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A B S T R A C T

The expansion of the share of renewable energy in the portfolio mix of the electricity generation sector has
accelerated the development and integration of large-scale battery storage facilities. We document charging
and discharging patterns in the California market and show how the utility-scale batteries’ activity correlates
with load and real-time prices during 2018 and 2019. The empirical findings are partially consistent with
the optimal solution of an arbitrage maximizer, indicating that battery owners respond to price incentives
only at certain hours of the day. In addition, we provide evidence that battery deployment in the years 2013
through 2017 lowered average intra-day wholesale price spreads and that current market conditions limit the
profitability of batteries in this market.
1. Introduction

The share of variable renewable electricity (VRE) in the portfolio
mix of generation has more than doubled from 2012 to 2018 in the US.1
This rapid increase of the VRE share has caused dramatic changes in the
electricity market. Several implications have been discussed in the liter-
ature, for example, impacts on emissions (Cullen, 2013; Callaway et al.,
2018; Novan, 2015), impacts on wholesale prices (Bushnell and Novan,
2021), and on the long-term costs due to the volatility of the electricity
supply (Lamont, 2008; Gowrisankaran et al., 2016), just to name a
few. Since VRE is not perfectly forecastable and non-dispatchable, one
consequence of those changes has been the acceleration of the introduc-
tion of large-scale, non-hydro, storage technologies such as lithium-ion
batteries. According to the EIA, there were 1,236 megawatt-hours
(MWh) of energy capacity installed of this type of facilities across the
US at the end of 2018, with altogether a power (the maximum amount
electricity that can be discharged in any instant) of 869 megawatt
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1 Sun et al. (2018).
2 This is comparable to about half of the production capacity of the San Onofre Nuclear Generating Station (SONGS), which provided about 8% of the electricity

generated in California in 2012 and that was shut down the same year (Davis and Hausman, 2016).

(MW). This represents an increase of nearly 15 times in power capacity
relative to 2010 (EIA, 2020).2

A natural question is to characterize the discharging and charging
behavior of these large-scale battery storage facilities, particularly rel-
ative to the well documented load and wholesale price patterns. In this
paper, we focus on the following three questions, (i) do storage facilities
discharge more or less when load is high?, (ii) do storage facilities
charge more when wholesale prices are low and sell when they are high
in line with a model of optimal arbitrage?, and (iii) does the entry of
new storage capacity affect wholesale electricity prices?

Some of those questions have been assessed through models that
extrapolate the optimal responses of a storage facility to the entire
market (Diaf et al., 2008; Giulietti et al., 2018; Sioshansi et al.,
2009), models that study the interaction of storage and nodal pric-
ing (Antweiler, 2021; Kirkpatrick, 2018; Leslie et al., 2021), and more
recently by using dynamic models to assess the equilibrium effects of
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technology adoption (Dorsey et al., 2021; Karaduman, 2020).3

We take a different approach and use the most recent data on charg-
ing and discharging output of large-scale batteries in California pub-
lished by the California Independent System Operator (CAISO).4 We do
not assume that batteries are necessarily optimizing a known objective
function, but rather, we describe the aggregate patterns and document
whether they correlate to key market outcomes: load and wholesale
electricity prices. Furthermore, we provide evidence on whether these
facilities’ actions are consistent with the behavior of an arbitrageur,
which is the typical behavior that is assumed in most models of large-
scale batteries (see for instance Sioshansi et al. (2009)). Finally, while
individual batteries are price-takers, we provide evidence on the impact
of aggregate large-scale battery capacity on daily price spreads under
the assumption that the exact time of entry is exogenous. To the best
of our knowledge, this is the first paper to use actual data from battery
output to study the behavior of battery facilities.

Our results show that battery discharging is associated with high
levels of load and prices, indicating that large-scale batteries are mostly
employed during peak load and that they may be engaging in arbi-
traging behavior. Charging and discharging patterns during the day
follow the wholesale electricity price movements, mainly during the
morning hours and during peak load in the evening. To compare these
patterns to the optimal responses of a profit-maximizing battery owner,
we solve for the optimal solution of a battery with energy and power
capacity comparable to the median battery operating in California
as of 2019 that takes for input the time series of wholesale prices
in the CAISO. Qualitatively, we find a similar response to prices in
both the optimal model dispatch and the empirical data, indicating
that battery owners take advantage of some arbitrage opportunities
in this market. Yet, the quantitative response in the empirical data is
significantly smaller, especially during evening peak hours. We also
estimate the marginal impact of wholesale prices on battery charging
and discharging across the different hours of the day both for the output
obtained from the optimization model and for the observed data after
applying a normalization that allows us to compare those two types
of data. We find that in the observed data there is much less respon-
siveness to prices compared to the output from the optimal model.
We discuss the differences between the optimal model solution and
our empirical findings in light of the assumptions made in the optimal
dispatch model. In addition, using a simple difference framework, we
show that addition of battery capacity over the years 2013 to 2017
has led to significant decreases in the maximum daily price spread
in the real-time market. This finding indicates that in the aggregate,
batteries can reduce peak prices, affecting market outcomes and future
profitability of battery investment. Finally, we calculate the average
yearly revenue per megawatt-hour (MWh) of current storage capacity
and find evidence against profitability in the data.

The rest of the paper is structured as follows. Section 2 intro-
duces the data and describes the current storage facilities in California.
Section 3 presents patterns between batteries output and short-term
market outcomes. Section 4 provides a simple model of optimal storage
management, which we solve with data from the CAISO and present the
comparison against the observed data. Finally, Section 5 estimates the

3 In addition, other studies have concentrated on the development of
atents related to electricity storage that promote innovation in both renew-
ble and conventional energy technologies (Lazkano et al., 2017), on the
heoretical implications that the market structure has on the equilibrium out-
omes when there is storage in the system (Andrés-Cerezo and Fabra, 2020),
n the interactions of support policies for renewables and storage (Abrell et al.,
019; Tabari and Shaffer, 2020), as well as on alternative storage technologies,
uch as liquid air (Lin et al., 2019).

4 The share of VRE is approximately 23% of total generation in this market
2

Sun et al., 2018). o
effect of entry on price spreads and a back-of-the-envelope analysis of
profitability. Section 6 concludes.

2. Data

2.1. Batteries output, load, and wholesale prices

We use publicly available data obtained from the CAISO and OASIS
on aggregate battery output (net charge or net discharge), total load,
load forecasts, output of renewables (including large hydroelectric
plants), and prices.5 While data on load, batteries, and renewable
output are available at 5-minute intervals, we retrieve hourly real-
time market (RTM) and day-ahead market (DAM) price data.6 Since the
largest share of energy (about 90 to 95%) is traded in the DAM (Bush-
nell and Novan, 2021), we focus primarily on DAM prices for our
main results. The DAM might allow battery owners to lock in pro-
duction decisions with certainty. On the other hand, as batteries can
be employed to respond to short-term imbalances in load as well as
price fluctuations, we will also report our main results employing RTM
prices.

We combine these data with information on installed storage ca-
pacity in the CAISO from the Energy Information Administration (EIA,
2021), as well as from the Department of Energy (DOE, 2020).7 Ap-
pendix Fig. A.1 shows the location of the main storage facilities in
California in 2018.

The CAISO started reporting data on battery output in mid-April
2018 and we have access to DAM prices starting in June of the same
year. Therefore, we limit our main sample to the period 6 June 2018
to 1 March 2020 to ensure consistent data reporting and to avoid
potential confounding effects resulting from the COVID-19 pandemic
and the mandatory stay-at-home orders implemented in March 2020.8
In addition, to study equilibrium impacts of new battery capacity
investment in Section 5, we use hourly data from the CAISO on DAM
and RTM wholesale market prices from Bushnell and Novan (2020)
over the period 1 January 2013 to 31 May 2017.

We start our analysis by plotting in Fig. 1 the average battery charg-
ing profile, load profile, and DAM prices together with one-standard
deviation bands to highlight the uncertainty of these variables. There
are several things worth noting. First, battery activity, displayed as
battery discharge in MWh in Panel (a), illustrates the losses due to the
current battery technology. When we divide the sum of the discharge
amounts of the batteries by the absolute value of the charge amount
of the batteries we obtain a ratio of 0.66 (= 84,221.5 MWh/127,581.8
MWh). Therefore, the roundtrip efficiency (how much of the energy
charged can be used in the discharging process) of the fleet as a

5 These main data sources can be accessed through the following links:
AISO and OASIS.

6 RTM prices are available from four Default Load Aggregation Points
DLAP). Similar to Bushnell and Novan (2021), we average the price data
rom DLAP locations to obtain a unique time series for the CAISO. The
our DLAP locations are Pacific Gas and Electric Company (PG&E), Southern
alifornia Edison (SCE), San Diego Gas & Electric (SDG&E), and Valley Electric
ssociations (VEA). The price within each DLAP is the sum of the marginal
nergy price and the congestion and loss prices. The energy component, which
s by far the largest component of the DLAP prices, is constant across DLAPs,
eading to a high correlation across DLAPs. Similarly, we obtain DAM prices
rom the three CAISO trading zones (NP15, SP15, and ZP26) and average these
ime series to obtain a unique time series for DAM prices.

7 EIA-860 Form reports generator-level specific information about existing
enerators and storage facilities with 1 megawatt of power capacity or greater.
he DOE Global Energy Storage Database is an open-access resource for
etailed energy-storage project in the US and worldwide.

8 The state of California declared in Executive Order N-33-20 state of
mergency on March 4, 2020, followed by a mandatory statewide stay-at-home
rder issued on March 19.
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Fig. 1. Batteries output, load, and prices from the CAISO.
Notes: Average battery usage, load profile and Day-Ahead Market (DAM) prices from the CAISO +/- standard deviation. Data aggregation: 5-minutes, but DAM prices (hourly).
Source: Sample: 6 June 2018 to 1 March 2020.
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whole is slightly lower than what other studies have used in their
simulations. The ratio found here is the same than the one we use
later in Section 4.1.9 On average, batteries charge during the night
and discharge mainly during the evening hours, between 6pm to 8pm,
coinciding with peak load (shown in Panel (b)). DAM prices (Panel
(c)) show two spikes, coinciding with ramping needs during the early
morning hours as well as during peak load in the evening. The standard
deviation measure highlights a large degree of price uncertainly during
those same hours.10

2.2. Storage facilities

Lithium-ion batteries are typically described in terms of their energy
capacity (measured in MWh) and their power (measured in MW). The
former refers to how much electricity can be stored in the battery
whereas the latter refers to how much electricity can be charged or
discharged in any instant. Batteries are also characterized by their
roundtrip efficiency, which measures how much electricity is not lost
in the charging and discharging processes.

The parameters in our optimization model are inspired by the large-
scale facilities already in operation in California and documented in
the EIA-860 Form. As of 2019, there were 172 operational facilities in
the US, of which 47 were in California. The vast majority are lithium-
ion batteries. The mean of the energy capacity for those 47 plants in
California is 13.8 MWh and the median is 7.2, but there is a facility with
a capacity of 120 MWh. The mean of power for those same batteries
is 5.3 MW, with a median of 1.5 MW.11 The facility with 120 MWh of
nergy capacity has a power of 30 MW and it is owned by San Diego
as & Electric. Several of these facilities are recorded as ‘‘Arbitrage’’ of
hich a subset of those are also recorded as ‘‘Frequency Regulation’’.12

n particular, 7 out of the 8 largest batteries (by energy capacity) are
abeled as ‘‘Arbitrage’’, which altogether have 363 MWh of energy
apacity (51% of the storage energy capacity in California). The other
lant out of these 8 largest batteries is labeled as ‘‘Ramping/Spinning
eserve’’.

9 Our ratio is below the US average reported by the EIA (https://www.eia.
ov/todayinenergy/detail.php?id=46756) of 0.82. This EIA statistic is based
nly on those facilities that filled Form EIA-923 in 2019 and not from the
ntire fleet of batteries, which may explain the gap between our ratio and the
IA’s.
10 While DAM and RTM prices are highly correlated (𝜌 = 0.57), RTM prices
re more volatile, especially during peak hours.
11 In our stylized optimization model we assume equal input and output
ower capacity.
12 Frequency regulation is the ability to stop a frequency deviation in the
lectricity supply (60 Hz in the CAISO). This occurs for example when there
s an unexpected outage.
3

By taking the ratio of the sum of the capacity in each of those three
ategories relative to the total storage capacity installed, we obtain that
6% of the energy capacity is labeled as ‘‘Arbitrage’’, 38% is labeled
s ‘‘Frequency Regulation’’, and 37% as ‘‘Ramping/Spinning Reserves’’
ith a strong overlap between the last two categories, which we can

abel in general as ancillary services. Pooling the last two categories
ogether, the ratio is 44%. Note that those ratios are weighted by
ameplate capacity. Altogether this suggests that most of these facilities
elf-report that they concentrate on arbitrage and less than half of them
oncentrate on ancillary services.

We also compute how much energy each battery can provide mea-
ured in hours (this is another common way to express the capacity
f a battery). Specifically, we divide the nameplate energy capacity
MWh) by the nameplate capacity (MW). On average a battery has a
apacity of 3.7 h (maximum of 7 and minimum of 0.5 h). Assuming
he maximum depth of discharge (the battery is completely depleted
f energy before recharging and it is charged to its maximum capacity)
nd a symmetric duration for charging and discharging, we would have
ull cycles of 2×3.7 = 7.4 h on average, and of 14 h as a maximum. This

implies that the cycles are completed in less than a day. However, there
is degradation from full discharges and the CAISO is aware of such costs
but we do not have any specific information on how each individual
battery manages such costs since we only observe the aggregate data.13

3. Descriptive evidence on load, prices, and battery output

The availability of high-frequency data makes it possible to study
how battery owner’s charging and discharging decisions correlate with
load and prices. To get a first sense of the range and mode of those
variables, we provide histograms and scatterplots in Appendix Fig. A.2.
Positive values indicate that, in the aggregate, the batteries supply
electricity to the grid, i.e. they discharge. Negative values indicate
that, in the aggregate, batteries store electricity (charge). Load has a
skewed distribution with most of its values roughly between 20 and
40 gigawatthours (GWh). Prices have a stronger skewness, some prices
are negative, and some are an order of magnitude larger than the
mode. Neither the scatter plot between batteries output and load nor
the ones of batteries output and prices show any obvious correlation
between those variables. Our regression analysis in this section extracts
meaningful correlations after splitting the data and controlling for a
rich set of fixed effects.

To allow for a flexible relationship between load, prices, and battery
output, we estimate a regression model inspired by the work in Jha and
Leslie (2021), Davis and Hausman (2016) as follows:

𝑌𝑡 =
∑

𝑞=1,…,20
𝛽𝑞 × 1(𝑋𝑡 is in quantile 𝑞) + 𝜸𝜏 + 𝜖𝑡, (1)

13 CAISO Energy Storage and Distributed Energy Resources Phase 4

Stakeholder Workshop 2019, accessible through the following link.
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http://www.caiso.com/InitiativeDocuments/Presentation-EnergyStorage-DistributedEnergyResourcesPhase4WorkingGroup-Jun27-2019.pdf


Energy Economics 107 (2022) 105786S. Lamp and M. Samano

w
o

b
a
o
e
a
s
l
r
a
d

s
i
w
s
t
o
a
p
f

Fig. 2. Batteries and load.
Notes: Each value represents the effect on normalized battery discharge at each quantile of the distribution of demand. 5-minute data resolution. Bars around markers indicate
95% confidence intervals. Standard errors clustered at the date level.
Source: Data from the CAISO (6 June 2018 to 1 March 2020).
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here 𝜸𝜏 is a vector of time-related fixed-effects: hour-of-the-day, day-
f-week, and month. The term 1(⋅) is equal to 1 if the expression

inside the parentheses is true and 0 otherwise. The data in 𝑋𝑡 are
sorted and split into 20 equally spaced bins or quantiles (ventiles).
We do not include a constant so that we can estimate one coeffi-
cient for each quantile. As it will become clear in the next section,
we will compare observed battery dispatch data and optimal battery
dispatch outcomes, therefore, in order to make those two types of data
comparable, we define 𝑌𝑡 as the normalized observed battery output.
Specifically, 𝑌𝑡 is equal to the battery output divided by the mean of
the absolute battery output over our sample period. This normalization
allows us to interpret coefficients with respect to the average battery
dispatch.

When there are no controls or fixed effects added to Eq. (1), the
coefficients 𝛽𝑞 are equal to the conditional means of 𝑋𝑡 given quantile
𝑞. The addition of fixed effects captures the well-known cyclicality in
the electricity markets and 𝛽𝑞 become the mean at quantile 𝑞 corrected
y those cyclical effects. The month fixed-effect moreover captures
ny aggregate changes in CAISO, such as capacity additions. 𝑋𝑡 is
ne of the following: load, hour-ahead forecast of load, load forecast
rror (defined as the difference between realized load and the hour-
head forecast of load), prices, and renewables output. In the main
ection of this paper we focus on the relationship between batteries and
oad, price, and renewables output quantiles and report the remaining
egression results in the Appendix. We report standard errors clustered
t the date level to allow for correlation of errors within the same
ay.

We start with the case when 𝑋𝑡 is equal to load under two different
pecifications, this is shown in Fig. 2. Our first observation confirms an
ntuitive hypothesis, which is that batteries, on the aggregate, discharge
hen demand is high and charge when demand is low. This can be

een from the coefficient values from the model without fixed effects:
hey are relatively constant and negative for the first 14 quantiles
f the demand distribution and then almost monotonically increase
nd become positive when load is in the highest quantiles. This same
attern emerges in the two specifications we estimate. The inclusion of
ixed effects centers the lower quantiles of the load distribution around
4

ero. Once the cyclical patterns of the demand are taken into account,
he coefficients on high demand levels indicate that batteries discharge
ncreases by about 0.4 times the average absolute output of 13.6 MWh,
epresenting an absolute increase of about 5.4 MWh or roughly as much
s the mean of the batteries power capacity (5.3 MW, see Section 2).

The regression above uses contemporaneous demand as the main
xplanatory variable but it is entirely possible that storage facilities do
ot have perfect information about what the demand will be. Therefore,
e estimate the same model by setting 𝑋𝑡 equal to the hour-ahead load

forecast provided by the CAISO. This simply represents an inaccurate
measure of demand that is available to all market participants. The
results from this regression are shown in Fig. A.3(a) in the Appendix.
We find that there are almost no differences with the results previously
shown in Fig. 2 above. Similarly, we set 𝑋𝑡 equal to the difference
between the realized load and the hour-ahead forecast. This indicates
by how much batteries respond to errors in the hourly load forecast.
We find that batteries reactions tend to be to charge when realized load
is smaller than the hourly forecast and to discharge otherwise, which
can be seen in Fig. A.3(b) in the Appendix. Altogether, these findings
reinforce our hypothesis that batteries supply the grid with more energy
when demand is higher, or higher than forecasted.

We repeat the same analysis for prices. In this case, we estimate
Eq. (1) with 𝑋𝑡 equal to DAM and RTM prices separately. Fig. 3 shows
he coefficients for the same two types of specifications (no fixed-effects
nd with fixed-effects). The implicit assumption in this regression is
hat prices can be considered exogenous to the batteries decisions. As
ndividual battery capacities are relatively small, this is a common
ssumption in electricity market models.14

The correlations obtained from this regression lead us to our second
bservation: batteries tend to discharge only when prices are at the
ighest levels and charge the rest of the hours in the day. This pattern
s robust to our two different specifications and holds for both DAM

14 The largest storage facility in California has a power capacity of approx-
imately 30 MW. Yet, most of the mass of the load distribution is between
20,000 and 40,000 MWh.
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Fig. 3. Batteries and wholesale prices.
Notes: Each value represents the effect on normalized battery discharge at each quantile of the distribution of wholesale market prices. Hourly data resolution. Panel(a): DAM
prices. Panel(b): RTM prices. Bars around markers indicate 95% confidence intervals. Standard errors clustered at the date level.
Source: Data from the CAISO (6 June 2018 to 1 March 2020).
and RTM prices. If we assume exogeneity for the price, these results
suggest that batteries engage in arbitrage.

We could also add controls such as load or renewables output to
Eq. (1). The result when doing so is a collection of mostly negative
coefficients because batteries in the end are net consumers: they do not
actually produce any new energy and due to the roundtrip efficiency
of less than 100% there are losses. So netting out all other effects, the
batteries are net buyers (negative coefficients).

The results in Figs. 2 and 3 only give the aggregate effect by quantile
of the distribution but they do not convey any information of how much
volume the batteries traded in each of those quantiles. Even though the
measured effects are only positive at the highest quantiles, there is more
energy traded by the batteries precisely at those quantiles than in other
regions of the price distribution. Fig. A.6(a) in the Appendix shows the
share of the absolute amount of energy traded by quantile of the RTM
price distribution. At quantiles 19 and 20, the share of volume traded
is the highest at a share of around 6%.

We also examine the correlation between batteries output and
changes in the wholesale price. To do so, we study both the battery
response to changes in wholesale prices from one hour to the next
(Appendix Fig. A.4) as well as differences between the hourly price
and the average price level that day (Appendix Fig. A.5). These results
confirm that, in the aggregate, discharging is positively correlated with
price increases from one hour to the next and the larger the price
increase, the larger the amount discharged by the battery in line with
arbitrage behavior. Similarly, we show that most of the discharging
occurs at prices that are well above the average price level on a given
day.

To end this descriptive section, we examine in Fig. 4 the batteries
activity with respect to the renewables output. The coefficients in
this case are very different from the previous graphs. Generally, the
higher the quantile of the renewables output, the higher the batteries’
purchases of energy. This suggests that some storage facilities may be
co-optimizing with renewables output and perhaps alleviating some
congestion issues in the grid.15

15 For completeness, Appendix Fig. A.7 shows the correlation between net
oad, defined as load net of renewables output, and normalized battery activity.
he coefficients are comparable to the main results for load in Fig. 2. The
5

4. Optimal storage

4.1. Model

In this section, we use a similar setting as in Giulietti et al. (2018)
and Sioshansi et al. (2009) and compute the solution to a simple model
of a price-taking storage facility that maximizes arbitrage value subject
to technological constraints. Our goal is to benchmark the empirical
observations to the optimal outcomes of a representative battery in the
same market. We do not attempt to calibrate the output of this battery
to the data, but rather to understand the patterns that we document
based on the data. The problem and the constraints are given by:

max
𝐸𝑜𝑢𝑡
𝑡 ,𝐸𝑖𝑛

𝑡

∑

𝑡
𝑝𝑡 × (𝐸𝑜𝑢𝑡

𝑡 − 𝐸𝑖𝑛
𝑡 ) s.t.

𝑍0 = 0 and 𝑍𝑡 = 𝑍𝑡−1 + 𝜂𝐸𝑖𝑛
𝑡 − 𝐸𝑜𝑢𝑡

𝑡

𝐸𝑜𝑢𝑡
𝑡 , 𝐸𝑖𝑛

𝑡 ≤ 𝑅max

𝐸𝑜𝑢𝑡
𝑡 ≤ 𝑍𝑡 ≤ 𝑆max

𝐸𝑜𝑢𝑡
𝑡 , 𝐸𝑖𝑛

𝑡 , 𝑍𝑡 ≥ 0

𝑅max = 1.5 MW, 𝑆max = 7.2 MWh,

where 𝑍𝑡 is the amount of electricity stored at time 𝑡, 𝑝𝑡 is the wholesale
electricity price, 𝐸𝑜𝑢𝑡 and 𝐸𝑖𝑛 are the amounts of discharge and charge,
respectively. The law of motion for 𝑍𝑡 simply states that the net change
in the amount of energy in the battery is given by the difference
between the amount charged and the amount discharged during the
time period 𝑡. The parameter 𝜂 < 1 is the fraction of energy that is not
lost during the charging and discharging processes, this is known as the
roundtrip efficiency. We assume 𝜂 = 0.66 based on our data.16 Larger
values of this parameter do not have a large effect on our main results
as discussed below.

𝑅max is the power capacity (MW), which is how much the battery
can charge or discharge in period 𝑡. Both 𝐸𝑖𝑛

𝑡 and 𝐸𝑜𝑢𝑡
𝑡 are bounded by

this constant. 𝑆max is the energy capacity (MWh), which is how much

relation between storage capacity and the correlation of net load with renew-
ables output is an active topic of research, see for example (Andrés-Cerezo and
Fabra, 2021).

16 Sioshansi et al. (2009) uses 𝜂 = 0.8 for their initial simulations and then
they perform robustness checks with 𝜂 = 0.5,… , 0.9.
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Fig. 4. Batteries and renewables.
Notes: Each value represents the effect on normalized battery discharge at each quantile of the distribution of renewables output. 5-minute data resolution. Bars around markers
indicate 95% confidence intervals. Standard errors clustered at the date level.
Source: Data from the CAISO (6 June 2018 to 1 March 2020).
electricity can be stored in the device. This constant bounds from above
the state variable 𝑍𝑡. We fix the values of 𝑅max and 𝑆max at the median
values using the data from the EIA as explained in Section 2.2 above
(1.5 MW and 7.2 MWh, respectively).

Note that because we model a price-taker storage facility, we as-
sume that the battery has no effect on the system’s residual demand
and therefore, no effect on 𝑝𝑡.17

The solution to this problem is found using the GLPK solver imple-
ented with Pyomo in Python and feeding the DAM and RTM prices,

eparately, into the model.18 Note that we assume perfect foresight
ince we use the contemporaneous price data when making decisions,
ither when using DAM or RTM prices. Therefore, our results in this
ubsection should be interpreted as the best case scenario and this
nterpretation is useful since we want to compare the observed battery
utput against the expected optimal behavior.

The solution to the constrained maximization problem is shown
n Fig. 5 by plotting the net amount of discharge 𝐸𝑜𝑢𝑡

𝑡 − 𝐸𝑖𝑛
𝑡 over

time, specifically for four consecutive days only and for the case of
DAM prices, to ease visualization. The oscillating behavior is typical
to the solutions to this type of problems. The oscillations are largely
correlated with changes in the wholesale prices (either DAM or RTM),
which we also plot in the same graph. It is evident that our optimal
battery discharges when prices are high and charges when prices are
low. The correlation between these two time series over the entire
sample period for DAM prices is 0.43, which is more than three times
the correlation (0.13) between those same prices and the observed
aggregate net amount of discharge.

When we vary the value of the roundtrip efficiency 𝜂, we obtain
qualitatively the same results as with 𝜂 = 1. However, by decreasing
the roundtrip efficiency, the variance of the battery output – at any
given quantile of the price distribution and at any given hour of the
day – decreases as well but the means remain practically unchanged.

17 A battery whose actions affect the equilibrium price would maximize
𝑡 𝑝𝑡(𝐿𝑡 − 𝐸𝑜𝑢𝑡

𝑡 + 𝐸𝑖𝑛
𝑡 ) × (𝐸𝑜𝑢𝑡

𝑡 − 𝐸𝑖𝑛
𝑡 ) subject to the same constraints as in the

price-taking problem, and where 𝐿𝑡 is the load and 𝑝𝑡(⋅) is the inverse demand
function.

18 https://www.gnu.org/software/glpk/
6

The correlation between the observed prices and the simulated battery
output decreases monotonically from 0.46 when 𝜂 = 0.6 to 0.35 when
𝜂 = 1.

Fig. 6 shows the distribution of the net amount of discharge for each
of the twenty quantiles of the wholesale price distribution. Consistent
with Fig. 5, our optimal battery injects energy to the system more
often when prices belong to the upper quantiles of the distribution
and purchases energy when the prices belong to quantiles 12 and
below as measured by the mean of 𝐸𝑜𝑢𝑡

𝑡 − 𝐸𝑖𝑛
𝑡 . Qualitatively, this is a

similar pattern than the one found in Fig. 3 using the actual data on
batteries output. The main difference is that in the data, discharging
only occurs for the last two to three quantiles. This fact can be due
to several reasons. First, our optimization solution assumes perfect
foresight on wholesale prices, which is not true in reality. Second,
our optimization model captures the behavior of a price-taker storage
facility, it is possible albeit unlikely that some of the battery facilities
exercise market power or strategically respond to opponents’ storage
behavior.19 Third, our optimization model uses parameter values for a
representative battery, but we know from the discussion in Section 2.2
that there are large differences in the power and capacity sizes of the
batteries in the CAISO. Finally, the optimal storage problem is more
complex in reality than in our stylized model since we do not take into
account dynamic charge and discharge decisions.

4.2. Comparing the empirical data to optimal storage

To understand in how far battery owners follow the same pattern as
predicted by the optimization model, we estimate a regression that is
motivated by the state equation in Section 4.1. Since battery activity is
a direct function of the amount of electricity stored and this is related

19 Market power is also related to the nature of the owner of the fa-
cility. Bahn et al. (2021) and the references therein have quantified the
implications that the portfolio composition of an owner of a VRE plant
has on market power. Andrés-Cerezo and Fabra (2020) study theoretically
the equilibrium properties of markets with and without vertical integration
between storage facilities and production as well as when including market

power exercised by storage facilities.
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Fig. 5. Optimization: battery charge (4 days).
Notes: The battery discharge amounts are the solution to the optimization problem for the representative battery when fed with DAM prices. These amounts are normalized to 1
as the maximum capacity (actual power capacity of the battery is 1.5 MW). The prices on the secondary 𝑦-axis are taken directly from the DAM and RTM data. We only present
he results for 4 days to ease the visualization, but we solve the problem using all our sample period.
Fig. 6. Optimization: battery charge and price quantiles.
Notes: Panel(a): The battery discharge amounts are the solution to the optimization problem for the representative battery using DAM prices in Panel (a) and RTM prices in Panel
b). The horizontal axis refers to the price distribution.
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o past battery output, we include the lagged battery output in our
mpirical model as explanatory variable.20

To make the coefficients comparable for both the battery output
rom the representative battery and from the empirical data of the
AISO battery fleet, we define 𝑌𝑡 as the battery output (observed or

optimal) divided by the mean of the absolute dispatch over our sample
period. This is the same definition as in the previous section. The re-
spective means of the normalized battery output from the optimization

20 The first order conditions of the optimization problem in Section 4.1
ontain lagged terms of 𝐸𝑜𝑢𝑡

𝑡 and 𝐸𝑖𝑛
𝑡 , which implies that the simplest regression

model for battery output must include at least one lag of the output as
explanatory variable. If it was not included, there would be an omitted variable
problem in the regression. However, the estimation of this model by OLS
results in biased but consistent estimates. Given the large amount of data at
7

our disposal, we opt for avoiding the bias from an omitted variable.
model are −0.207 (when feeding in DAM prices) and −0.208 (when
sing RTM prices), while the mean of the normalized observed battery
utput is −0.212.21 The regression model is

𝑡 = 𝛼𝑌𝑡−1 +
∑

𝑗=0,…,23
𝛽𝑗 × 1(ℎ(𝑡) = 𝑗) × 𝑝𝑡 + 𝜸𝜏 + 𝜖𝑡, (2)

here 𝑝𝑡 represents the wholesale price at time 𝑡, ℎ(𝑡) is the hour of
he day at time 𝑡, and 1(⋅) is the indicator function. This regression
dditionally conditions on the same vector of time fixed-effects as the

21 To interpret the results in terms of MWh the coefficients need to be
multiplied by the mean of the absolute dispatch: 13.38 MWh in the empirical
data and 0.64 MWh and 0.62 MWh in the optimization model with DAM and
RTM prices, respectively.
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Fig. 7. Optimal versus observed battery output.
Notes: Linear predictions of normalized battery output for each hour of the day. DAM, Panel(a) and RTM, Panel(b). ‘‘Optimization model’’ refers to the estimates using the battery
time series obtained from the optimal dispatch model Section 4.1. ‘‘Data’’ refers to the estimates using observed data in CAISO (6 June 2018 to 1 March 2020). Bars around
markers indicate 95% confidence intervals. Standard errors clustered at the date level.
Fig. 8. Marginal price response.
Notes: Each value represents the marginal impact of changes in wholesale prices (DAM, Panel(a) and RTM, Panel(b)) on normalized battery discharge at each hour of the day.
‘Optimization model’’ refers to the estimates using the battery time series obtained from the optimal dispatch model in Section 4.1. ‘‘Data’’ refers to the estimates using observed
ata in CAISO (6 June 2018 to 1 March 2020). Bars around markers indicate 95% confidence intervals. Standard errors clustered at the date level.
rice regression Eq. (1) and on the lagged value of the normalized
attery output 𝑌𝑡−1.22

As highlighted in the previous section, individual batteries are small
and thus price-taking behavior is a common assumption. In line with
the modeling framework in Section 4.1, we therefore assume that
battery owners take wholesale prices as given. Since the inclusion
of a lagged dependent variable can affect the autocorrelation of the
error term in Eq. (2), for robustness, we estimate the model with HAC
standard errors that are robust to both arbitrary heteroskedasticity and
arbitrary autocorrelation. Similarly, as lagged battery output is likely
correlated with the error term, we estimate an alternative model in
which we instrument lagged battery output at 𝑡−1 with lagged battery
output one day before (at 𝑡−25). As batteries typically optimize within

22 We omit additional control variables from the regression as these are not
aking into account by the optimization model. The results when including
dditional control variables in the model with the empirical data are available
rom the authors upon request.
8

a given day, we expect this equation to be less affected by potential
endogeneity concerns.23

Using the same empirical model for the two time series of battery
output separately (observed output and optimal output) allows us to
directly compare the predicted output and coefficients for the battery
activity obtained from the optimization model and the empirical data.
We plot the predicted hourly battery activity in Fig. 7. Panel (a) shows
the total predicted battery output when 𝑝𝑡 is equal to DAM, while Panel
(b) employs RTM prices. These effects are evaluated at mean values of
the data.

There are several things worth noting. First, the optimal output fol-
lows closely the wholesale market prices. We see two main discharging
cycles in line with the price spikes, one at hours 4 to 5 in the morning
and the second one at hours 16 to 19 during the evening peak. The rest
of the day the batteries are typically in charging mode. This pattern

23 We report these results in Appendix Fig. A.8. Our estimates are robust to
these alternative modeling choices.
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Fig. 9. Impact of battery use on RTM prices spreads.
Notes: Each value represents the effect of newly added battery capacity on daily RTM price spreads as well as maximum RTM prices. Unit of data aggregation: weekly. Markers
represent 90% confidence intervals. Standard errors clustered at the date level.
Source: Data from CAISO (1 January 2013 to 31 May 2017).
is consistent with the one seen in the DAM prices from Panel (c) in
Fig. 1 in which prices are higher at around 5 am to 6 am and 6 pm.
This cyclical pattern exists for both DAM and RTM prices, although the
increase in discharge is larger for DAM prices.

The predicted battery output from the empirical data is generally
less pronounced, although we see evidence for the same charging
cycles. However, in this case only the evening hours are related to a
positive and significant discharge. Overall, the quantitative responses
are smaller for the empirical estimates than for the optimization model.

Those differences between optimal arbitrage and the empirical data
can be explained by a variety of factors. First, the model assumes bat-
tery owners have perfect foresight about market prices, which clearly
is not given in practice. Second, our predictions compare optimal
arbitrage from a single representative battery to the current fleet of
batteries in California. If individual batteries are employed for pur-
poses other than arbitrage (e.g. frequency control, ramping/spinning
reserves) as explained in Section 2.2, these batteries will not necessarily
respond to short term price signals. As we only observe aggregate
battery output for the CAISO rather than the output of individual
batteries over time, we are unable to make this distinction. Finally,
there might be additional constraints in battery usage that are not
captured by the simple model of optimal arbitrage.

To better understand how the two types of batteries respond to
changes in the wholesale price, we plot in Fig. 8 the marginal effect
of DAM and RTM price changes on battery discharge for each hour of
the day. This marginal effect is captured by the 𝛽𝑗 coefficients from
Eq. (2), which are allowed to vary by hour of the day. As the regression
model additionally controls for month, day-of-week, and hour-of-the-
day fixed effects, these coefficients are net of all cyclical components
and aggregate shocks to battery deployment.

If batteries engaged in arbitrage, we would expect that an increase
in wholesale prices triggers an increase in battery discharge for most
hours of the day. We do find such evidence for optimal battery output
in Fig. 8, where the estimated price coefficient is either positive or zero
for all hours. The marginal price effects are zero in hours in which
the battery is operating at full capacity at peak charge or discharge,
9

at about 3–4 am and 5–7 pm, in the DAM market. To put it differently,
an increase of wholesale prices in these hours does not longer lead to
an expansion of battery discharge. We see a similar pattern for RTM
prices. However, in this case all coefficients are positive, indicating that
the battery will respond to price increases at all hours with additional
discharge. This is in line with batteries being the most flexible asset
type that can respond almost instantaneously to price fluctuations. Note
that the total marginal effect is rather small. We estimate a maximum
response of about 3% and 4% relative to the mean absolute battery
output at 9 am for a 1 $/MWh increase in DAM and RTM prices,
respectively. The positive price coefficients indicate that batteries will
either discharge more with higher prices or charge more with lower
prices.

By comparing this ‘‘optimal’’ response to the observed data, we find
that the CAISO battery fleet only responds positively to marginal price
increases during the early morning hours around 5 am and 6 am and
a small, yet significant increase at hour 5pm for DAM prices, and at
hours 12pm, 3pm and 4pm for RTM prices. These findings indicate
that batteries are less flexibly employed than would be foreseen by
an optimal arbitrageur. In line with the description in Section 2.2,
batteries seem to be active also during the day for other purposes, such
as frequency control in hours in which renewable output is high. While
the battery fleet overall is less responsive to price changes than our
optimal solution, the batteries in the data make decisions whose total
outputs are somehow consistent with those from a price-taking battery
that maximizes arbitrage opportunities.

5. Batteries output and wholesale prices

5.1. Price spreads and new storage capacity

The fact that individual storage units are small compared to the
overall market size makes the price-taking assumption in the storage
model in Section 4 reasonable. Yet, there is the possibility that all
battery owners optimize their charging and discharging decisions in
line with prices, in which case those operations may have an impact
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Table 1
Private value of battery storage.

Predicted hourly output Actual hourly output

Optimization Data Optimization Data

Annual revenue 11,245.76 −9,032.29 34,797.52 −6,191.94
($ per MWh of energy capacity)

Representative plant (7.2 MWh):
9 yr lifetime, non-discounted (m$) 0.729 −0.585 2.255 −0.401
9 yr lifetime, 5% discounted (m$) 0.656 −0.527 2.031 −0.361

Investment cost [m$ - 2018] 1.685 1.685 1.685 1.685

Lifetime profits, non discounted (m$) −0.956 −2.270 0.570 −2.086
Lifetime profits, discounted (m$) −1.028 −2.212 0.347 −2.046

Notes: Private value of battery storage arbitrage for the predicted and actual hourly output. Calculations
based on hourly responses to RTM prices as well as observed batteries-traded volumes by the hour. Data from
6 June 2018 to 1 March 2020. Private values assume 66% battery roundtrip efficiency and no degradation
over lifetime. Lifetime calculations based on 9 years utilization and 5% annual discount rate. Investment
cost of $234 per kWh of storage in 2018 assumed, based on Bloomberg New Energy Finance.
Fig. A.1. Operational energy projects. (May 2018).
Source: California Energy Commission using DOE
Energy Storage Database.
on the market equilibrium, especially during peak hours. A linear
regression of wholesale prices on battery output would thus suffer
from endogeneity. The aggregate nature of our data makes it hard to
10
find a suitable instrument for battery deployment. Instead, we use a
more direct approach, estimating a ‘‘difference’’ framework of battery
capacity additions on equilibrium price spreads and peak prices. The
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Fig. A.2. Batteries output, load, and prices from the CAISO. Notes: Empirical distributions of batteries output, load, DAM, and RTM prices as well as their correlation.
Source: Data from the CAISO (6 June 2018 to 1 March 2020).

Fig. A.3. Batteries, hour-ahead forecast load, and error forecast.
Notes: Each value represents the effect on battery discharge at each quantile of the distribution of the hour-ahead load forecast provided by the CAISO to all market participants
(Panel (a)) and the difference between the realized load and the hour-ahead forecast (Panel (b)). Bars around markers indicate 95% confidence intervals. Standard errors clustered
at the date level.
Source: Data from the CAISO (6 June 2018 to 1 March 2020).
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Fig. A.4. Batteries and 𝛥 wholesale prices.
otes: Each value represents the effect on battery discharge at each quantile of the distribution of changes in consecutive hours in the wholesale prices. Panel(a): DAM prices.
anel(b): RTM prices. Bars around markers indicate 95% confidence intervals. Standard errors clustered at the date level.
ource: Data from the CAISO (6 June 2018 to 1 March 2020).
Fig. A.5. Batteries and 𝛥𝑚𝑒𝑎𝑛 wholesale prices.
otes: Each value represents the effect on battery discharge at each quantile of the distribution of differences of the hourly price with the daily average price. Panel(a): DAM
rices. Panel(b): RTM prices. Bars around markers indicate 95% confidence intervals. Standard errors clustered at the date level.
ource: Data from the CAISO (6 June 2018 to 1 March 2020).
ey assumption is that the exact timing of battery entry is exogenous
o current wholesale prices.

Since for the time period in the dataset used up to this point in
he paper we do not have the exact dates of entry of new capacity,
e opt for using a longer time period (January 2013 to mid-2017,

as in Bushnell and Novan (2021)) for which we observe the exact
ates of battery entry (the DOE-Global Energy Storage Database (DOE-
ESD), DOE (2020)). We use the facilities for which we observe the
xact ‘‘commissioning’’ date. Appendix Fig. A.9 plots the cumulative
apacity of installed power as reported in both the DOE-GESD and the
IA Form-860.

As daily data on price spreads can be noisy and there is some
ncertainty about the exact timing of full battery capacity availability,
or the main analysis, we aggregate our data at the weekly level and
stimate:

log 𝑦𝑡 = 𝛽0 +
∑

𝑗=−4,…,12
𝛽𝑗 × capacity𝑡−𝑗 + 𝜶′𝑿𝑡 + 𝜸𝜏 + 𝜖𝑡,

where 𝑦𝑡 is the maximum or mean daily RTM price spread, or the
maximum daily RTM price. The variable capacity is the new battery
12

𝑡−𝑗
capacity. When 𝑗 < 0, no new capacity has been added yet. Positive val-
ues of 𝑗 represent weeks after the entry event. We condition on month
and week-of-year fixed effects (𝜸𝜏 ) and include renewable output, large-
hydro output, and load as controls. Standard errors are clustered at the
monthly level. The coefficients of interest are 𝛽𝑗 , which give the semi-
elasticity of the price spread with respect to added capacity. For a 1
MWh of new capacity, the spread changes by 100×𝛽𝑗 percentage points.

Fig. 9 shows that for our three different price statistics there is a
negative and statistically significant effect (at the 90% level) in the
weeks following the addition of new storage capacity in the system.
The significance of this effect fades away after five weeks, yet the
mean point estimates remain negative. In the four weeks leading to
the entry event the coefficients in all but one specification are not
statistically different from zero, consisting with our hypothesis that
the timing of the battery entry is exogenous and not foreseeable. We
perform robustness checks regarding the data aggregation at the daily
and monthly frequency and present those results in Appendix Fig. A.10.
The monthly-level specifications reflect some of the same behavior as
in the case of weekly frequency data, while the daily data aggregation
is more noisy, and no clear data pattern can be identified.
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Fig. A.6. Share of volume traded by quantile of price distribution and by hour.
otes: Share of battery volume traded, measured as battery output (charge or discharge) in a given DAM price quantile (Panel (a)) or in a given hour (Panel (b)) divided by total

absolute) battery output in sample period.
ource: Data from the CAISO (6 June 2018 to 1 March 2020).
Fig. A.7. Batteries and net load.
otes: Each value represents the effect on normalized battery discharge at each quantile of the distribution of demand net of renewables. 5-minute data resolution. Bars around
arkers indicate 95% confidence intervals. Standard errors clustered at the date level.
ource: Data from the CAISO (6 June 2018 to 1 March 2020).
T
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.2. The private value of battery storage

To put our results further into context, we use the predicted battery
utput from the empirical analysis (Fig. 7) as well as the actual battery
utput and optimal arbitrage solution from the representative battery
wner (Fig. 5) to provide estimates on the private value of storage in
he CAISO. Recall that the model maximizes profits from arbitrage for a
epresentative installation, and makes several assumptions concerning
nformation on prices as well as price-taking behavior. While these
ssumptions do likely not hold fully in practice, the model provides
n appropriate benchmark of ‘‘optimal’’ arbitrage, to which we can
ompare our empirical results.

To calculate the annual storage value for each MWh of installed
nergy capacity, we multiply the average battery output for each hour
f the day in either the optimization model or the empirical results
imes the corresponding hourly value of the RTM prices weighted by
13
the share of volume traded in that hour (see Appendix Fig. A.6).24 We
assume 66% roundtrip efficiency for our calculation. The results are
summarized in Table 1, which shows the values of a simple back-of-the-
envelope calculation concerning the private benefits over the lifetime
of a battery installation.

The average annual revenue is between −9.0 and 34.8 $ per kWh.
hese stark differences are explained by the model assumptions and the
act that the optimization model predicts large arbitrage opportunities
n the evening hours when prices are at their highest level but the
bserved output has much lower responses as discussed in the previous
ection. The batteries are only profitable in the third column (actual

24 We obtain very similar results if instead we multiply each observed price
times the corresponding battery output for each hour in our sample and then
take the sum.
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Fig. A.8. Robustness checks: observed battery output, standard errors and IV.
otes: Linear predictions of normalized battery output for each hour of the day. DAM, Panel(a) and RTM, Panel(b). Observed data in the CAISO (6 June 2018 to 1 March 2020).
ars around markers indicate 95% confidence intervals. HAC standard errors to allow for both arbitrary heteroskedasticity and autocorrelation. ‘‘IV l.battery’’ instruments lagged
attery output with lagged output 25 h ago.
Fig. A.9. Installed battery capacity CAISO. Notes: Cumulative installed battery capacity in CAISO.
Source: DOE Energy Storage Database (green line) and EIA form 860 (red line).
output from optimization model). The last column (actual observed
battery output) shows substantial negative profits. This simple calcu-
lation is model-independent and it shows that regardless of what the
true objective function the fleet may have, even the annual revenue is
negative at current prices.25 Note that our findings focus exclusively
n the private returns and abstract from any additional impacts on
roducer and consumer surplus in electricity markets.

25 We repeated this back-on-the-envelope analysis using DAM prices instead
f RTM prices. The only column with sizeable differences is the third column
actual output from optimization model). With DAM prices, the discounted
ifetime profits are more than eight times larger (2.506 m$) than when using
TM prices. However, the discounted lifetime profits when using the actual
bserved battery output and DAM prices (fourth column) are −2.077 m$, which
14

represent a difference of only 1.5% with respect to the RTM case.
Our calculations highlight that under current conditions it is not
profitable for battery owners to operate in this market. While the model
predicts positive (and sizeable) lifetime profits, these are not met in
the empirical data, indicating that without additional policies or other
sources of revenue, e.g. from ancillary services, profit maximizing firms
would not enter this market.

Finally, our results from Section 5.1 show that battery deployment
can have an impact on min–max price spreads and maximum prices in
the RTM market. While the focus on arbitrage possibilities can improve
the profitability of batteries in the short-run, the entry of new battery
capacity could reduce future profit opportunities in the medium and
long-run, making investment less attractive.

6. Conclusion

This paper documents general patterns of the output from large-

scale lithium-ion batteries relative to load and wholesale (RTM and
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Fig. A.10. Impact of battery use on RTM prices spreads.
otes: Each value represents the effect of newly added battery capacity on daily RTM price spreads, maximum RTM price spread, as well as maximum RTM prices. Unit of data
ggregation: daily in Panel (a) and monthly in Panel (b). Panel (a) includes month and day-of-month FEs, while Panel (b) uses year and month-of-year FEs in addition to the main
ontrol variables as in the main text. Markers represent 90% confidence intervals. Standard errors clustered at the date level.
ource: Data from CAISO (1 January 2013 to 31 May 2017).
AM) electricity prices in the CAISO. When we benchmark those ag-
regate patterns to the output from a representative battery installation
hat takes wholesale prices as given, we find that those patterns only
artially correspond to the optimal behavior of the CAISO’s median-size
torage facility. By doing so, this paper presents first empirical evidence
or the widely made assumption in the literature regarding the arbitrage
ehavior of this type of facilities.

While our results are robust to model specifications and robustness
hecks, they should be interpreted with caution. First, we only observe
ggregate battery responses and do not have access to a panel dataset
n the individual storage plants output. Second, our simple model
bstracts from more complex, dynamic storage considerations a battery
wner faces in reality. Yet, comparing the average battery response to
simple model for a representative battery owner provides a useful

enchmark on how far the owners optimize their behavior with respect
o arbitrage. Our findings furthermore highlight that the assumption of
rbitrage for storage facilities typically made in the energy economics
iterature should be made with wariness.

The analysis also highlights that batteries at current wholesale price
evels and investment costs may be facing negative lifetime profits and
hat this would likely limit investment in large-scale battery capacity.
n the future, the effect of the storage output on wholesale equilibrium
rices will also be related to how much storage gets committed to
he capacity market needs, provided it exists. Batteries have recently
uccessfully participated in capacity market auctions in PJM and the
K, and are expected to be a potential game changer in Spain, where a
ew capacity market has been announced.26 These are interactions left

for future research.

Appendix. Additional figures

See Figs. A.1–A.10.

26 See for instance recent developments following these links for PJM, the
K, and Spain.
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