
3 66.5 36.2 8.55 4.44 7.02 2.39 0.08 0.07 0.04 0.04 0.03 0.03
4 76.4 42.7 5.84 3.38 5.61 2.48 0.11 0.09 0.05 0.04 0.04 0.04
5 83.2 47.2 3.75 2.34 3.75 2.35 0.11 0.08 0.04 0.03 0.04 0.03
6 87.5 49.9 2.15 1.49 2.15 1.49 0.08 0.06 0.01 0.01 0.01 0.01
7 90.0 54.1 1.08 0.83 1.08 0.83 0.06 0.05 0.01 0.01 0.01 0.01
8 91.2 53.9 0.41 0.35 0.41 0.35 0.03 0.03 0.01 0.01 0.01 0.01
9 91.5 55.5 0.09 0.08 0.09 0.08 0.01 0.01 0.00 0.00 0.00 0.00
10 91.5 55.2 0 0 0 0 0 0 0 0 0 0

Table 5 Average relative optimized bound gap (Bound gap) and average relative sub-optimality gap (Opt. gap)

for the solutions obtained from each approximation model under different values of budget when ε=0.30

Γ
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

1 55.0 26.2 22.6 10.2 11.3 6.02 0.00 0.00 0 0 0 0
2 82.4 47.7 24.4 10.5 15.5 7.53 0.12 0.11 0.06 0.05 0.05 0.04
3 95.4 74.5 19.2 11.7 15.7 6.14 0.36 0.25 0.12 0.09 0.08 0.08
4 99.7 95.4 13.6 8.96 13.1 6.69 0.59 0.38 0.15 0.11 0.12 0.11
5 100 100 9.07 6.45 9.07 6.45 0.79 0.46 0.15 0.1 0.13 0.09
6 100 100 5.31 4.01 5.31 4.01 0.75 0.45 0.11 0.08 0.09 0.06
7 100 100 2.68 2.14 2.68 2.14 0.50 0.33 0.05 0.05 0.05 0.05
8 100 100 1.02 0.9 1.02 0.9 0.2 0.17 0.03 0.03 0.03 0.03
9 100 100 0.22 0.22 0.22 0.22 0.04 0.04 0.00 0.00 0.00 0.00
10 100 100 0 0 0 0 0 0 0 0 0 0

Table 6 Average relative optimized bound gap (Bound gap) and average relative sub-optimality gap (Opt. gap)

for the solutions obtained from each approximation model under different values of budget when ε=0.45

Γ
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

1 70.7 34.7 34.8 16.5 17.6 9.34 0.00 0.00 0 0 0 0
2 95.5 75.0 39.7 20.4 25.5 14.3 0.20 0.14 0.20 0.14 0.11 0.09
3 100.0 98.9 32.6 22.22 26.87 10.74 1.67 0.90 0.40 0.30 0.26 0.21
4 100 100 23.9 17.6 23.2 14.0 3.08 1.54 0.57 0.41 0.44 0.37
5 100 100 16.2 12.3 16.2 12.3 3.57 1.82 0.56 0.34 0.50 0.28
6 100 100 9.67 7.65 9.67 7.65 2.89 1.61 0.46 0.25o 0.40 0.22
7 100 100 4.84 4.03 4.84 4.03 1.70 1.15 0.31 0.27 0.29 0.25
8 100 100 1.80 1.57 1.80 1.57 0.61 0.52 0.11 0.06 0.11 0.06
9 100 100 0.36 0.36 0.36 0.36 0.11 0.07 0.01 0.01 0.01 0.01
10 100 100 0 0 0 0 0 0 0 0 0 0
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Table 7 Proportion of the 3000 problem instances analysed in Tables 4, 5, and 6 where the relative

sub-optimality gap of each approximation model was within a certain range. Average gap and maximum gap are

also reported.

Gap range FVB RFVB1 RFVB2 AARC LAARC ELAARC
= 0% 0.0 32.7 32.7 68.2 83.7 85.7
≤ 0.1% 0.0 35.7 36.4 77.0 90.7 92.6
≤ 1% 1.3 47.5 50.6 92.8 98.8 99.2
≤ 10% 7.4 83.4 88.5 99.9 100.0 100.0
= 100% 75.0 1.1 1.0 0.0 0.0 0.0

Avg. gap 79.81 5.91 4.7 0.26 0.05 0.04
Max gap 100 100 100 34.67 3.32 4.82

tighten its optimized bound (as shown in bold) and obtain solutions that are slightly less sub-

optimal when Γ equals 30% of the total number of uncertain parameters. It finally appears based

on this experiment that when one uses other models than the FVB model, the quality of the

approximate robust solutions improves, for any fixed percentage of uncertainty budget, as the

number of time periods increases. This appears a little counter-intuitive yet one might conjecture

from this empirical evidence that as the horizon becomes longer, it becomes easier to hedge (or

perhaps hide from) the risks related to demand perturbation so that approximation models become

more effective at identifying good strategies.

Table 10 repeats the analysis of Table 7 in presenting further statistics regarding the relative

sub-optimality of the solutions that are obtained from the different conservative approximation

models. All statistics that are presented were assessed on the 1000 problem instances covered in

Tables 8 and 9. Again, we see significant improvement for passing from the FVB model to RFVB1

(with the maximum gap being reduced from 100% to 8.37%), and very good odds (i.e., 99.6%) of

achieving less than a 1% relative sub-optimality gap with LAARC or ELAARC. Yet, one should

realize that the odds of achieving an exact solution with both of these models reduces significantly

in this set of multi-period problem instances, namely a reduction from above 84% when T = 1 to

less than 13.2% in this set of multi-period problems.

Table 8 Average relative optimized bound gap (Bound gap) and average relative sub-optimality gap (Opt. gap)

for the solutions obtained from each approximation model under different values of budget when T = 3 and ε=0.3

T L N Γ%
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

3 10 10

0.1 51.99 6.84 7.67 3.79 0.45 0.20 4.29 1.52 0.06 0.05 0.06 0.04
0.3 86.47 23.37 9.53 2.89 1.47 0.60 7.24 2.02 0.37 0.21 0.35 0.20
0.5 85.60 23.35 6.94 1.60 2.42 0.86 4.44 1.56 0.71 0.36 0.70 0.36
0.7 84.70 23.75 3.01 1.32 2.15 0.56 1.73 0.97 0.60 0.35 0.60 0.35
0.9 84.26 24.46 0.29 0.18 0.28 0.18 0.20 0.14 0.10 0.08 0.10 0.08
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Table 9 Average relative optimized bound gap (Bound gap) and average relative sub-optimality gap (Opt. gap)

for the solutions obtained from each approximation model under different values of budget when T = 5 and ε=0.3

T L N Γ%
FVB RFVB1 RFVB2 AARC LAARC ELAARC

Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt. Bound Opt.
gap gap gap gap gap gap gap gap gap gap gap gap

5 10 10

0.1 60.43 3.76 5.30 3.00 0.26 0.10 4.22 2.18 0.03 0.02 0.03 0.02
0.3 73.11 5.11 5.51 2.82 0.68 0.32 4.65 2.12 0.17 0.10 0.16 0.10
0.5 70.42 6.43 4.56 1.65 1.09 0.55 3.33 1.03 0.31 0.15 0.30 0.14
0.7 68.49 8.25 2.61 0.60 1.19 0.50 1.53 0.52 0.33 0.16 0.33 0.16
0.9 67.50 9.59 0.36 0.15 0.31 0.11 0.18 0.09 0.06 0.04 0.06 0.04

Table 10 Proportion of the 1000 problem instances analysed in Tables 8 and 9 where the relative sub-optimality

gap of each approximation model was within a certain range. Average gap and maximum gap are also reported.

Gap range FVB RFVB1 RFVB2 AARC LAARC ELAARC
= 0% 0.0 1.1 2.7 1.0 12.6 13.2
≤ 0.1% 0.2 10.1 23.6 14.6 56.0 56.9
≤ 1% 2.0 43.8 92.2 56.2 99.6 99.6
≤ 10% 67.6 100.0 100.0 100.0 100.0 100.0
= 100% 5.7 0.0 0.0 0.0 0.0 0.0

Avg. 15.97 1.77 0.4 1.17 0.15 0.14
Max gap 100 8.37 3.54 6.18 1.07 1.05

6.2.3. Optimized bound gap reduction using HD-ELAARC

Table 11 presents the relative optimized bound gap and the relative sub-optimality gap for the

solutions of the ELAARC and HD-ELAARC models in a specific multi-period instance where

T = 3, L= 10, and N = 10 drawn according to the procedure used previously for different values

of the uncertainty budget Γ. The relative gaps that are reported confirm that HD-ELAARC has

the potential to identify a tighter optimized worst-case bound for the MRLTP problem and con-

sequently provides approximate robust solution that slightly improves the relative sub-optimality

gap. Yet, we consider this improvement to be somewhat small for passing from a model which size

grows with O(LN 2T ) to O(LN 2T 2).

Conclusions: It appears based on this analysis that RFVB2 and ELAARC2 are the two models

that have the best to offer, compared to other models in their respective class, in terms of trading-off

speed of resolution and robustness of the facility location strategy that they are able to identified.

Additionally, we observed that customer-driven based approximation models, in particular the FVB

model, are sensitive to the size of potential perturbations while the performance of market-driven

based models appear to be a little more stable. It also appears that the performance of solutions of

conservative approximation schemes somehow benefit from longer horizon problems in which there

might be more opportunities to edge or hide from the risk. On the other hand, it appears much

more difficult to close the sub-optimality gap in larger problems with the type flexibility that is
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Table 11 Relative optimized bound gap (Bound gap) and relative sub-optimality gap (Opt. gap) for the

solutions obtained from ELAARC and HD-ELAARC under different values of budget with ε= 0.3

ELAARC HD-ELAARC
Γ % Bound gap Opt. gap Bound gap Opt. gap
10 0.32 0.32 0.11 0.11
20 0.60 0.45 0.40 0.29
30 0.77 0.48 0.38 0.21
40 0.74 0.34 0.25 0.09
50 0.93 0.14 0.40 0.07
60 0.83 0.40 0.38 0.17
70 0.44 0.21 0.22 0.13
80 0.42 0.19 0.17 0.07
90 0.17 0.17 0.04 0.04
100 0.00 0.00 0.00 0.00

found in customer and market-driven adjustments. There might still be however some hope to close

this gap with a history-driven model like HD-ELAARC, yet one would be left with the challenge

of designing efficient decomposition scheme for this model.

6.3. Robustness-performance trade-off

In this subsection, we study the robustness and performance of the approximate robust solutions

obtained using our different approximation models in a pair of experiment. While the first experi-

ment involves a set of 100 medium size single-period problem instances where L= 10 and N = 20,

the second one involves a set of 100 large size single-period problem instances where L= 50 and

N = 100. Each problem instance is generated according to the procedure described in the intro-

duction of this section. Unlike what was done in the numerical studies of previous sections, we

do not wish to evaluate the worst-case performance of the solutions that are obtained but rather

estimate what type of balance these solutions can achieve in terms of compromise that needs to be

made between potential protection against risk (captured by a percentile) and potential expected

profit. In particular, for each problem instance, we evaluate the statistical performance of each

approximate robust solution on a set of 100 demand scenarios. To obtain each of these scenario,

each customer’s demand is independently generated from its respective demand interval using a

uniform distribution. In the instances of larger size, due to the duration of the resolution process,

we limit our study to the FVB, RFVB1 and RFVB2 models.

In Figure 3, we report the average expected profit and the average 10th percentile profit of each

approximation model’s solution as total budget for the uncertainty set is varied. The same results

are also presented in Figure 4 to highlight what type of compromise can be achieved by adjusting

the budget of uncertainty. Considering that a common criticism of robust optimization approaches

has been that it provides overly conservative solutions, it might come as a surprise that our results
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show that a flexible robust optimization approach with an appropriately calibrated uncertainty

set (e.g. the LAARC model with Γ = 1) will provide solutions that outperform the solutions of

the deterministic model (1), obtained by setting Γ = 0, in terms of both expected profit and risk

exposure as measured through the 10th percentile. Another interesting observation is that overly

conservative solutions might often actually be the result of not injecting enough flexibility in the

robust optimization model, as is the case for the FVB and RFVB1 models. The figures clearly

show that whether the instance is small or large, it is always worth employing the slightly more

sophisticated RFVB2 model to achieve significantly better risk and return trade-off. Figure 3(a)

also demonstrate how performance is improved by employing market-driven models.

Conclusions: Our experiments clearly show that whether the instance is small or large, it is

always worth employing the slightly more sophisticated RFVB2 model to achieve significantly

better risk and return trade-off. Figure 4 also demonstrates how performance is improved by

employing market-driven models yet this was not confirmed on large problem instances due to the

heavier computational requirements of the resolution methods for these models.

6.4. Decision structure

In this subsection, we study the strategies that are obtained from our approximation models. In

particular, we look at characteristics such as the number of facilities that are opened and the total

production capacities that is installed. To perform this analysis, we replicate the experiments that

were done in section 6.3 with L= 10 and N = 20. Statistics of these experiments are reported in

Table 12. In particular, its first set of rows indicates the proportion of problem instances where

at least one facility location was proposed for different levels of uncertainty budgets. Once again,

the over conservatism of the FVB model can be observed as the model refuses to open any facility

in 43% of instances for a relatively small value of Γ = 2. In contrast, the proportion of problem

instances where no facilities are selected is below 15% for all other approximation models. In the

other two sets of rows of Table 12, we reports the number of open facilities and total capacity of

the proposed solution averaged over the instances where at least one facility location was selected.

Regarding the strategies proposed by each models, one might notice that more flexible models

always propose opening a larger number of facilities. However, the same cannot be said of total

capacity. In particular, it appears that when Γ = 1 market-driven models are a bit more cautious

with respect to the capacity of its facilities. Increasing the amount of uncertainty has the natural

effect of encouraging a smaller number of smaller facilities. It might also be worth underlining the

fact that although the FVB model tends to propose the smallest number of facilities, it is misled

to promote much larger ones. We believe all these results reaffirm the added value that is obtained

by including more flexible policies in the robust optimization model.
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Figure 3 Average expected and 10th percentile profit achieved by the different robust methods on 100 problem

instances when adjusting the level of conservativeness Γ. Figure (a) and (c) present the average

expected and average 10th percentile profit respectively for medium sized instances with L= 10 and

N = 20 while (b) and (d) present the same statistics for for large sized instances with L = 50 and

N = 100. Note that in (a) and (b) the curves for LAARC and ELAARC were combined since the

performances where indistinguishable.

We conclude this numerical study with Table 13 which describes how much each approximation

model is able to cover the realized demand and make efficient use of its capacity as the uncer-

tainty budget Γ is increased. The first observation one can make is that the percentage of covered

demand and the percentage of unused capacity displays increased caution, i.e., a decrease of both

percentages, as the models account for increased uncertainty through Γ. We also observe that

market-driven models have less unused capacity and cover a larger percentage of demand than
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Figure 4 Average expected profit versus average 10th percentile profit achieved by the different robust methods

on 100 problem instances when adjusting the level of conservativeness Γ. Figure (a) presents the

achieved risk-return trade-off for instances of medium size while (b) presents it for instances of large

size. Note that in (a) the curves for LAARC and ELAARC were combined since the performances where

indistinguishable.

other models. Among the customer-driven model, the RFVB2 model appears to use a strategy

that resembles much more to the strategies of the market-driven models.

Conclusions: In sum, market driven model propose strategies that open more facilities of smaller

sizes. This strategy seems to allow the decision maker to have more flexibility to choose where

goods will be shipped from to meet a certain customer’s demand. Meanwhile smaller capacities

also protects the company from suffering a high rate of unsold products. We also observe that the

strategies obtained from market-driven models make better use of the available capacity and cover

a larger percentage of the demand than other models.

Table 12 Statistics describing the structure of approximate robust strategies is a set of 100 single-period

problem instances with L= 10 and N = 20

Γ FVB RFVB1 RFVB2 AARC LAARC ELAARC

# of instances
with open
facilities

1 75% 88% 93% 95% 95% 95%
2 57% 86% 90% 94% 94% 94%
5 10% 85% 85% 91% 91% 91%

Average 1 1.56 1.66 1.86 1.86 1.86 1.86
# of open 2 1.21 1.56 1.82 1.81 1.83 1.83

facility 5 1.20 1.49 1.61 1.62 1.70 1.71
Average 1 170227 167479 171089 164867 164797 164806

total 2 146404 135752 156456 153134 153582 153905
capacity 5 112252 78879 109826 119999 124363 125493
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Table 13 Proportion of demand that is covered and total capacity that is unused averaged over the 100

demand scenarios from each problem instance and over a set of 100 problem instances

Γ Title FVB RFVB1 RFVB2 AARC LAARC ELAARC

1
Unused capacity (%) 1.18 2.06 1.52 0.74 0.74 0.74
Covered demand (%) 63.11 72.46 79.25 79.05 79.02 79.03

2
Unused capacity (%) 0.17 0.79 0.74 0.20 0.21 0.22
Covered demand (%) 41.93 58.15 70.85 73.02 73.21 73.36

5
Unused capacity (%) 0.00 0.00 0.02 0.00 0.00 0.00
Covered demand (%) 5.80 34.23 47.43 55.55 57.60 58.12

7. Conclusion

In this paper, we have studied a multi-period robust location-transportation problem with demand

uncertainty which was characterized using the budgeted uncertainty set. In order to overcome

the known computational difficulty of resolution of this model, we presented six new conservative

approximation models that each implement to a different extent the flexibility in the delayed

production and transportation decisions. We believe these models, and in particular the RFVB2,

ELAARC and HD-ELAARC models, are especially relevant to the transportation literature as

the only conservative approximation model that had been presented prior to this work was the

FVB model which as Example 1 and our empirical results demonstrated is overly conservative.

While this conservativity can easily be corrected for by adding a small amount flexibility to the

delayed decisions as is done in the customer-driven RFVB2 model, the solution quality is drastically

improved using market-driven models such as the ELAARC. The quality is even further improved

using history driven models, i.e., HD-ELAARC, although the number of decision variables in this

model quickly makes it prohibitive. As portrayed by Table 14, improving solution quality comes at a

price in terms of computational requirements. Therefore, we developed a row generation algorithm

that enables us to solve market-driven based approximations for large instances.

Table 14 Summary of the trade-off between flexibility of the adjustments, complexity of the model, and quality

of the solution in a multi-period setting. Note that we lack significant evidence about the magnitude of the

improvement in quality for HD-ELAARC.

Model
Variables Total number Average

P t
i Y t

ij θtj of variables opt. gap

HD-ELAARC
∑

i
Y t
ij

∑t

t′=1

∑
k
Xtt′−
ijk Dt′−

k +W t
ij

∑t

t′=1 S
tt′−
j Dt′−

j O(LN2T 2) N/A
ELAARC2

∑
i
Y t
ij

∑
k
Xt−
ijkD

t−
k +W t

ij St−j Dt−
j O(LN2T ) ∼ 0.14%

LAARC2
∑

i
Y t
ij

∑
k
Xt−
ijkD

t−
k +W t

ij 0 O(LN2T ) ∼ 0.15%
AARC

∑
i
Y t
ij

∑
k
Xt
ijkD

t
k +W t

ij 0 O(LN2T ) ∼ 1.17%

RFVB2
∑

i
Y t
ij Xt+

ij D
t+
j +Xt−

ij D
t−
j +W t

ij 0 O(LNT ) ∼ 0.40%
RFVB1

∑
i
Y t
ij Xt

ijD
t
j +W t

ij 0 O(LNT ) ∼ 1.77%
FVB P t

i Xt
ijD

t
j 0 O(LNT ) ∼ 15.97%

A side product of our analysis is to have identified conditions under which full flexibility is not

necessary in order to obtain a solution of the best quality possible. This is summarized in Table 15.
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Table 15 Conditions for approximation models to identify optimal robust strategic decisions

Condition RC FVB RFVB1 RFVB2 AARC LAARC ELAARC HD-ELAARC
C = 0 # # ! ! ! ! ! !

Γ = 1 # # # # # ! ! !

Γ =N ! # ! ! ! ! ! !

Finally, our numerical study compares the performances of the proposed approximation models in

terms of sub-optimality of the approximate robust solution, resolution time, achievable risk-return

trade-off, and structure of optimal robust decisions.

Although our work focuses on a location-transportation problem, we expect our methods to be

applicable to many other multi-stage robust optimization problem with right-hand side uncertainty

that appear in the field of transportation, such as network transportation problem, (e.g. Atamtürk

and Zhang (2007)), supply chain network design problem, (e.g. Tsiakis et al. (2001)) and hub

location-transportation problem (e.g. Oktal and Ozger (2013)).

As a closing remark, one extension of our models that is worth mentioning arises in situations

where some facilities may be shut-down due to a disruption such as a natural disasters. While we

refer the reader to An et al. (2014) and references therein for more details on location reliability

problems, a simple approach consists of considering a set of binary parameters γtj which indicates

whether facility j is shut-down at time t. One can then replace the maximum production constraint

in problem (4) with P t
i ≤ (1−γti )Zi , ∀ i, and consider the profit for each period to be a function of I,

Z, Dt, and γt. If one assumes that the vector of disruption γ lies in a budgeted uncertainty set that

is independent from the budgeted uncertainty set used for D, then since ht(I,Z,D
t, γt) is concave

in γt for any fixed values of I, Z, and Dt, one can actually relax γ to be a vector of fractional value

without affecting the model and then employ any version of our different form of adjustments. For

instance, an AARC model would employ the transportation policy Y t
ij := (Xt

ij)
TDt+(Ot

ij)
Tγt+W t

ij.

Alternatively, an ELAARC approach might also employ affine adjustments for penalized excess

variables that are used to relax the production constraints. It remains unclear however what might

be sufficient conditions for any of these conservative approximations to return exact solutions in

this context.

Endnotes

1. While sources of uncertainty other than demand might affect the performance of facility loca-

tion decisions and it might be interesting to account for them, in this paper we focus on demand

uncertainty as we expect it to have the most impact on the quality of the decision that needs to be

made. See for instance Delage et al. (2014) where the authors argue that simply using the expected

values of parameters that appear in the objective function already generates solutions that can be

considered robust for such multi-period problems.
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2. Note that in this paper we will consider a model to be tractable if it can be reformulated as a

mixed integer linear program of finite dimension.

3. The column and constraint generation algorithm proposed in Zeng and Zhao (2013) was imple-

mented using the two-stage representation of our multi-period problem where the recourse problem

takes the form presented in (14) and exploited a reduction that relies on the one sided uncertainty

set presented in D3.
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Appendix A: Analytical solutions to RC and FVB models in Example 1

For the box uncertainty set, the RC model (2) takes the following form

maximize
I,Z,Y,P

∑
i

∑
j

(η− dij)Yij − cP − (CTZ +KT I) (19a)

subject to
∑
i

Yij ≤ D̄j − D̂j , ∀ j (19b)∑
j

Yij ≤ Pi , ∀ i (19c)

P ≤Z , Z ≤MI (19d)

Y ≥ 0 , , I ∈ {0,1}L . (19e)

In the optimal solution of RC model (19), the value of Yij is equal to zero, since η− ci−Ci−dij < 0, for all

i and j where i 6= j and is equal to D̄j − D̂j = 10000− 5000 = 5000 for all i and j when i= j. In sequence,

the optimal value of variables Pi, Zi and Ii are equal to 5000, 5000 and 1 for all i respectively. Therefore the

optimal value of problem (19) is equal to 1000. On the other hand, the FVB model (5) with box uncertainty

set takes the form as

maximize
I,Z,X,P

∑
i

∑
j

(η− dij)(D̄j − D̂j)Xij −
∑
i

ciPi− (CTZ +KT I) (20a)

subject to
∑
i

Xij ≤ 1 , ∀ j (20b)∑
j

(D̄j + D̂j)Xij ≤ Pi , ∀ i (20c)

Pi ≤Zi , ∀ i (20d)

Xij ≥ 0 , ∀ i,∀ j (20e)

Zi ≤MIi, I ∈ {0,1} , ∀ i . (20f)
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Similar to what we conclude above, the optimal solution has Xij = 0 for all i and j when i 6= j. The optimal

value of variable Pi is equal to (D̄i + D̂i)Xii for all i and the optimal value of variable Zi is equal to that of

variable Pi for all i. Therefore, the objective function (20a) can be reformulated as∑
i

η(D̄i− D̂i)Xii−
∑
i

(ci +Ci)(D̄i + D̂i)Xii−
∑
i

Ki1{Xii>0} =
∑
i

(2000Xii− 3000× 1{Xii>0})≤ 0 ,

where the last inequality comes from
∑

i
Xij ≤ 1. Therefore the optimal value of problem (20) is equal to

zero in this example.

Appendix B: Selecting large enough B for problem (10)

Lemma 1. For any I, Z ≥ 0, Dt ≥ 0, the optimal value of problem (10) is equal to the optimal value of

problem (4) when Bj = maxi(η− ci− dij) , ∀ j.

Proof: First, as was argued earlier, in problem (4) there is always an optimal solution for which constraint

(4c) is tight. This implies that the optimal value of problem (4) is the same as in

ht(I,Z,D
t) = max

Y t

∑
i

∑
j

(η− dij − ci)Y t
ij (21a)

subject to
∑
i

Y t
ij ≤Dt

j , ∀ j (21b)∑
j

Y t
ij ≤Z , ∀ i (21c)

Y t ≥ 0 . (21d)

Now, given that this problem is feasible, strict duality applies so that its optimal value is equal to the optimal

value of the following problem:

ht(I,Z,D
t) = min

λt,θt

∑
i

Ziθ
t
i +
∑
j

Dt
jλ
t
j (22a)

subject to θti +λtj ≥ η− dij − ci , ∀ i , ∀ j (22b)

λt ≥ 0, θt ≥ 0. (22c)

where λt ∈ RN and θt ∈ RL are dual variables for (21b) and (21c) respectively. It is implied from problem

(22) that there is an optimal solution for which λtj is smaller or equal to maxi(η − ci − dij) for all j and

t, therefore one can add to problem (22) the constraint that λtj ≤maxi(η − ci − dij) without affecting its

optimal value. By applying duality theory a second time, one can easily confirm that he obtains exactly

problem (10) with maxi(η− ci− dij) in place of every Bj . Hence, this completes the proof. �

Appendix C: Proof of Theorem 1

C.1. Proof of case C = 0

First, if all Ci = 0, then it is necessarily the case that all Zi’s can be as large as MIi. Next, we replace

variables Y t
ij with Xt

ijD
t
j and P t

i with
∑

jD
t
jX

t
ij in the recourse problem (4) which makes the recourse

problem equivalent to

ht(I,MI,Dt) := max
Xt

∑
i

∑
j

(η− dij − ci)Xt
ijD

t
j (23a)
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subject to
∑
i

Xt
ij ≤ 1 , ∀ j (23b)∑

j

Xt
ijD

t
j ≤MIi , ∀ i (23c)

Xt
ij ≥ 0 , (23d)

where Xt ∈RL×N are the new decision variables for the t-th period. Constraint (23c) can be replaced by

Xt
ij ≤ Ii , ∀ i , ∀j , (24)

since (23c) implies that there can be no shipment when binary variable Ii is equal to 0 and otherwise the

shipment can be as large as M . Therefore, the objective function of the MRLTP can be reformulated as

min
D∈D

max
X

∑
t

∑
i

∑
j

(η− dij − ci)Xt
ijD

t
j (25a)

subject to
∑
i

Xt
ij ≤ 1 , ∀ j , ∀ t (25b)

Xt ≤ Ii , ∀ i , ∀j, ∀ t (25c)

Xt ≥ 0 , ∀ t . (25d)

Since both feasible sets for D and X are compact, based on Sion’s minimax theorem, we can reverse the

order of minimization over D and maximization over X, therefore problem (3) with C = 0 can be reduced

to

maximize
I,X

−KI + min
D∈D

∑
t

∑
i

∑
j

(η− dij − ci)Xt
ijD

t
j (26a)

subject to
∑
i

Xt
ij ≤ 1 , ∀ j , ∀ t (26b)

Xt
ij ≤ Ii , ∀ i , ∀ j , ∀ t (26c)

Xt ≥ 0 , ∀ t (26d)

I ∈ {0,1}L . (26e)

where Xt ∈ RL×N . Note that problem (26) is equivalent to the RFVB1 model when W is fixed to zero in

the later one, hence RFVB1 necessarily achieves an optimal value that is larger since it optimizes over W .

Given that Proposition 2 states that RFVB1 optimizes a lower bound on worst-case profit, it is clear that

the two models are therefore equivalent. Finally, following Corollary 1, all tighter approximation models are

also equivalent to MRLTP. �

C.2. Proof of case Γ =NT

We recall the following theorem from (Ben-Tal et al. 2004).

Theorem 3. (Ben-Tal et al. 2004) The adjustable robust counterpart of two-stage robust optimization

problem is equivalent to its RC approximation when the uncertainty affecting every one of the constraints is

independent of the uncertainty affecting all other constraints (constraint-wise uncertainty).
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For any fixed I and Z the optimal value of the RC model (2) can be obtained by solving the following

problem:

fRC(I,Z) := max
Y,P

∑
t

∑
i

∑
j

(η− dij)Y t
ij − cTPt− (CTZ +KT I)

subject to
∑
i

Y t
ij ≤Dt

j , ∀D ∈D, ∀ j , ∀ t∑
j

Y t
ij ≤ P t

i , ∀ i , ∀ t

P t ≤Z , ∀ t

Y t ≥ 0 , ∀ t .

Noting that in this problem, when D is a box uncertainty set, the uncertainty does decompose constraint-

wise. Hence, according to Theorem 3, the optimal value of this problem is equal to the optimal value of the

following “wait-and-see” problem:

max
D∈D

g(I,Z,D)

where

g(I,Z,D) := max
Y,P

∑
t

∑
i

∑
j

(η− dij)Y t
ij − cTP t− (CTZ +KT I)

subject to
∑
i

Y t
ij ≤Dt

j , ∀ j , ∀ t∑
j

Y t
ij ≤ P t

i , ∀ i , ∀ t

P t ≤Z , ∀ t

Y t ≥ 0 , ∀ t .

In this problem, all decisions are made once all the information about D is obtained. This necessarily leads

to an optimal value that is larger than if each (Y t, P t) was adjusted only based on the realized Dt. We thus

conclude that

fRC(I,Z)≤ fMRLTP(I,Z)≤max
D∈D

g(I,Z,D) = fRC(I,Z) .

Furthermore, based on Corollary 1, RFVB1, RFVB2, AARC, LAARC, ELAARC are optimal in this case

and equivalent to the following formulation:

maximize
I,Z,Y,P

∑
t

∑
i

∑
j

(η− dij − ci)Y t
ij − (CTZ +KT I)

subject to
∑
i

Y t
ij ≤ D̄t

j − D̂t
j , ∀ j, ∀ t∑

j

Y t
ij ≤Zi , ∀ i, ∀t

Y ≥ 0 , I ∈ {0,1}L . �
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C.3. Proof of case Γ = 1

We start by demonstrating that each ht(I,Z,D
t) is a concave function of Dt.

Lemma 2. Let g :Rm→R be a function defined as

g(x) := max
y∈Rn

cT y

subject to Ay≤ x

y ∈Y ,

where y ∈Rn, for some c∈Rn, some A∈Rm×n, and some compact convex set Y ⊂Rn, and where infeasibility

of the optimization problem is interpreted as returning the value −∞. Then, g(·) is a concave function.

Proof: Consider two assignments x1 and x2 for which g(x1) and g(x2) are finite valued, we should show

that g(θx1 + (1− θ)x2)≥ θg(x1) + (1− θ)g(x2). To do so, first consider that since g(·) is finite valued at x1

and x2 and since Y is compact, there must exist some assignments y1 and y2 that respectively achieve the

optimum of the optimization problems associated to g(x1) and g(x2). Now consider the following:

g(θx1 + (1− θ)x2) = sup{cT y : y ∈Y, Ay≤ θx1 + (1− θ)x2}

≥ cT (θy1 + (1− θ)y2) = θcT y1 + (1− θ)cT y2

= θ sup{cT y : y ∈Y, Ay≤ x1}+ (1− θ) sup{cT y : y ∈Y, Ay≤ x2}

= θg(x1) + (1− θ)g(x2) ,

where we used the fact that y := θy1 + (1− θ)y2 is a valid assignment in the first supremum operation since

Y is convex and A(θy1 + (1− θ)y2) = θ(Ay1) + (1− θ)Ay2 ≤ θx1 + (1− θ)x2. �

Since the function
∑

t
ht(I,Z,D

t) is jointly concave in D and the budgeted uncertainty set is polyhedral,

a worst-case demand necessarily occurs at one of the extreme points of D. There are 2NT +1 extreme points

in D when Γ = 1: i.e., the nominal demand as the first extreme point, in other extreme points all customers

demand get their nominal value for all periods except a single customer location at a single time period

where the demand can be either equal to its largest amount or lowest amount. Let us identify each of these

extreme point as {(Dt)(l,τ)}(l,τ)∈Ω with Ω := {0,1, . . . ,2N}×{1, . . . , T} and where:

(Dt)(l,τ) :=


D̄t l= 0 or τ 6= t

D̄t + elD̂l l= 1, . . . ,N

D̄t− el−ND̂l−N l=N + 1, . . . ,2N

,

with el as the vector of size N with all elements equal to 0 except for the l-th element which is equal to 1.

Therefore, for some fixed I and Z and when the budget is equal to one, the optimal value of the MRLTP

model is equivalent to

fMRLTP(I,Z) = max
D∈{D(l,τ)}(l,τ)∈Ω

∑
t

ht(I,Z,D
t) .
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Following this argument we have that

fMRLTP(I,Z) = max
Y,ρ

ρ−
∑
i

(CiZi +KiIi) (27a)

subject to ρ≤
∑
t

∑
i

∑
j

(η− dij − ci)(Y t
ij)

(l,τ) ∀ (l, τ)∈Ω (27b)∑
j

(Y t
ij)

(l,τ) ≤Zi , ∀ i, ∀ (l, τ)∈Ω (27c)∑
i

(Y t
ij)

(l,τ) ≤ (Dt
j)

(l,τ) , ∀ j, ∀ (l, τ)∈Ω (27d)

(Y t
ij)

(l,τ) ≥ 0 , ∀ i,∀ j, ∀ (l, τ)∈Ω (27e)

(Y t
ij)

(l,τ) = (Y t
ij)

(0,t) , ∀ i, ∀ j, ∀ (l, τ)∈Ω , ∀ t 6= τ , (27f)

where (Y t
ij)

(l,τ) ∈R is the recourse decision when scenario (l, τ) occurs, and where the last constraint captures

the fact that in the MRLTP model, the decisions for each Y t only depend on Dt so that the transportation

decision should be the same for all vertices where Dt = 0. After replacing the variables (Y t
ij)

(l) := (Y t
ij)

(l,τ) =

(Y t
ij)

(0,t) , ∀ t 6= τ , we alternatively obtain:

fMRLTP(I,Z) = max
Y,ρ

ρ−
∑
i

(CiZi +KiIi) (28a)

subject to

ρ≤
∑
t6=τ

∑
i

∑
j

(η− dij − ci)(Y t
ij)

(0) +
∑
i

∑
j

(η− dij − ci)(Y τ
ij)

(l) , ∀ (l, τ)∈Ω (28b)∑
j

(Y t
ij)

(l) ≤Zi , ∀ i, ∀ t, ∀ l= 0, . . . ,2N (28c)∑
i

(Y t
ij)

(l) ≤ (Dt
j)

(l,t) , ∀ j, ∀ t, ∀ l= 0, . . . ,2N (28d)

(Y t
ij)

(l) ≥ 0 , ∀ i,∀ j, ∀ t, ∀ l= 0, . . . ,2N . (28e)

Given that in the LAARC model the objective function and each robust constraint involves expressions

that are linear in D, a similar argument as above can be used to also reformulate this model in terms of

vertices of the budgeted uncertainty set. This leads to the following problem

fLAARC(I,Z) = max
X+,X−,W,ρ

ρ−
∑
i

(CiZi +KiIi)

subject to

ρ≤
∑
t

∑
i

∑
j

(η− dij − ci)((Xt+
ij )T (Dt+)(l,τ) + (Xt−

ij )T (Dt−)(l,τ) +W t
ij) , ∀ (l, τ)∈Ω∑

j

((Xt+
ij )T (Dt+)(l,τ) + (Xt−

ij )T (Dt−)(l,τ) +W t
ij)≤Zi , ∀ i , ∀ t, ∀ (l, τ)∈Ω∑

i

((Xt+
ij )T (Dt+)(l,τ) + (Xt−

ij )T (Dt−)(l,τ) +W t
ij)≤ (Dt

j)
(l,τ) , ∀ j , ∀ t, ∀ (l, τ)∈Ω

(Xt+
ij )T (Dt+)(l,τ) + (Xt−

ij )T (Dt−)(l,τ) +W t
ij ≥ 0 , ∀ i,∀ j, ∀ (l, τ)∈Ω ,

where we characterized the extreme points of D2 as

((Dt+)(l,τ), (Dt−)(l,τ)) =


(0,0) if t 6= τ or l= 0

(elD̂l,0) if t= τ and l= 1, . . . ,N

(0, el−ND̂l) if t= τ and l=N + 1, . . . ,2N

,
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and with (Dt
j)

(l,τ) := D̄j + (Dt+
j )(l,τ)− (Dt−

j )(l,τ).

By exploiting the definition of each (Dt)(l,τ), one can show that the equation above reduces to

fLAARC(I,Z) = max
X+,X−,W,ρ

ρ−
∑
i

(CiZi +KiIi)

subject to

ρ≤
∑
t

∑
i

∑
j

(η− dij − ci)((Xτ+
ij )T (Dτ+)(l,τ) + (Xt−

ij )T (Dτ−)(l,τ))

+(η− dij − ci)W t
ij , ∀ (l, τ)∈Ω∑

j

(Xt+
ij )T (Dt+)(l,t) + (Xt−

ij )T (Dt−)(l,t) +W t
ij ≤Zi , ∀ i , ∀ t , ∀ l= 0, . . . ,2N∑

i

(Xt+
ij )T (Dt+)(l,t) + (Xt−

ij )T (Dt−)(l,t) +W t
ij ≤ (Dt

j)
(l,t) , ∀ j , ∀ t , ∀ l= 0, . . . ,2N

(Xt+
ij )T (Dt+)(l,t) + (Xt−

ij )T (Dt−)(l,t) +W t
ij ≥ 0 , ∀ i,∀ j, ∀ l= 0, . . . ,2N .

and further manipulations leads to

fLAARC(I,Z) = max
X+,X−,W,ρ

ρ−
∑
i

(CiZi +KiIi) (30a)

subject to ρ≤
∑
t

∑
i

∑
j

(η− dij − ci)W t
ij (30b)

ρ≤
∑
t

∑
i

∑
j

(η− dij − ci)W t
ij + (η− dij − ci)Xτ+

ijk D̂
τ
k ,

{
∀k= 1, . . . ,N
∀ τ = 1, . . . , T

(30c)

ρ≤
∑
t

∑
i

∑
j

(η− dij − ci)W t
ij + (η− dij − ci)Xτ−

ijkD̂
τ
k ,

{
∀k= 1, . . . ,N
∀ τ = 1, . . . , T

(30d)∑
j

W t
ij ≤Zi , ∀ i , ∀ t (30e)∑

j

Xt+
ijkD̂k +W t

ij ≤Zi , ∀ i , ∀ t, ∀k= 1, . . . ,N (30f)∑
j

Xt−
ijkD̂k +W t

ij ≤Zi , ∀ i , ∀ t, ∀k= 1, . . . ,N (30g)∑
i

W t
ij ≤ D̄j , ∀ j , ∀ t (30h)∑

i

Xt+
ijkD̂k +W t

ij ≤ D̄j + D̂k1{j=k} , ∀ j , ∀ t, ∀k= 1, . . . ,N (30i)∑
i

Xt−
ijkD̂k +W t

ij ≤ D̄j − D̂k1{j=k} , ∀ j , ∀ t, ∀k= 1, . . . ,N (30j)

W t
ij ≥ 0 , ∀ i , ∀ j , ∀ t (30k)

Xt+
ijkD̂k +W t

ij ≥ 0 , ∀ i , ∀ j , ∀ t, ∀k= 1, . . . ,N (30l)

Xt−
ijkD̂k +W t

ij ≥ 0 , ∀ i , ∀ j , ∀ t, ∀k= 1, . . . ,N , (30m)

where we made use of the fact that

(Xt+
ij )T (D+)(l,τ) + (Xt−

ij )T (D−)(l,τ) +W t
ij =


Wij if t 6= τ or l= 0

Xt+
ijl D̂l +Wij if t= τ and l= 1, . . . ,N

Xt−
ij(l−N)D̂l−N +Wij if t= τ and l=N + 1, . . . ,2N

.
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In problem (30), we next reformulate the decision variables Wij , X
+
ijl and X−i,j,l−N as follows

W t
ij→ Ẏ t

ij0, ∀i, ∀j, ∀t ,

Xt+
ijk→

Ẏ t
ijk− Ẏ t

ij0

D̂k

, ∀i, ∀j, ∀t, ∀k= 1, . . . ,N ,

Xt−
ijk→

Ẏ t
ij(N+k)− Ẏ t

ij0

D̂k

, ∀i, ∀j, ∀k= 1, . . . ,N .

Therefore, problem (30) can be reformulated as

fLAARC(I,Z) = max
Ẏ ,ρ

ρ−
∑
i

(CiZi +KiIi) (31a)

subject to ρ≤
∑
t6=τ

∑
i

∑
j

(η− dij − ci)Ẏ t
ij0 +

∑
i

∑
j

(η− dij − ci)Ẏ τ
ijl , ∀ (l, τ)∈Ω (31b)∑

j

Ẏ t
ijl ≤Zi , ∀ i , ∀ t , ∀ l= 0, . . . ,2N (31c)∑

i

Ẏ t
ijl ≤ D̄j , ∀ j , ∀ t (31d)∑

i

Ẏ t
ijl ≤ D̄j + D̂j1{j=l} , ∀ j , ∀ t , ∀ l= 1, . . . ,2N (31e)∑

i

Ẏ t
ijl ≤ D̄j − D̂j1{j=l−N} , ∀ j , ∀ t , ∀ l=N + 1, . . . ,2N (31f)

Ẏ t
ijl ≥ 0 , ∀ i , ∀ j , ∀ t , ∀ l= 0, . . . ,2N . (31g)

A careful comparison of problems (28) and (31) can confirm that these are the same so that they will return

the same optimal value and identify the same set of optimal solutions for Z and I.

Appendix D: Proof of Theorem 2

We first derive the robust-counterpart of constraint (12b) as

∃s∈RN×T ,m∈RN×N×T , ∑
i

W t
ij + Γstj +

∑
k

mt
jk ≤ D̄jt , ∀j , ∀ t (32a)

stj +mt
jj ≥ D̂jt(1−St−j +

∑
i

Xt
ijj) , ∀ j , ∀ t (32b)

stj +mt
jk ≥ D̂kt

∑
i

Xt
ijk, ∀j,∀k 6= j , ∀ t (32c)

s≥ 0 , m≥ 0 , (32d)

where ∀k refers to ∀k= 1, . . . ,N as will continue to be the case below. The condition described in (32a)-(32d)

can be considered equivalent to the original constraint given that strict duality applies since D3 is non-empty

when Γ≥ 0.

Similarly, we can derive the robust-counterpart of constraint (12c) as

∃u∈RL×T , v ∈RL×N×T , ∑
j

W t
ij + Γuti +

∑
k

vtik ≤Zi , ∀ i ,∀ t (33a)

uti + vtik ≥ D̂t
k

∑
j

Xt−
ijk , ∀ i , ∀k , ∀t (33b)

u≥ 0 , v≥ 0 , (33c)



45

and the robust-counterpart of constraint (12d) as

∃x∈RL×N×T , y ∈RL×N×N×T ,

−W t
ij + Γxtij +

∑
k

ytijk ≤ 0 , ∀ i , ∀ j ,∀ t (34a)

xtij + ytijk ≥−D̂t
kX

t−
ijk , ∀ i , ∀ j , ∀k,∀t (34b)

x≥ 0 , y≥ 0 , (34c)

and finally, the robust-counterpart of constraint (12e) as

S−tj ≥ 0,∀j , ∀ t . (35a)

Therefore the reduced ELAARC can be reformulated as

maximize
I,Z,X−,W,S−
s,m,u,v,x,y

min
D−∈D3

∑
t

∑
i

∑
j

(η− dij − ci)(
∑
k

Xt−
ijkD

t−
k +W t

ij)

−(CTZ +KT I)−
∑
t

∑
j

BjS
t−
j Dt−

j (36a)

(32a)− (32d) , (33a)− (33c) , (34a)− (34c) , (35a) (36b)

Z ≤MI, I ∈ {0,1}L. (36c)

Since D3 is compact and convex, one can apply Sion’s minimax theorem to reverse the order of maximization

over {X−,W,S−, s,m,u, v,x, y} with the minimization over D− and then replace the inner maximization by

its dual minimization problem. The dual minimization problem joined with the minimization with respect

to D− leads to the following optimization model

min
δ−,θ,λ,ψ
Θ,Λ,Ψ

−(CTZ +KT I) +
∑
t

∑
i

Ziθit +
∑
t

∑
j

λjtD̄jt−
∑
t

∑
j

ΛjjtD̂jt

subject to θti +λtj −ψtij = η− ci− dij , ∀ i , ∀ j , ∀ t

Θt
ik + Λt

jk−Ψt
ijk = (η− ci− dij)δt−k , ∀ i , ∀ j , ∀k , ∀ t∑

k

Θt
ik ≤ Γθti ,Θ

t
ik ≤ θti , ∀ i , ∀k , ∀ t∑

k

Λt
jk ≤ Γλtj ,Λ

t
jk ≤ λtj , Λt

jk ≤Bjδt−j , ∀ j , ∀k , ∀ t∑
k

Ψt
ijk ≤ Γψtij ,Ψ

t
ijk ≤ψtij , ∀ i , ∀ j , ∀k , ∀ t

0≤ δ− ≤ 1 ,
∑
t

∑
j

δt−j = Γ

λ≥ 0 , Λ≥ 0 , θ≥ 0 , Θ≥ 0 , ψ≥ 0 , Ψ≥ 0 ,

where λ ∈ RN×T , Λ ∈ RN×N×T , θ ∈ RL×T , Θ ∈ RL×N×T , ψ ∈ RL×N×T , and Ψ ∈ RL×N×N×T are the dual

variables associated with constraints (32a), (32c)-(32d), (33a), (33b), (34a), and (34b) respectively.

Next, one can further reduce this optimization problem by replacing ψtij = θti + λtj − (η − ci − dij) and

Ψt
ijk = Θt

ik + λtjk − (η− ci − dij)δt−k everywhere and obtain the model presented in the theorem. It is worth

emphasizing that this replacement of variables reduces the rate of growth of the total number of decision

variables of the model to O(LNT ) instead of O(LN2T ). �


